
Will It Blend?:

Blend Switching User Guide

Ruslan Kurdyumov

March 7, 2012

Overview

We have implemented real-time switching between blend filters for ITMX. The switching relies on
two identical filter banks for each DOF, the CURR and NEXT bank, each of which contains all the
possible blend filters. We use a C code block in Simulink to turn on/off filter modules in the two banks
and smoothly ramp from the output of one bank to another. A Perl script interfaces with MEDM and
triggers the C code.

Contents

1 Operation 2
1.1 The Blend Screen . 2
1.2 Switching Between Blends . 3
1.3 Switching Multiple DOF . 3

2 Implementation 5
2.1 Simulink . 5

2.1.1 Blend filter modules . 5
2.1.2 MASTERMIXBLENDS C function call . 5
2.1.3 Mix function block . 6
2.1.4 DIFF block (unused) . 6

2.2 C code . 6
2.3 Perl . 9
2.4 MEDM . 11

3 FAQ 12
3.1 Why use two filter banks instead of switching between filter modules in one bank? 12
3.2 Why switch back to the CURR bank? Can’t you just alternate which bank is the CURR bank? 12
3.3 What happens if I try to switch blends while switching is active? 12
3.4 What happens if I accidentally switch to my current blend? 12
3.5 Why did you allow switching to the same blend? . 12
3.6 What happens if I switch to an empty blend? . 12
3.7 Are the blend ramping and settling times fixed? . 12
3.8 In the Simulink model of the blend filters, why do you have a test point and an EPICS output

for each blend output? . 12
3.9 Why can’t I manually turn on/off filter modules during switching? 12
3.10 How do I abort a blend switch in progress? . 13

1

1 Operation

We have designed blend-switching with ease-of-use in mind. As a result, all the implementation details are
hidden from the user. To complete a switch, the user interacts with the blend MEDM screen.

1.1 The Blend Screen

At the lowest level, the user can switch between blends for a given degree of freedom by clicking the desired
blend. Below, we have the MEDM screen illustrating the state of the blend filters for the Stage 1 X DOF,
which blends 3 sensors: CPS, T240, and L4C:

Figure 1: A typical blend MEDM screen for one DOF.

The important parts of the screen shown in Figure 1 are numbered in red and explained below:

1. The input signal for the sensor to be blended. In this case: the CPS X signal.

2. The blend bank, a bank which illustrates the possible blends we can choose from, and highlights the
currently active blend in green. We can choose another blend by clicking on its button. In this case, the
Blend HAMISH blend is currently active, and we can click on another blend button to switch blends.

3. The progress bar, which visually indicates how far along a blend switch we are. In this case, the bar is
solid green, indicating that the switch is complete and only one blend is active. During switching, the
bar will progressively light up yellow indicator bars tracking how far along the switch we are.

4. The CURR blend output signal, which displays the output of the currently active blend (the one
highlighted green in the blend bank). In this case, this is the Blend HAMish blend.

5. The NEXT blend output signal, which displays the output of the blend we are switching to. In this
case, we arent switching, so the next bank is off and the output signal is 0.

6. The mixed blend output, which is the weighted sum of the CURR and NEXT outputs, depends on
the switching progress. In this case, we are not switching, so the CURR output is weighted 1 and the
NEXT output is weighted 0. At this point, all the sensors are in comparable units.

7. The supersensor signal, which combines the mixed blend outputs to produce an overall signal for the
given DOF. It happens to be 0 since we are under isolation.

2

1.2 Switching Between Blends

To switch to a different blend, you click the button of the desired blend. A screen like the one below will
appear:

Figure 2: A typical blend MEDM screen switching from ”Blend start” to ”Blend 0p6”.

The progress bar will update as the switch progresses. Yellow bars will light up, indicating the following
states:

1. Waiting for NEXT bank to settle

2. Ramping to NEXT bank

3. Waiting for CURR bank to settle

4. Ramping back to CURR bank.

The bar will go back to solid green when switching is complete. The mixed blend output (OUTMON) will
also track the weighted sum of the CURR and NEXT blend outputs. In this case, we are switching from the
Blend start to the Blend 0p6 blend.

If you want to see the CURR and NEXT filter banks for a given sensor DOF for debugging purposes,
you can click on the CURR and NEXT buttons to bring up the standard MEDM screens. In Figure 3, we
are switching from Blend HAMish (FM4) to Blend 0p6 (FM1).

You should avoid manually turning on/off filter modules in the CURR and NEXT screens except when
debugging. During blend switching, the C code will have control of the filter modules, so you will not be
able to turn them on or off.

1.3 Switching Multiple DOF

For convenience, we have included a SWITCH ALL MEDM screen, which can be accessed from the top of
the overall blend filter MEDM screen. It is shown in Figure 4. This screen allows switching all the DOFs
for a given stage to the selected blend simultaneously. Note that to use this functionality, matching blends
must be loaded into the same filter modules for ALL the degrees of freedom for a given stage. In this case,
FM1 has the Blend start blend loaded in for all the stage 1 DOF, FM2 has Blend 0p6, etc.

3

Figure 3: The CURR and NEXT blend screens for a given DOF.

Figure 4: The SWITCH ALL blend screen, which simultaneously switches all the DOF to the selected blend.

4

2 Implementation

To implement real-time blend-switching, we rely on a modified Simulink diagram, C code to ramp between
blends, and a Perl script to trigger the C code and perform housekeeping.

2.1 Simulink

The old and new blend filter diagrams for a single DOF are shown in Figure 5:

(a) Old (b) New

Figure 5: The old and new blend Simulink implementations.

From left to right, we read in the sensor inputs for a given DOF. These inputs are fed into the X
block, where blend filters are applied to the sensors. The X block blend outputs are summed to create the
supersensor signal. Switching between different blend filters is done inside the X block. We include the Test
Points before and after the blending for backwards compatibility in naming conventions and writing the
blend output to the framebuilder at the model rate, respectively. The Epics outputs are used in the blend
MEDM screens.

All the actual work is done inside the X block, shown in Figure 6.

2.1.1 Blend filter modules

The key part of the diagram is the presence of two blend filter modules for each sensor which are used to
smoothly switch between blends. Note that the CPS In signal on the far right feeds into CPS CUR and
CPS NXT cdsFiltCtrl modules in the middle. Each cdsFiltCtrl module takes three inputs: In1, Cin, and
Mask, from top to bottom. In1 is the incoming data signal. Cin controls which filter modules are on. Mask
determines whether the Cin input or the operator has control of the filter modules.

2.1.2 MASTERMIXBLENDS C function call

The MASTERMIXBLENDS cdsFunctionCall block contains the C code that governs blend switching. The
block takes as input DESIRED FM, a momentary variable set to 1-10 by Perl when requesting a switch,
and 0 otherwise. The block has 6 outputs, from top to bottom: MIX, Cin CUR, Mask CUR, Cin NXT,
Mask NXT, and MIXSTATE. MIX outputs the mixing variable [0-1], which gives weights to the CURR and
NEXT blends. Cin and Mask switch on the proper FM when switching. MIXSTATE is used by MEDM to
update the progress bar and Perl for housekeeping.

5

Figure 6: The low-level Simulink blend switching implementation for 1 DOF.

2.1.3 Mix function block

The combining of the CURR and NEXT blend outputs is done in the Mix function block using the following
logic (CPS used as an example):

CPS out = (1−MIX) ∗ CPS CUR + MIX ∗ CPS NXT

During normal operation, MIX = 0, so the output is simply the CURR blend. During switching MIX
smoothly varies from 0 → 1 (and back from 1 → 0), so the output is a weighted sum of the CURR and
NEXT blends.

2.1.4 DIFF block (unused)

Note that we have included a cdsEpicsOutput called DIFF, a low-pass filtered signal indicating the difference
between the CURR and NEXT bank outputs. The motivation for this variable is the following: rather than
switching for a fixed time, we switch and wait for the DIFF signal to settle before considering our switch
complete. We have chosen not to use the DIFF signal for switching because testing showed our CURR and
NEXT signals converged quickly in the fixed time approach. In addition, a fixed time switch guarantees
that any requested switch is completed. However, the filter has been tested and could be used in future
implementations.

2.2 C code

The commented C code is attached below. To summarize, the C code waits for the DESIRED FM input to
change to a FM 1-10, turns on the requested FM in the NEXT bank, ramps to it, turns on the requested
FM in the CURR bank, ramps to it, and goes back to waiting.

1 /∗ BLENDMASTER. c Function : MASTERMIXBLENDS
∗

3 ∗ This func t i on sw i t che s smoothly between two d i f f e r e n t blend f i l t e r s . I t
∗ uses the NEXT bank o f f i l t e r s to switch to temporar i ly , then sw i t che s

5 ∗ back to the o r i g i n a l f i l t e r . During t h i s switch , we use the cd sF i l t
∗ with c t r l to c on t r o l which f i l t e r modules are turned on . The input

7 ∗ DESIRED FM i s t i e d to an EPICS momentary . I t i s used to determine
∗ whether the we should switch − a switch i s i n i t i a t e d i f the cur rent

9 ∗ value f o r DESIRED FM > 0 . Once swi t ch ing begins , the code i gno r e s any

6

∗ changes to DESIRED FM.
11 ∗

∗ We use a s t a t e machine a r c h i t e c t u r e to perform the sw i tch ing . We turn
13 ∗ on the reques ted FM in the second bank , wait f o r i t to s e t t l e , ramp

∗ from the f i r s t to the second bank , switch the f i r s t bank to the
15 ∗ r eques ted FM, wait f o r i t to s e t t l e , and ramp back to the f i r s t bank .

∗
17 ∗ Inputs :

∗
19 ∗ i n t de s i r ed fm : the f i l t e r module the user wants to switch to

∗
21 ∗ Outputs :

∗
23 ∗ double mix value : the ramping va r i ab l e [0−>1] used to combine the

∗ output from two blends
25 ∗ i n t cu r c in b i tmask : the f i l t e r modules that the C code wants on in the

∗ CURR bank
27 ∗ i n t c u r c t r l b i tma sk : the CURR f i l t e r modules the C code c on t r o l s

∗ nxt c in b i tmask : the f i l t e r modules that the C code wants on in the
29 ∗ NEXT bank

∗ i n t nx t c t r l b i tma sk : the NEXT f i l t e r modules the C code c on t r o l s
31 ∗ BlendingState c u r r e n t s t a t e : typede f ’d enum va r i ab l e keeping t rack o f

∗ our mixing s t a t e
33 ∗

∗ Authors : CJK RK
35 ∗ January 25 th 2012

∗
37 ∗

∗/
39

#de f i n e FULL CONTROL 0b1111111111
41 #de f i n e NOCONTROL 0b0000000000

#de f i n e TOTAL MIX TIME (5 ∗ FE RATE)
43 #de f i n e TOTAL WAIT TIME (5 ∗ FE RATE)

45 typede f enum { WAIT FOR FM SWITCH, WAIT FOR NEXT SETTLE, MIX TO NEXT, WAIT FOR CUR SETTLE,
MIX TO CUR } BlendingState ;

47 const s t a t i c i n t binary fm on [1 1] = {
0b0000000000 ,

49 0b0000000001 ,
0b0000000010 ,

51 0b0000000100 ,
0b0000001000 ,

53 0b0000010000 ,
0b0000100000 ,

55 0b0001000000 ,
0b0010000000 ,

57 0b0100000000 ,
0b1000000000 } ;

59

void MASTERMIXBLENDS(double ∗ argin , i n t nargin , double ∗argout , i n t nargout) {
61

s t a t i c i n t wa i t t imer = 0 ; // Waiting f o r f i l t e r h i s t o r y to catch up
63 s t a t i c i n t mix timer = 0 ; // Switch between d i f f e r e n t f i l t e r s

s t a t i c i n t next fm = 1 ; // The f i l t e r module we are sw i t ch ing to
65 s t a t i c BlendingState c u r r e n t s t a t e = WAIT FOR FM SWITCH;

s t a t i c i n t cu r c in b i tmask = 0b0 ;
67 s t a t i c i n t cu r c t r l b i tma sk = NOCONTROL;

s t a t i c i n t nxt c in b i tmask = 0b0 ;
69 s t a t i c i n t nx t c t r l b i tma sk = NOCONTROL;

// The f i l t e r module we want to switch to (0 when no switch reques ted)
71 i n t de s i r ed fm = arg in [0] ;

73

// STATE SWITCH
75 switch (c u r r e n t s t a t e) {

// STATE 0 : Waiting f o r command , then turn on NEXT bank f i l t e r module

7

77 case WAIT FOR FM SWITCH:
i f (wa i t t imer == 0 && des i r ed fm > 0 && des i r ed fm < 11) {

79 next fm = des i r ed fm ;
nxt c in b i tmask = binary fm on [next fm] ;

81 nx t c t r l b i tma sk = FULL CONTROL;
// Don ’ t take con t r o l o f the CURR bank s i n c e we don ’ t know what FM

83 // i t has loaded in
c u r r e n t s t a t e = WAIT FOR NEXT SETTLE;

85 ++wai t t imer ;
} e l s e {

87 cu r c t r l b i tma sk = NOCONTROL; // back to wait ing , g ive up con t r o l
nx t c t r l b i tma sk = NOCONTROL;

89 }
break ;

91 //STATE 1 : Waiting f o r NEXT bank h i s t o r y to s e t t l e
case WAIT FOR NEXT SETTLE:

93 i f (wa i t t imer < TOTAL WAIT TIME) {
++wai t t imer ;

95 } e l s e {
c u r r e n t s t a t e = MIX TO NEXT;

97 }
break ;

99 //STATE 2 : Ramping to NEXT bank , then switch CURR bank to reques ted FM
case MIX TO NEXT:

101 i f (mix timer < TOTAL MIX TIME) {
++mix timer ;

103 } e l s e {
cu r c t r l b i tma sk = FULL CONTROL;

105 cu r c in b i tmask = binary fm on [next fm] ;
c u r r e n t s t a t e = WAIT FOR CUR SETTLE;

107 }
break ;

109 //STATE 3 : Waiting f o r CURR bank h i s t o r y to s e t t l e
case WAIT FOR CUR SETTLE:

111 i f (wa i t t imer > 0) {
−−wai t t imer ;

113 } e l s e {
c u r r e n t s t a t e = MIX TO CUR;

115 }
break ;

117 //STATE 4 : Ramping back to CURR bank , then switch a l l NEXT bank FMs o f f
case MIX TO CUR:

119 i f (mix timer > 0) {
−−mix timer ;

121 } e l s e {
nxt c in b i tmask = binary fm on [0] ;

123 c u r r e n t s t a t e = WAIT FOR FM SWITCH;
}

125 break ;
}

127 // The weight ing g iven to the CURR and NEXT outputs ((1−x) ∗CURR + x∗NEXT)
double mix value = (double) mix timer / TOTAL MIX TIME;

129 argout [0] = mix value ;
// The f i l t e r modules that the C code wants on in the CURR bank

131 argout [1] = cur c in b i tmask ;
// The f i l t e r modules the C code has c on t r o l o f in the CURR bank

133 argout [2] = cu r c t r l b i tma sk ;
argout [3] = nxt c in b i tmask ;

135 argout [4] = nx t c t r l b i tma sk ;
// Output the i n t va lue o f the cur rent s t a t e

137 argout [5] = cu r r e n t s t a t e ;
}

/opt/rtcds/userapps/release/isi/common/src/BLENDMASTER.c

8

2.3 Perl

The commented Perl code is attached below.
The script is rather self-explanatory, and much of the code is building the correct data structures and

strings that enable easy switching later on. There is also some housekeeping that prevents the user from
starting a switch while there is already a switch in progress or when attempting a switch to an empty filter
module. The core of the code begins at line 110, when the script sets the DESIRED FM Epics momentary
to start the switching process. The script then waits until the C code has finished switching to the NEXT
bank and sends a request for the REQUESTED FM to the CURR bank. Once the C code has surrendered
control, this request will be fulfilled, preventing the filter module from reverting to its original state.

#!/ usr /bin / p e r l −I / l i g o / cd s c f g
2

masterSwi tchBlendFi l t e r s
4 # usage : . / maste rSwi tchBlendFi l t e r s system stage DOF FM [args]
#

6 # This s c r i p t sw i t che s between two d i f f e r e n t blend f i l t e r s in r e a l time .
#

8 # Author : CJK 2011 Sep 7
#

10

use s t r i c t ;
12 use warnings ;

use Getopt : : Std ;
14 use stdenv ;

INIT ENV($ENV{IFO}) ;
16 use CaTools ;

use 5 . 0 1 0 ;
18

sub usage {
20 pr in t <<USAGE

usage : . / maste rSwi tchBlendFi l t e r s system stage FM [do f s]
22

<system> i s the name o f the system , formatted as i f o : sys−chamber , e . g . s1 : i s i −itmx
24 <stage> i s the stage , e . g . s t1 or s t2

<FM> i s the f i l t e r module to switch to , e . g . FM2
26 <dof> i s an op t i ona l l i s t o f the degree s o f freedom to

switch , e . g . X or RZ
28

USAGE
30 }

32 un l e s s (@ARGV >= 3) {
&usage ; d i e ” I n c o r r e c t number o f arguments . ” ;

34 }

36 #ve r i f y we got a good subsys
my $SubSys = uc (s h i f t) ;

38 my $s ta t e ;
eva l { ($ s t a t e) = caGet (”${SubSys}MASTERSWITCH”) } ;

40 d i e ”Error : bad subsys $SubSys . ” i f ($ s t a t e eq ’ ’) ;

42 # Read in a l l o f the inputs
my $STAGE = uc (s h i f t) ;

44 my $fm = uc (s h i f t) ;
my @DOFS = @ARGV;

46 d i e ”Error : improper FM argument . ” un l e s s ($fm =˜ m/FM[1−9]0?/) ;
my $fm num = subs t r ($fm , 2) ;

48 # Create ar rays f i l l e d with the names o f the switch readback channe l s f o r the c o r r e c t s tage
my @ST1 SENSORS = qw (CPS T240 L4C) ;

50 my @ST2 SENSORS = qw (CPS GS13) ;
my @HAM SENSORS = qw (CPS GS13) ;

52 i f (!@DOFS) { @DOFS = qw (X Y Z RX RY RZ) ; }

54 # Create s enso r names
my @SENSORS;

56 i f ($STAGE =˜ m/ST[1 2] /) {

9

Use s tage 1 or s tage 2 s en so r s f o r the BSC−IS I
58 @SENSORS = ($STAGE eq ’ST1 ’) ? @ST1 SENSORS : @ST2 SENSORS;

$STAGE = $STAGE . ’ ’ ;
60 } e l s i f ($STAGE eq ’HAM’) {

Use the HAM sen so r s f o r HAM−IS I
62 @SENSORS = @HAM SENSORS;

$STAGE = ”” ;
64 } e l s e {

d i e ”Error : improper s tage argument . Use ST1 , ST2 , or HAM. ” ;
66 }

68 my $b l end p r e f i x = ”${SubSys} $ {STAGE}BLND” ;
my $num sensors = @SENSORS;

70 my $num dofs = @DOFS;
my @DESIRED FM CHANS;

72 my @MIX STATES;
my @CUR FILTER BANKS;

74 my @NXT FILTER BANKS;
fo r each my $dof (@DOFS) {

76 f o r each my $sensor (@SENSORS) {
push @CUR FILTER BANKS, ”${ b l e nd p r e f i x } $ {dof } $ { s enso r } CUR” ; # names f o r cur and next

f i l t e r banks
78 push @NXT FILTER BANKS, ”${ b l e nd p r e f i x } $ {dof } $ { s enso r } NXT” ;

}
80 push @DESIRED FM CHANS, ”${ b l e nd p r e f i x } $ {dof } DESIRED FM” ; # names f o r ’ d e s i r ed fm ’

channe l s
push @MIX STATES, ”${ b l e nd p r e f i x } $ {dof } MIXSTATE” ; # names f o r ’ running ’ channe l s

82 }

84 # make sure we ’ re not sw i t ch ing to an empty f i l t e r module
my ($name num) = ($fm =˜ /FM([1 −9]0?) /) ;

86 $name num = ”0” . ($name num−1) ;
my @NAMECHANNELS = map { $. ” Name$name num” } (@CUR FILTER BANKS, @NXT FILTER BANKS) ;

88 my @names = caGet (@NAMECHANNELS) ;
f o r each my $name (@names) {

90 i f ($name eq ””) {
&usage ;

92 d i e ”Error : Trying to switch to empty f i l t e r module . ” ;
}

94 }
make sure we ’ re not a l r eady running

96 my @runnings = caGet (@MIX STATES) ;
f o r each my $running (@runnings) {

98 i f ($running) {
d i e ”Error : blend swi tch ing a l r eady running . ” ;

100 }
}

102 #Store the o f f s e t s in the appropr ia te p lace
my @OFFSET CHANS CUR = map{ $. ” OFFSET” } @CUR FILTER BANKS;

104 my @OFFSET CHANS NXT = map{ $. ” OFFSET” } @NXT FILTER BANKS;
my @o f f s e t s = caGet (@OFFSET CHANS CUR) ;

106 caPut (@OFFSET CHANS NXT, @o f f s e t s) ;

108 # Turn on next f i l t e r bank & se t the DESIRED FM Epics v a r i ab l e f o r the C code
my $command = ”ALL OFF INPUT OUTPUT OFFSET DECIMATE $fm ON” ;

110 caPut (@DESIRED FM CHANS, ($fm num) x @DESIRED FM CHANS) ;
s l e e p (1) ;

112 caSwitch (@NXT FILTER BANKS, ($command) x ($num sensors ∗ $num dofs)) ;

114 # wait f o r the sw i t ch ing to stop
my @outputs = caGet (@MIX STATES) ;

116 my $requested = 0 ;
whi l e (1) {

118 s l e e p (1) ;
(@outputs) = caGet (@MIX STATES) ;

120 i f (! $ requested && $outputs [0] == 3) { # I f we ’ ve taken con t r o l o f the cur module
caSwitch (@CUR FILTER BANKS, ($command) x ($num sensors ∗ $num dofs)) ;

122 $requested = 1 ;

10

} e l s i f ($outputs [0] == 0) {
124 l a s t ;

}
126 }

128 # now that we ’ re a l l done , turn the next f i l t e r bank o f f
caSwitch (@NXT FILTER BANKS, (”ALL OFF”) x ($num sensors ∗ $num dofs)) ;

130 e x i t 0 ;

/opt/rtcds/userapps/release/isi/s1/scripts/masterSwitchBlendFilters

2.4 MEDM

Implementing the MEDM screens that display the blend switching progress is mostly straightforward. The
trickiest part is displaying the blend bank. To highlight the current and next blend, we take advantage of
the bit information in the SW1R and SW2R readback channels:

SW1R SW2R

Bit State Bit State

2 Input switch 1 FM7
5 FM1 3 FM8
7 FM2 5 FM9
9 FM3 7 FM10
11 FM4 10 Output switch
13 FM5
15 FM6

Note that the odd bits represent whether a FM is on, while the even bits represent whether a FM request
is has been made.

So, for example, let’s check whether the NEXT bank is switching to a blend loaded into FM2. We’ll check
whether the Output switch of the next filter bank is on and whether FM2 is on. The visibility calculation is
therefore: (SW1R & 27) && (SW2R & 210). If we wanted to check if both the Input and Output switches
were on, it would be: (SW1R & (27 + 22)) && (SW2R & 210).

11

3 FAQ

3.1 Why use two filter banks instead of switching between filter modules in one
bank?

There is no way to smoothly switch between filter modules in one bank.

3.2 Why switch back to the CURR bank? Can’t you just alternate which bank
is the CURR bank?

You can and it would make the switching faster. The basic answer - it’s easier to display in MEDM. The
highlighting of the current blend and the display of the current blend output rely on the fact that the CURR
bank is fixed - it’s always bank 1. You can alternate CURR banks and design other displays, but we didn’t
think they would be as intuitive.

3.3 What happens if I try to switch blends while switching is active?

The Perl script called by MEDM will ignore any switch requests that include an actively switching blend.
Therefore, if CPSX is switching and you choose to SWITCH ALL to a different blend, the SWITCH ALL
request will be ignored even though 5 of the 6 DOFs are free to switch.

3.4 What happens if I accidentally switch to my current blend?

The C code will load your request (the current blend) and switch to it. In practice, the only downstream
effect will be ramping to an identical filter whose history was recently reset.

3.5 Why did you allow switching to the same blend?

We chose to allow this so that the C code did not have to keep track of which filter module it last switched
to. If it had to do so, we would be forced to block the user from manually turning on/off filter modules to
guarantee that the C code history was accurate.

3.6 What happens if I switch to an empty blend?

The Perl script will not allow you to switch to an empty blend. It checks whether the requested FM name
field is empty.

3.7 Are the blend ramping and settling times fixed?

Yes, we have hardcoded the ramping and settling times to 5 seconds to keep the Simulink model simple.
The times can be changed in the BLENDMASTER.c file.

3.8 In the Simulink model of the blend filters, why do you have a test point
and an EPICS output for each blend output?

You need the test point to sample the blend output at the model rate and you need the EPICS output to
display the blend output in MEDM.

3.9 Why can’t I manually turn on/off filter modules during switching?

The C code takes control of the filter modules when switching to ensure that the switch can successfully
complete. The only exception is that the CURR bank remains under user control for the first half of the
switch (CURR→NEXT). Otherwise, the C code would need to know which CURR bank FM was on when
the switch was requested, and turn it on when taking control.

12

3.10 How do I abort a blend switch in progress?

You can’t. Since the C code has control of the filter bank, you will have to wait for the switch to complete.

13

