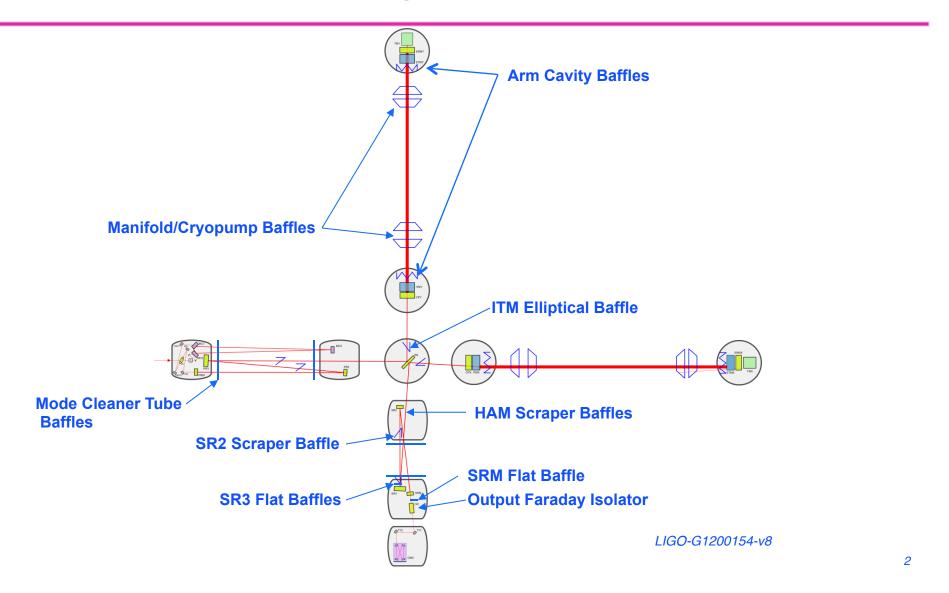


Auxiliary Optical Systems - AOS

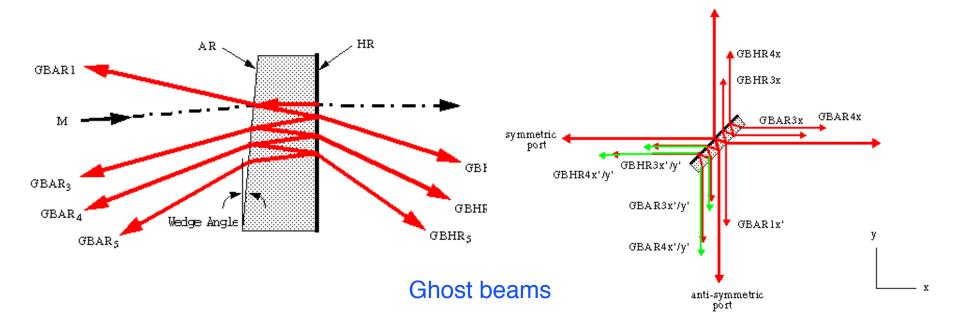
Stray Light Control and Viewports – SLC

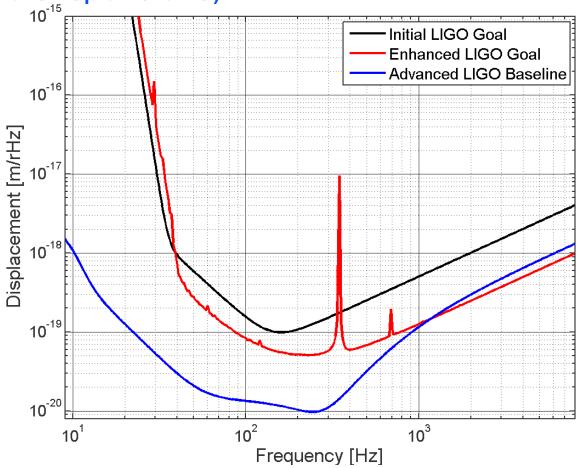
Eric Gustafson, Lisa Austin (Lead) and Michael Smith (Cognizant Optical Engineer)


aLIGO NSF Review LIGO Hanford Observatory

April 11-13, 2012

LIGO-G1200154-v8


Stray Light Control - SLC


Stray Light Control Functions

- Control stray light scatter in the interferometer using baffles, beam dumps, and attenuators
- Reduce scattered light displacement noise

LIGO Stray Light Control Requirements

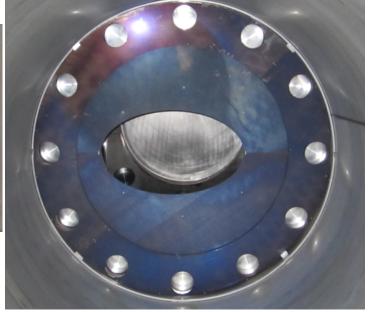
 Total stray light displacement noise <1/10 Thermal noise (Coatings and suspensions)

Stray Light Control Design Concept

- Oxidized, polished SS, low BRDF stable surface baffles
- Small, Core Optic wedge angles simplify/consolidate many baffles and beam dumps in the recycling cavities
 - » Cavity Mirror Wedge angles
 - ITM, 0.076 deg vertical wedge angle causes ghost beams to separate from the main beam in the vicinity of PR2 and SR2 for interception with beam dumps
 - BS, 0.074 deg horizontal wedge angle provides the ITMX Hartmann beam in vicinity of SR2
- Suspended baffles reduce scattered light displacement noise for critical scattering paths
 - » Arm Cavity Baffle (ACB), ITM Elliptical Baffle, Manifold/Cryopump Baffle
 - » Output Faraday Isolator
- ACB catches narrow and wide-angle scatter from ITM and ETM
- ACB photodetectors aid initial alignment and measure scattered light from TM
- Mode Cleaner Tube Baffle mitigates recycling cavity scatter and errant beams

Scattered Light Control Development Accomplishments - I

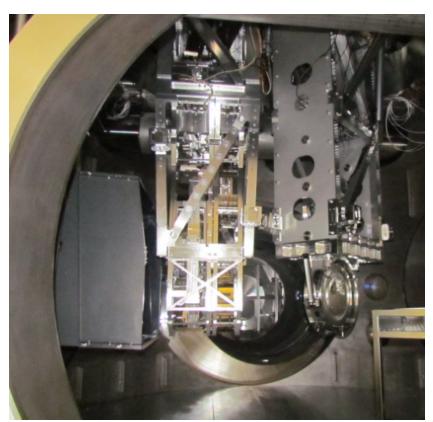
 Measured vibration of suspended Output Faraday Isolator (OFI) and Arm Cavity Baffle (ACB) with eddy current-damping at Caltech and LASTI - meet SLC displacement noise requirement


 Measured the BRDF of oxidized, polished stainless steel baffles and beam dumps for stable, low BRDF

surfaces

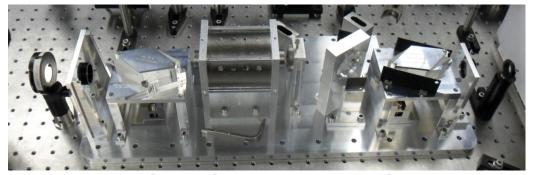
LIGO

Mode Cleaner Tube baffles for recycling cavities


Arm cavity baffle design mitigates wide-angle scatter from Test Mass


Scattered Light Control Development Accomplishments – II

Completed Installations:


Fold Mirror Elliptical Test Plate - BSC8, LHO

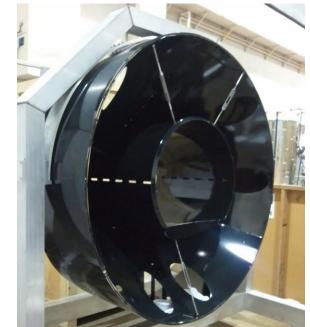
Arm Cavity Baffle – BSC8, LHO

Mode Cleaner Tube Baffles, LLO

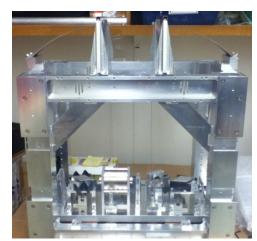
LIGO-G1200154-v8

OFI in Squeezer test at LHO

Scattered Light Control Development Accomplishments – II


Oxidized stainless steel processing

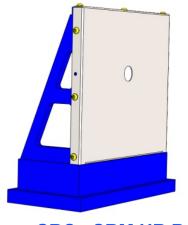
Air Cavity Baffle in swing back position



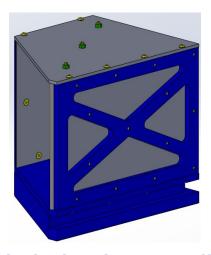
Assembly and vibration testing of prototype, suspended Manifold/Cryopump Baffle at Caltech

OFI 1st article assembly

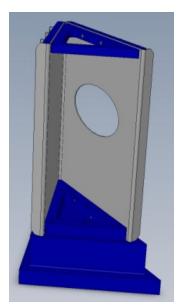
LIGO-G1200154-v8



Stray Light Control Development Status

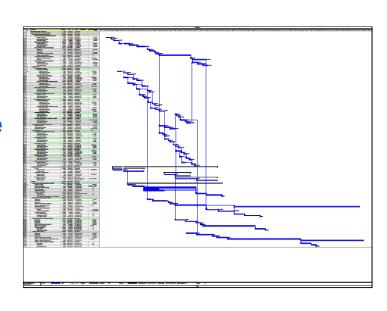

- All designs and drawings are complete
- Completed Final Design Reviews
 - » Arm Cavity Baffle

LIGO


- » Mode Cleaner Tube Baffle
- » Manifold Cryopump Baffle
- » Signal Recycling Cavity Baffles and Beam Dumps
- » ITM Elliptical Baffle

SRC - SRM HR Baffle

SRC - SR2 Scraper Baffle



SRC - HAM Scraper Baffle

Stray Light Control Project Plans and Organization

- Project Plans
 - » Baffles and Beam Dumps for Michelson Integration ready April 2012
 - » All Baffles and Beam Dumps for aLIGO Installation complete by November 2012
- Project Organization Caltech
 - » Team Leader Lisa Austin
 - » Cognizant Engineer Michael Smith
 - » Coordinator Nichole Washington
 - » Suspensions Testing Virginio Sannibale
 - » Mechanical Designer Heidy Kelman
 - » Mechanical Designer Manuel Ruiz
 - » Mechanical Designer Tim Nguyen

Scattered Light Control LIGO-India Impact

- Arm Cavity Baffle
 - » Two hole baffle option no longer required
 - » Re-evaluation of baffle weight for spring blades
 - » Re-configure ACB in H2-BSC8 for move to H1-BSC1
- Reduced scope
 - » H2 Baffles no longer required Manifold Flat, Fold Mirror Beam Dumps and Fold Mirror Elliptical
- Manifold Cryopump Baffles will not be provided.

Scattered Light Control Challenges, Risks, and Mitigations

- Delivering SLC in time for the Michelson Integration
 - » On critical path to meet Installation Schedule
- On-time delivery of procurements
 - » Continuous monitoring of manufacturing progress
- No remaining known risks

Stray Light Control Near Term Activities

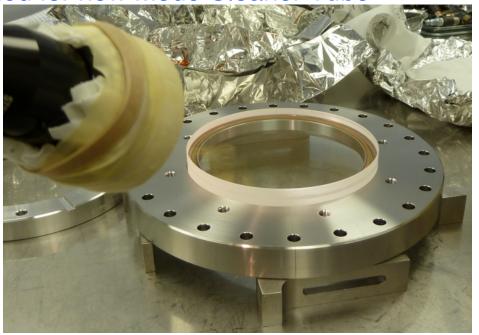
- Procurements April 2012
 - » Signal Recycling Cavity Baffles
 - » Manifold Cryopump Baffles
 - » Remaining Arm Cavity Baffles
- Completed Final Design Review April 2012
 - » Remaining SLC baffles and beam dumps
- Installation Underway
 - » Signal Recycling Cavity Baffles LLO
 - » Output Faraday Isolator LLO
 - » Mode Cleaner Tube Baffles LHO
- Developing installation procedures
- Modifying tooling for installation variations between sites Done

Viewport Functions

- Provide optical viewports for the passage of optical beams in and out of the vacuum region(s) of the Interferometer.
 - » Optical lever beams
 - » Chamber illumination beams
 - » Video camera beams
 - » Optical beams for interferometer sensing and control
 - » Hartmann Sensor beams
 - » Photon Calibrator beams
 - » Septum Viewports
- Double glass safety viewports for high power beams
- Provide safety covers for all installed viewports

Viewport (VP) Requirements

- Video camera VP—transmit visible light spectrum
- Chamber illumination VP—uncoated viewports
- OpLev VP—635 nm, similar to iLIGO
- Septum Plate (to isolate input and output HAM chambers) VP— similar to eLIGO
- ISC and Hartmann VP—super-polished, low scattering, < 1/10 wave, special AR coatings
 - » Hartmann AR coating: 800nm 1080nm
 - » ISC AR coating: 532nm and 1064nm
- Safety covers to protect viewports during installation and commissioning
- High Power double glass design; High Power, Reducer & Septum Safety covers


Viewport Design Concept

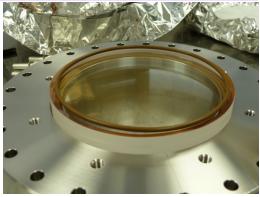
- Reuse iLIGO VP wherever possible
- New O-ring-sealed 6.0 inch VP for Interferometer Sensing and Control, and Hartmann beams
- Wedged Septum VP similar to eLIGO design

Additional standard catalog VPs needed for new Mode Cleaner Tube

VPs

- Double glass for high power VP
- Special AR coatings for Video, ISC, and Hartmann beams

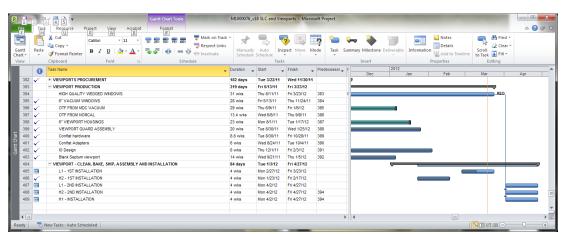

Viewport Development Accomplishments


- Analyzed VP scattered light for Hartmann beams
- Determined new viewport locations in mode cleaner tubes using ZEMAX beam layout
- Established proper names for all viewports according to LIGO naming convention & created a catalog of VP requirements and part numbers for all subsystems
- Developed specification for 6.0 inch ISC/Hartmann VP
- New Develop/modify Safety Covers for High Power VPs, Septum VPs, and VPs with flange reducers
- Completed VP Final Design Review
- Implemented over-pressure and leak testing of VPs at LLO & LHO
- Set up testing facility at Caltech for measuring VP coatings

Viewport Development Status

- Drawings and assemblies for custom 6.0 inch VP and Septum VPs - complete
- Final Design Review complete
- VP Procurements on schedule for installation— complete
- Assembly and Test of LHO custom VP for one arm test – complete
- Assembly of LLO custom VP for SMI – complete
- Over-pressure and leak testing facility at LLO & LHO - complete
- Testing facility at Caltech for measuring VP coatings – complete

LIGO-G1200154-v8


Testing fixtures

Viewport Project Plans and Organization

Project Plans

LIGO

- » On schedule for deployment of three aLIGO IFOs
- Project Organization
 - » Leader Lisa Austin
 - » Cognizant Optical Engineer Michael Smith
 - » Coordinator Nichole Washington Caltech
 - » Assembly Daphen Pino Caltech
 - Installation Leads –
 Thomas Vo Hanford
 Chris Guido– Livingston

Viewport Challenges, Risks, and Mitigations

- Viewport damage during over pressure testing
 - » Fixture redesigned to eliminate stress to support ring.
- Other VPs mostly catalog items
 - » No known technical or schedule risks

Viewport LIGO-India Impact

No impact on design, cost or schedule.

AOS SLC Schedule Highlights

Activity ID Activity Name	Start	Finish	FY2008	FY2009	FY2010	FY2011	FY2012
LIGO LIGO Lab Program - AdvL Current	01-Oct-09 A	17-Sep-12					
LIGO.3 Advanced LIGO Development	01-Oct-09 A	30-Mar-12					
LIGO.3.07 Auxiliary Optics (AOS)	01-Oct-09 A	30-Mar-12					
LIGO.3.07.3 AOS Design	01-Oct-09 A	30-Mar-12					
LIGO.3.07.3.3 AOS Final Design	01-Oct-09 A	30-Mar-12					
LIGO.3.07.3.3.1 AOS Stray Light Control (SLC)	01-Oct-09 A	15-Mar-12					 ! !
LIGO.3.07.3.3.9 AOS Viewports	22-Mar-11 A	30-Mar-12					
LIGO.4 Advanced LIGO Project	10-Feb-10 A	17-Sep-12					
LIGO.4.07 Auxiliary Optics Systems (AOS)	10-Feb-10 A	17-Sep-12			 	 	
LIGO.4.07.4 AOS Fabrication	10-Feb-10 A	17-Sep-12	1				
LIGO.4.07.4.1 AOS Stray Light Control Fabrication	10-Feb-10 A	17-Sep-12					!!!!
LIGO.4.07.4.1.1 AOS Output Faraday Isolator (OFI) Suspension Assembly	10-Feb-10 A	27-Apr-12					
LIGO.4.07.4.1.2 AOS Baffies & Beam Dumps	14-Feb-11 A	17-Sep-12					
LIGO.4.07.4.A AOS Viewports	10-Jun-11 A	04-Apr-12					

- SLC Scope of Work Includes the Output Faraday Isolator, Baffles and Beam Dumps, and Viewports.
- Schedule Highlights: All Final Designs were completed as of March 2012. All
 procurement and assembly are anticipated to be complete in September 2012.

AOS SLC Critical Path

Activity ID	Activity Name	Predecessors	Successors	Start	Finish	Total Float	Free Float	FY2012	
AO-P52010	AOS FAB SLC: RFQ thru Award Manifold/Cryo Baffles/Dumps		AO-A53640	18-Feb-11 A	06-Apr-12	-46	0		
AO-A53620	AOS FAB SLC: L1 Fab/Receive/Deliver AC Baffles & BDs (BSC1,3,4,5)	AO-A52010	AO-A53630, AO-M59790, AO-A53610, AO-P51910, IN-L1-P3545, IN-L1-P3645,	21-Oct-11 A	15-May-12	-33	34		
AO-F40750D	AOS FAB VP: L1 Ship, C&B, Assemble Viewports SMI Lot 1	AO-F40750B	AO-M59970, IN-L1-P2105, IN-L1-P3930	27-Feb-12 A	23-Mar-12	-58	14	i 🎁 i	
AO-P52050	AOS FAB SLC: RFQ thru Award Balance of Baffles/Dumps (BDs)	AO-D51540, AO-M40733E	AO-P52060, AO-A53670	16-Mar-12	06-Apr-12	-36	0		
AO-A53650	AOS FAB SLC: H2 Fab/Receive/Deliver Remaining Manifold/Cryo BDs	AO-A52030, AO-A53640	AO-A53660, IN-H2-FI2260, AO-M59810, IN-H2-FI2590	09-Apr-12	14-Sep-12	-24	0		
AO-A53640	AOS FAB SLC: L1 Fab/Receive/Deliver Manifold/Cryo BDs	AO-A52030, AO-P52010	AO-A53660, AO-A53650, AO-M59790, IN-L1-P3800	09-Apr-12	13-Jul-12	-46	0		
AO-A53670	AOS FAB SLC: L1 Fab/Receive/Deliver Balance of BDs	AO-P52050	AO-A53690, AO-A53680, AO-P52070, IN-L1-P3105, IN-L1-P3205, IN-L1-P3444, AO-M59790, IN-	09-Apr-12	24-Apr-12	-36	0		
AO-A53680	AOS FAB SLC: H2 Fab/Receive/Deliver Remaining Balance of BDs	AO-A53670, AO-P52060	AO-A53690, IN-H2-FI2260, IN-H2-FI1175, IN-H2-FI2300, IN-H2-FI1105, IN-H2-FI1520, A	25-Apr-12	20-Jun-12	-25	0		

- Manifold Cryopump Baffles were impacted by introduction of Oxidation Process and other design changes.
- Arm Cavity Baffle L1 lessons learned from BSC 8.
- Viewports L1 SMI assembly is in process.
- Balance of Beam Dumps Final Design was recently completed.

AOS SLC Tracking Milestones

Activity ID	Activity Name	Baseline Target Dates	Current Dates	Schedule Change (Days)	NSF Reporting Dates			
100/Ecivi	AOS FAB: AOS Production Begins	23-Sep-10	27-Sep-10 A	-4	N/A			
AO-M47100	AOS FAB SLC: Stray Light Control Production Begins	1-Oct-10	27-Sep-10 A	4	N/A			
AO-M59790	AOS FAB SLC: Stray Light Control Fab Complete L1	2-Mar-12	13-Jul-12	-94	N/A			
AO-M59810	AOS FAB SLC: Stray Light Control Fab Complete H2	27-Apr-12	14-Sep-12	-97	N/A			
AO-M59820	AOS FAB SLC: Stray Light Control Fab Complete H1	7-Jun-12	14-Sep-12	-70	N/A			
AO-M47110	AOS FAB TMS: TransMon Suspension Production Begins	24-May-11	2-May-11 A	16	N/A			
AU-IVIDUCO	AOS FAB TMS: L1 - TransMon Suspension Fab Complete	21-Jun-12	30-Aug-12	-50	NIA			
AO-M59920	AOS FAB TIVIO. TIZ To Man Suspension Eah Complete	21- Jun 12	20 1 12	-48	N/A			
AO-M59960	AOS FAB TMS: H1 - TransMon Suspension Fab Complete	17-Sep-12	21-Nov-12	-49	N/A			
AO-M47120	AOS FAB: Initial Alignment (IAS) System Production Begins	26-Jan-11	31-Jan-11 A	-3	N/A			
AO-M471XX	AOS FAB: IAS Production Complete - Site 1	7-Oct-11	6-Apr-12	-126	N/A			
AO-M471XY	AOS FAB: IAS Production Complete - Site 2	7-Feb-12	6-Apr-12	-42	N/A			
AO-M47130	ACC TAB. Optical Lever System Production Begins	23-Sep-10	8-Nov-Tu A	22	N/A			
AU-M59900	AOS FAB: Optical Lever Sys. Fab Complete	8-Nov-11	3-Jun-13	-397	N/A			
AO-M47150	AOS FAB: Viewports Production Begins	18-Jul-11	9-Jun-11 A	27	N/A			
AO-M471XZ	AOS FAB: Viewports Production Complete	28-Mar-12	4-Apr-12	-5	N/A			
AO-M47160	AOS FAB: TCS Production Begins for Ring Heater (RH)	10-Nov-10	15-Dec-10 A	-23	N/A			
AU-18147 100	AGS FAB TCS: Production Begins for HWS	9-Nov-11	1-Aug-11 A		TV/A			
AO-M47190	AOS FAB TCS: Production Begins for GOZP III-Vac	ı-ıvıar-ı ı	1-Mar-11 A	0	N/A			
AO-M47210	AOS FAB TCS: Production Begins for CO2P In-Air	16-Nov-12	2-Mar-12	183	N/A			
AO-M59800	AOS FAB TCS: Thermal Compensation System Complete L1	18-Apr-12	1-Nov-12	-139	N/A			
AO-M59830	AOS FAB TCS: Thermal Compensation System Complete H2	6-Jul-12	23-Jan-13	-132	N/A			
AO-M59840	AOS FAB TCS: Thermal Compensation System Complete H1	11-Jan-13	8-Mar-13	-40	N/A			
AO-M47170	AOS FAB: Photon Calibrator Production Begins	2-Feb-12	21-Feb-12 A	-12	N/A			
AO-M59910	AOS FAB: Photon Calibrator Complete	9-May-13	14-May-13	-2	N/A			
AO-M50030	AOS: Auxiliary Optics Subsystem Finish	10-Jan-12	3-Jun-13	-373	N/A			
	= Completed activity	Schedule Change						
	= NSF Reporting Milestones Negative indicates later than planned							
	= Schedule slippage of 40 days or more. Requires explanation. Positive indicates earlier than planned							
	= Schedule slippage resulting in negative total float up to 1 mon	th. Requires ex	xplanation.					
	= Schedule slippage resulting in negative total float greater than			mitigating ac	tion.			

 SLC Schedule delays caused by design changes and delayed completion of Final Designs.

LIGO-G1200154-v8

AOS SLC Performance and Variances

Cost Performance to Date: February 2012											
Auxiliary Optics Systems (K\$)	BCWS	BCWP	ACWP	SV	CV	SPI	CPI	BAC	EAC	VAC	
4.07.1 AOS - Management	105	105	138	0	-33	1.00	0.76	202	202	0	
4.07.1.2 AOS - Fabrication Management	83	83	28	0	55	1.00	0.00	200	209	0	
107.4.0 AOS - Fabrication	3,010	3,010	3,186	0	-175	1.00	0.94	4,089	4,089	9	
4.07.4.1.1 AOS - Output Faraday Isolator Suspension Assembly	290	282	281	-7	1	0.97	1.00	290	294	(3)	
4.07.4.1.2 AOS - Baffels and Beam Dumps	1,099	671	685	-428	-13	0.61	0.98	1,611	1,645	(34)	
4.07.4.2.1.10S TCS Ring Heater Production	195	167	249	-27	-81	0.86	0.67	195	222	(125)	
4.07.4.2.2 AOS - TCS Hartmann vvave-none Conso. Production	206	52	21	151	5	0.00	0.04	301	445	(143)	
4.07.4.2.3 AOS - TCS CO2 Projection Laser Production	896	277	261	-619	15	0.31	1.06	1,429	1,380	48	
4.07.4.2.4 AOS - TCS Phase Camera & Bulls Eye Sensor Production		0	0	0	0	0.00	0.00	55	0	55	
4.07.4.5 AOS - Transmission Monitor Suspension Fabrication	778	209	215	-568	-5	0.27	0.97	778	819	(41)	
4.07.4.5.1 AOS - Transmission Monitor Sus First Article Procure	69	69	69	0	0	1.00	1.00	69	69	0	
4.07.4.5.3 AOS - Transmission Monitor Suspension Procurement	260	86	86	-174	0	0.33	0.00	260	260	0	
4.07.4.6 AOS - Initial Alignment System (IAS) Procure/Fab	255	247	263	-7	-16	0.97	0.94	255	278	(23)	
4.07.4.7 AOS - Ontical Lover Cythem (Spicery) Frocure/Fab	1,117	876	834	-240	41	0.70	1.05	1 117	1,115	1	
1.51.4.8 AOS - Photon Calibrator Fab	109	0	2	-109	-2	0.00	0.00	1,128	847	204	
4.07.4.A AOS - Viewports	720	576	577	-143	0	0.00	0.00	720	722	(2)	
r of smance Measurement Baseline	9,192	6,710	6,955	(2,476)	(242)	0.73	0.96	12,708	12.694	14	
								Scheduled Percent complete Actual Percent complete			

- Schedule Variance (SV) is due to delays in completion of Final Designs, First Article rework, design changes, and a material change.
- Cost Variance (CV) is not significant or less than 10%.
- Estimate At Completion (EAC) all less than 3% of the Budget at Completion (BAC).

AOS SLC Contingency Adjustments

- Past Adjustments
 - > ACR-110020 Rescheduled Viewport procurements
 - ACR-110033 revised the SLC and Viewport schedule due to vendor delays
 - > ACR-110041 added budget
 - \$1,012K to SLC for failed first articles, baffle oxidizing, design changes, external cleaning, tooling, and suspension costs.
 - \$136K to Viewports for hardware, clamps, flanges, testing equipment and high power assemblies.
- Anticipated Adjustments for Cost and Schedule None

Summary of AOS SLC Status

- Working to plan and within the current EAC.
- Efforts being made to expedite deliveries for Install, as needed.
- SLC and Viewports anticipated to complete September 2012.