

2012 Texas Section APS/AAPT/SPS Joint Meeting

Advanced LIGO: The Next Generation of Gravitational Wave Observatories

Cristina Valeria Torres for The LIGO Scientific Collaboration

LIGO-G1200139

LIGO

Overview

- Gravitational Waves (GWs)
 - What are they?
 - Indirect evidence of their existence?
 - What are their sources?
- GW Detection
 - Detectors
 - Signal Bands
- Interferometric Detectors
 - Explained
 - Decoding GW signals
 - Sensitivity evolution
- Summary of Results and Techniques
- Arguments for advanced detectors

- Advanced LIGO Detectors
 - New technologies
 - Timeline
 - New opportunities
 - Rapid analysis
 - Instrument characterization
- Advanced Detector Era Tweaking
 - Squeezed Light
 - Subtracting Newton's Gravity
- GW Astronomy
 - A global network
- Conclusions

Gravitational Radiation

Gravitational Waves

- Newton's Gravity vs Einstein's Gravity
 - Information propagation finite!
 - Space is geometrical

- polarizations
 - Cross
 - Plus
- asymmetrical mass distributions

Indirect Evidence of GWs

- Hulse Taylor Pulsar
 PSR 1913+16
- Binary system composed of one steady pulsar
- Period of system decreasing with time
- GR predicts rate of decrease consistent with GW emission of system energy

Jnknown Waveform to Known Waveform

Sources for Ground Based Detectors

Band: 10s to 100s
 Timescale: seconds, to weeks

Short Duration to Long Duration Signals

Compact Binary Coalescence

Periodic

Designing a GW Detector

- GW Signals cause
 differential space-time
 distortion
- Polarizations
 - Cross "x"
 - Plus "+"
- Wave Properties
 - Transverse
 - Speed of light

More realistic detector

Fabry-Perot Michelson

 1∞

 $^{23}, f \approx 100 \text{Hz}$

- Instrument arms
 - Fabry-Perot cavities
 - Store light, increasing sensitivity
- Signal Recycling
 Optic
 - Increase power of resonant light
- Input mode cleaner
- Sensing differential motion has evolved

LSC Detector Sensitivity Evolution

- Seismic Noise mechanical transmission of local ground motion to optics motion
- Suspension/Thermal **Noise** thermally induced vibration agitation affecting optic motion
- Shot Noise randomized photo arrival times

Milestones: 1999 Inauguration, S1 2003, Design Sensitivity 2005, iLIGO 2007, aLIGIO Expected Components Install Completed 2014, .., ?

Arguments for future detectors

Increasing Sensitivity

- Upper limits becoming interesting
- Observing volume
 growing
- Evolving instrumental technology yielding this progress
 Run Year
 \$1 2002
 \$2 2002

Expected Detection Rates for LIGO type detectors

Source	Initial GW Era (Events/Yr)	Advanced GW Era (Events/Yr)	
BHBH	1/140	20	
NSBH	1/250	10	
NSNS	1/50	40	
CQG 27 (2010) 173001	and the second s		

Run	Year	Binary Inspiral NSNS; BHNS	Distance	Journal	
S1	2002	170 yr ⁻¹ MWEG ⁻¹	0.15Mpc	PhysRevD.69.122001	
S2	2003	47 yr ⁻¹ MWEG ⁻¹	0.90Mpc	PhysRevD.72.082001	
S3	2004	15 yr¹L10¹	30Mpc	Phys.Rev.D78:042002	
S4	2005	0.5 yr ⁻¹ L10 ⁻¹	80Mpc	PhysRevD.77.062002	
S5	2006	4.4*10 ⁻⁴ yr ⁻¹ L10 ⁻¹	200Mpc	PhysRevD.82.102001	

LSC

How to build an Advance Era Detector

- Step One: Prove feasibility of extra-galatic sensitivity, iLIGO
- Step Two: Secure funding for construction of advanced detector, we'd like to acknowledge our NSF funding.
- Step Three: Do so many upgrades and modifications the finished instrument appears brand new, resulting in an Advanced Era Detector
- Step Four: Done!

Comparing Initial to Advanced Detectors

	Laser	Mirrors	Layout	Readout	Seismic	Software		
iligo	10 W 10 kW	10 kg	Power Recycling	Hetero-dyne RF	Single Pendulum	Off-line analysis		
aLIGO	180 W 700 kW	40 kg	Dual Recycling	Homo-dyne DC	FF + Multi Pendulum	Real-time⁺ analysis		

ITM Hanford iLIGO

Tweaking the Detectors

Squeezing

Nature Physics 7,962–965 (2011)

- Suppress Counting Noise (Poisson)
- Overcome quantum uncertainties; trading
 - Phase noise
 - Amplitude noise
 - Requires 2nd laser
- Tested at 600m GEO observatory

Tweaking the Detectors

 $x(f) \propto \frac{\delta M}{r^9 f}$

- Newtonion Noise
 - Noise from localized mass distributions (not gravitational radiation)
 - Control systems reflexively feed back to optics suspensions
- Not an issue for beginning of aLIGO, but maybe later

Some items already completed!

iLIGO component removal aLIGO components under construction DAQ system installed and running Major components being installed Seismic,Tubes,Laser,... Cleaning of components and chambers

LSC What awaits us in the future!

The smily face is the aLIGO rejected laser light wavefront at Livingston just moments after powering the new laser.

This is an exciting time with a bright future for the LIGO project.

Extra Slides

Looking Far Ahead

AdVirgo

Advanced Virgo noise budget

"Einstein gravitational wave Telescope conceptual design study" https://tds.ego-gw.it/itf/tds/index.php?callContent=2&callCode=8709

LIGO Scientific Collaboration

