
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- E1200225-v7 Advanced LIGO 12/19/2017

Coding Standard for TwinCAT Slow Controls Software

Daniel Sigg

Distribution of this document:
LIGO Scientific Collaboration

This is an internal working note

of the LIGO Laboratory.

California Institute of Technology
LIGO Project – MS 18-34
1200 E. California Blvd.

Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project – NW22-295

185 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

LIGO Hanford Observatory
P.O. Box 159

Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

LIGO Livingston Observatory

P.O. Box 940
Livingston, LA 70754

Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

LIGO LIGO-E1200225-v7

 2

Table of Contents
1 Introduction ... 4

1.1 Programming Languages ... 4

1.2 Project Directories .. 4
1.2.1 Target Area .. 5

1.3 Project Archive .. 5
1.3.1 Organization .. 5
1.3.3 Version Numbers ... 7

1.4 Cycle Time ... 7

1.5 Data Tags (Channels) ... 7
1.5.1 Input/Output Convention .. 7
1.5.2 Interface Variables ... 7

1.6 OPC Interface .. 7

2 Program Organization .. 8

2.1 Library .. 8
2.1.1 Hardware Input Structure ... 8
2.1.3 Hardware Output Structure .. 9
2.1.4 Interface Structure ... 9
2.1.6 Error Handling .. 10
2.1.7 Function Block ... 10
2.1.8 Initialization .. 11
2.1.9 Visual Screen Templates ... 12

2.2 Global Variables .. 12

2.3 Program ... 13

2.5 Project Files ... 14
2.5.1 Imports ... 14
2.5.2 Site and Location Customization ... 15
2.5.3 Interferometer and OPC Export Variable ... 16

2.6 Installation and Configuration Scripts .. 16

3 TwinCAT Project Setup .. 17

3.1 Setting the Options in the Project ... 17
3.1.1 Project Information ... 17
3.1.2 Fonts and Path Options ... 17
3.1.3 Build Options ... 19
3.1.4 TwinCAT Options ... 19

3.2 PLC Common Infrastructure .. 20
3.2.1 Common libraries ... 20
3.2.2 Error Handling .. 20
3.2.3 Software version .. 23

LIGO LIGO-E1200225-v7

 3

3.2.5 Run-time information ... 24

4 Naming Scheme .. 25

4.1 Names .. 25
4.1.1 Variable Names ... 25
4.1.2 Type Names .. 25
4.1.3 Function and Method Names ... 25
4.1.4 Function Block Names ... 25
4.1.5 Names of Visuals ... 25
4.1.6 Suffix Summary ... 26

4.2 Hardware Channels .. 26

4.3 Library Objects .. 27
4.3.1 Name Space .. 27
4.3.2 Folder Names .. 27

4.4 External Tags .. 28

5 OPC Access and Properties .. 29

5.1 OPC Access ... 29

5.2 OPC Properties ... 29

5.3 Automatic Type Support .. 31

5.4 Enumerated Types .. 31

5.5 Array Variables .. 32

5.6 ICS Database Generation ... 33

6 Documentation .. 34

6.1 Project Information ... 34

6.2 Type Information ... 34

6.3 Global Variables .. 35

6.4 Interfaces ... 35

6.5 Functions ... 35

6.6 Function Blocks .. 36

6.7 Visuals ... 36

LIGO LIGO-E1200225-v7

 4

1 Introduction
The purpose of this document is to facilitate a single coding standard among the slow controls
software written for the TwinCAT system. TwinCAT contains an embedded IEC 61131-3 software
PLC which is the main focus here. The document gives guidance how to build a reusable
programming structure, how to name objects like variable, structures and function blocks, and how
to document a library module.

1.1 Programming Languages
The IEC 61131-3 programming standard supports 5 different languages: structured text (ST),
function block diagram (FBD), ladder diagram (LD), instruction list (IL) and sequential function
chart (SFC). TwinCAT 3 also supports C/C++ and Matlab/Simulink. For the advanced LIGO slow
control systems only structured text shall be used with TwinCAT 2.11. For TwinCAT 3 advanced
LIGO also supports C/C++ for integrating already written modules.

Programming
language

Description TwinCAT
version

Structured Text One of the IEC 61131-3 programming languages, Pascal like 2.11 and 3

C/C++ For integrating previously written modules 3

Table 1: Supported languages.

1.2 Project Directories
The project directories on a front-end or development machine are organized in a development
area under version control and a target area where the run-times reside.

Items Path Owner

TwinCAT C:\TwinCAT Beckhoff

Code C:\SlowControls Subversion

Target C:\ SlowControls\Target Run-time

LIGO LIGO-E1200225-v7

 5

1.2.1 Target Area
The target area contains the files associated with a specific run-time. The directory structure is
organized by target and PLC. The run-time files associated with a specific run-time are copied to
the target directory using an installation script. This requires that the code are is a committed
revision within subversion.

Items Path

Target Area C:\SlowControls\Target

Example target system area C:\SlowControls\Target\H1ECATC1

Example target PLC 1 code C:\SlowControls\Target\H1ECATC1\PLC1

Example target PLC 2 code C:\SlowControls\Target\H1ECATC1\PLC2

Example target PLC 3 code C:\SlowControls\Target\H1ECATC1\PLC3

Example target PLC 4 code C:\SlowControls\Target\H1ECATC1\PLC4

TwinCAT boot files C:\TwinCAT\Boot

1.3 Project Archive
All project files are stored in a subversion (SVN) archive on redoubt.ligo-wa.caltech.edu.

Item Link Type

Server redoubt.ligo-wa.caltech.edu web

Archive /slowcontrols web

Full path https://redoubt.ligo-wa.caltech.edu/svn/slowcontrols/trunk checkout

Table 2: Subversion archive.

1.3.1 Organization
The slow controls archive contains the folder TwinCAT for storing all files related to TwinCAT.
There are currently two sub folders TwinCAT\Library for storing libraries and TwinCAT\Source
for the storing project files. Scripts are stored in the TwinCAT\Script\Common folder. The
configuration scripts and the system configuration associated with a real-time computer are stored
in a target folder within TwinCAT\Script\Configuration. There are up to 4 PLCs allowed in
TwinCAT 2.11.

https://redoubt.ligo-wa.caltech.edu/websvn/
https://redoubt.ligo-wa.caltech.edu/websvn/listing.php?repname=slowcontrols&path=%2Ftrunk%2F#path_trunk_

LIGO LIGO-E1200225-v7

 6

Items Path

System documents SlowControls\Documents

Network documents SlowControls\Documents\Network

TwinCAT files SlowControls\TwinCAT

TwinCAT documents SlowControls\TwinCAT\Documents

TwinCAT coding standard SlowControls\TwinCAT\Documents\CodingStandard

TwinCAT library files SlowControls\TwinCAT\Library

Individual TwinCAT library SlowControls\TwinCAT\Library\CommonModeServo

… …

TwinCAT program source files SlowControls\TwinCAT\Source

Current TwinCAT source files SlowControls\TwinCAT\Source\Current

Source files for interferometer SlowControls\TwinCAT\Source\Current\Interferometer

Corner source files SlowControls\TwinCAT\Source\Current\Interferometer\Corner

End station source files SlowControls\TwinCAT\Source\Current\Interferometer\End

Import files SlowControls\TwinCAT\Source\Current\Import

… …

Script files SlowControls\Scripts

Common script files SlowControls\Scripts\Common

Configuration files SlowControls\Scripts\Configuration

Target configuration files SlowControls\Scripts\Configuration\H1ECATC1

System configuration files SlowControls\Scripts\Configuration\H1ECATC1\SYS

PLC configuration files SlowControls\Scripts\Configuration\H1ECATC1\PLC

… …

EPICS related files SlowControls\EPICS

EPICS utilities SlowControls\EPICS\Utilities

… …

Modbus related files SlowControls\Modbus

Modbus target files SlowControls\Modbus\Target

Individual Modbus target SlowControls\Modbus\Target\H1ModbusC1

… …

Table 3: Organization of the archive.

LIGO LIGO-E1200225-v7

 7

1.3.3 Version Numbers
The production code is managed by subversion release numbers. The subversion number is part of
the run-time code and is archived. When significant changes to a library are made that require
supporting both the old and new versions, a new library project has to be created. If the original
library was called TimingMasterFanout then new version would be called
TimingMasterFanoutV2.

1.4 Cycle Time
An IEC 61131-3 system consists of system task and at least one programmable logic controller
(PLC). The system task is responsible for interfacing the hardware and starting the PLC tasks. The
field bus of choice in advance LIGO is EtherCAT. The system task transfers data between a shared
memory region and hardware at a fixed cycle time. TwinCAT 2.11 supports up to four different
update rates. For advanced LIGO the standard update rate is 10 ms. For a limited number of
channels a faster update rate of 1 ms is supported.

Task Description Rate

Standard All non time critical software and supervisory tasks 10 ms

Fast Time critical functions such as RS422 support at 115kbaud 1 ms

Table 4: Supported update rates.

The tasks with the fast update rate are running at a higher priority (lower number).

1.5 Data Tags (Channels)

1.5.1 Input/Output Convention
From the perspective of the TwinCAT program and configuration input channels refer to inputs
from the EtherCAT terminals, e.g., analog-to-digital converters and binary inputs, whereas output
channels refer to outputs to the EtherCAT terminals, e.g., digital-to-analog converters and binary
outputs. The same is true for user inputs which are inputs into TwinCAT and readbacks which are
outputs from TwinCAT.

1.5.2 Interface Variables
All external tags (channels) have an initialization record which is periodically updated and is
declared PERSISTENT. Upon power failure and loading a new code its value as retained as much
as possible. Any initialization that is required, when the PLC is started or when a new version is
loaded, needs to be dealt with in software. See the SaveRestore library.

1.6 OPC Interface
We are using the TwinCAT OPC comments denoted by (*~ ... *) to make global variables
accessible to the OPC server. The opening bracket annotation needs to be on the same line as the
variable. Variable names in TwinCAT are translated one-to-one into OPC tag names, which in

LIGO LIGO-E1200225-v7

 8

turn are translated into EPICS channels using a conversion rule. OPC properties are used to
describe additional information such as limits, precision and state names. These OPC properties
are translated into corresponding EPICS database fields.

2 Program Organization
The development blocks for the advanced LIGO slow controls software are individual libraries.
Each of the basic libraries is tailored to control a single electronics chassis or controller.
A typically library consists of
• one or more type describing the hardware inputs,
• one or more type describing the hardware outputs,
• a type describing the user interface channels or tags (input and output),
• one or more function blocks containing the run-time code, and
• a set of visual templates that can be used for diagnostics.
The main program then consists of a global variable list and a series of function block calls.

2.1 Library
This section gives an example of the structures and the function block defined for the
LowNoiseVco library.

2.1.1 Hardware Input Structure

TYPE LowNoiseVcoInStruct :

STRUCT

 PowerOk: BOOL; (* Voltage monitor readback *)

 TuneMon: INT; (* Monitor for the frequency offset *)

 ReferenceMon: INT; (* RF power at the reference input *)

 DividerMon: INT; (* RF power at the divider input *)

 OutputMon: INT; (* RF power at the output amp *)

 ReferenceTemp: INT; (* Temperature of the reference RF detector *)

 DividerTemp: INT; (* Temperature of the divider RF detector *)

 OutputTemp: INT; (* Temperature of the output RF detector *)

 Excitation: BOOL; (* Monitors the excitation input enable *)

 Frequency: LREAL; (* Measured frequency *)

 FrequencyLive: BOOL; (* Keep alive for frequency measurement *)

END_STRUCT

END_TYPE;

LIGO LIGO-E1200225-v7

 9

2.1.3 Hardware Output Structure

TYPE LowNoiseVcoOutStruct :

STRUCT

 TuneOfs: INT; (* Setpoint for the frequency offset *)

 ExcitationEn: BOOL; (* Enables the excitation input *)

END_STRUCT

END_TYPE;

2.1.4 Interface Structure
All elements of an interface structure are getting exported with read and write permission. To
prevent output tags from showing an invalid value each output parameter has to overwritten at
each cycle. Output parameters in the interface structure should never be read.

TYPE LowNoiseVcoStruct :

STRUCT

 (* error handling *)

 Error: BOOL; (* Error flag *)
 ErrorCode: DWORD; (* Error code *)

 ErrorMessage: STRING;(* Error message *)

 (* output tags *)

 PowerOk: BOOL; (* Voltage monitor readback *)

 TuneMon: LREAL; (* Monitor for the frequency offset in V *)

 ReferenceMon: LREAL; (* RF power at the reference input in dBm *)

 DividerMon: LREAL; (* RF power at the divider input in dBm *)

 OutputMon: LREAL; (* RF power after the output amplifier dBm *)

 ReferenceTemp: LREAL; (* Temperature of the reference RF detector *)

 DividerTemp: LREAL; (* Temperature of the divider RF detector *)

 OutputTemp: LREAL; (* Temperature of the output RF detector in C *)

 ExcitationSwitch: BOOL; (* Monitor the excitation input enable *)

 Frequency: LREAL; (* Frequency of the VCO output *)

 FrequncyServoFault: BOOL; (* Indicates a fault in the frequency servo *)

 (* input tags *)

 TuneOfs: LREAL; (* Setpoint for the frequency offset in V *)

 ExcitationEn: BOOL; (* Enables the excitation input *)

 FrequencySet: LREAL; (* Setpoint for the VCO frequency output *)

 FrequencyServoEn: BOOL; (* Enables the frequency PID *)

END_STRUCT

END_TYPE;

LIGO LIGO-E1200225-v7

 10

2.1.6 Error Handling
Each main function block needs to provide error handling using three variables defined in the
interface structure: Error, ErrorCode and ErrorMessage. The error flag is set true to indicate an
error condition. The error code is a bit encoded value listing the error conditions with zero
indicating no error. The error code number can be used to flag multiple errors by setting
corresponding bits. Error conditions are described in the documentation associated with the library.
The error message is a human readable string describing the error condition. It can contain up to
80 characters. If multiple errors are flagged, the error message needs to reflect this. All error
messages need to be defined in a global constant of type ErrorMessagesArray.

VAR_GLOBAL CONSTANT

 ThermistorStruct_Errors: ErrorMessagesArray :=

 (* 1 *) 'Thermistor resistance is too high',

 (* 2 *) 'Thermistor resistance is too low',

 (* 3 *) 'Thermistor data invalid',

 (* 4 *) 'Thermistor measurement error';

END_VAR

The name of the constant string array has to reflect the name of the structure that contains the error
structure with the extension “_Errors” added. In TwinCAT 2.11 this constant has to be linked to a
file with the name “ThermistorStruct_Errors.exp” with the option “Export before compile”
selected. This will guarantee that the automatic medm screen generator is able to assemble an error
list for each structure.
A simple library without error conditions needs to set the error flag to false, the error code to zero
and the error message to an empty string.

2.1.7 Function Block
A function block has to declare input and output variables. In the simplest case the input parameter
is the hardware input structure, the hardware output structure is the output parameter and the
interface structure is the in/out parameter.

FUNCTION_BLOCK LowNoiseVcoFB

VAR_INPUT

 LowNoiseVcoIn: LowNoiseVcoInStruct; (* Input structure *)

END_VAR

VAR_OUTPUT

 LowNoiseVcoOut: LowNoiseVcoOutStruct; (* Output structure *)

END_VAR

VAR_IN_OUT

 LowNoiseVco: LowNoiseVcoStruct; (* Interface structure *)

END_VAR

LIGO LIGO-E1200225-v7

 11

2.1.8 Initialization
All function blocks controlling hardware have to support initialization and have to be able to store
the current state. This is done by passing a SaveRestoreEnum parameter as well as an additional
interface structure that holds the previously stored values.

FUNCTION_BLOCK LowNoiseVcoFB

…

VAR_INPUT

 Request: SaveRestoreEnum; (* init/save request *)

END_VAR

VAR_IN_OUT

 LowNoiseVcoInit: LowNoiseVcoStruct; (* saved interface struct *)

END_VAR

…

The additional interface structure should is used to pass the previously saved parameters to the
initialization routine. It is also used to store these parameters. The Init parameter will either request
no operation, an initialization operation, a save operation, or a transition to a safe operation mode.
Typically, only state machines will have to implement the transition to a safe operation mode.
Within the function block the initialization code would look like:

(* Code *)

CASE Request OF

 (* initialization *)

 Restore:

 LowNoiseVco := LowNoiseVcoInit;

 (* additional initialization steps can be added here *)
 SafeMode:

 (* only for state machines *)

 Save:
 LowNoiseVcoInit := LowNoiseVco;

 Noop:

 (* always ignore *)
END_CASE;

…

The LowNoiseVcoInit variable will be stored in a global persistent block. This means its values
are preserved between reboots and recompilations as long as the LowNoiseVcoStruct stays the
same. Changing the LowNoiseVcoStruct or one of its elements will invalidate its persistent
memory and reinitialize with all zeros. However, a change in an unrelated structure should not
affect the low noise VCO.

LIGO LIGO-E1200225-v7

 12

The restore request is basically an initialization request and will be issued once after a reboot or a
reload of the program. The save request will be issued at regular intervals, but at a low rate, maybe
once a minute. The safe mode request might be issued upon a fatal error or a user request. It would
typically affect the entire PLC program and not just one library.
Restoring to the previously saved values is probably the best option in most circumstances, but is
unlikely to be appropriate in all cases. For example, a state machine probably needs to start in a
well defined initialization state and not in whatever state it was left in. In these cases additional
code needs to be added to the restore request.

2.1.9 Visual Screen Templates
Either one or a set of visual screen templates are associated with a library. The top-level screen
template should be a representation of the hardware controlled by the library. It should interface
the interface structure, and display all its input and output parameters. Input parameters should be
modifiable by the user. Since the library only knows abstract data types, the visual screen template
shall deploy placeholder variables to represent actual data. For example, the VCO template screen
might reference “vco.OutputMon” in the numeric field describing the output RF power. vco
is the placeholder parameter that will be replaced with the actual data of type LowNoiseVcoStruct,
when the visual template is embedded into a master screen. In most cases the visual template
screens should leave their background transparent, so that it can be set by the master screen.

2.2 Global Variables
Global variables are used to store hardware input structure, the hardware output structure, the
associated function blocks and a hierarchical structure representing all interface structure as part
of an interferometer structure. The later is outlined in section 3.4 and is used to represent the opc
naming tree which in turn is translated into an EPICS name.
Persistent global variables are used to store the initialization structures. Their values are retained
between reboots and restarts of the program. They will be reinitialized with zeros, when the
structure itself is modified, so.

VAR_GLOBAL

 I1: IfoStruct; (*~ (OPC : 1 : visible for OPC-Server) *)

 AlsVcoIn AT %I*: LowNoiseVcoInStruct; (* Input *)

 AlsVcoOut AT %Q*: LowNoiseVcoOutStruct; (* Output *)

 AlsVcoFB: LowNoiseVcoFB; (* Function block *)

 …

END_VAR

VAR_GLOBAL PERSISTENT

 AlsVcoInit: LowNoiseVcoStruct; (* Save/restore *)

 …

END_VAR

The variable names for the input, output, interface and initialization structures follow the naming

LIGO LIGO-E1200225-v7

 13

of the structure elements within I1 that lead to the VCO. The interferometer tag isn’t included in
the name to support copy/paste between different interferometers. The actual addresses are
wildcards and are configured through the system manager.

2.3 Program
The main program can be a simple series of function block calls. There can be multiple programs
to separate subsystems. These programs need to be attached to the standard task, which updates at
the 10 ms rate. If a function block requires 1 ms update rate, it needs to be located in separate
program that is attached to the fast task.

PROGRAM ALS

VAR

 SaveRestore: SaveRestoreFB;(* function block for save/restore *)

 GotoSafe: BOOL; (* goto safe mode when transitioning high *)

 Request: SaveRestoreEnum; (* save/restore request *)

END_VAR

SaveRestore (SaveInterval := T#1m,

 GotoSafe := GotoSafe,

 Request => Request);

AlsVcoFB (LowNoiseVcoIn := AlsVcoIn,

 LowNoiseVcoOut => AlsVcoOut,

 LowNoiseVco := I1.Als.VCO,

 Request := Request,

 LowNoiseVcoInit := AlsVcoInit);

…

END_PROGRAM;

LIGO LIGO-E1200225-v7

 14

2.5 Project Files
Project files must not be written site specific. To facilitate this the source files for the
interferometer are separated into two subdirectories: corner and end. Each project file must contain
at least two imports to determine the subversion number and to specify the target interferometer
as well as the appropriate end station. The project name indicates the PLC it is intended for and
has the form “PLC1.pro” or similar.

2.5.1 Imports
A normal project files defines two global variable resources which are linked to a file and are
imported before compilation: Global_Variables_Version and Global_Variables_IFOVAR.
Global_Variables_Version looks like this:

VAR_GLOBAL CONSTANT

 SvnRevision: DINT := 0;

END_VAR

Whereas Global_Variables_IFOVAR looks like this

VAR_GLOBAL CONSTANT

 IfoId: IfoIdEnum := IfoT1; (* IfoH1, IfoL1 or IfoH2 *)

 LocId: LocationIdEnum := EndX; (* Corner, EndX or EndY, MidX or MidY *)

END_VAR

VAR_GLOBAL

 (* Must reflect intreferometer and X/Y end station *)

 T1 AT %MB0: IfoXStruct;

 (*~ (OPC :1 : visible for OPC-Server)

 (OPC_PROP[8610] :Plc2: OPC-Server name) *)

END_VAR

In the source directory the interferometer is set to the test system. The important point is that during
installation these two global variable resources will be overwritten with the correct information
appropriate for the target. In particular, the installation script guarantees that the current source
code revision has no local modifications and sets the SvnRevision number accordingly. Similarly,
the interferometer parameters are set to the appropriate configuration for the specific target. These
variables are available in the code and can be used in the rare instances where sites or end stations
need to be distinguished.

LIGO LIGO-E1200225-v7

 15

2.5.2 Site and Location Customization
The main program defines

VAR_GLOBAL

 Ifo AT %MB0: IfoStruct;

END_VAR

which is getting aliased to an H1 or L1 variable during the installation process. For the X-end
station the structure is IfoXStruct, for Y-end it is IfoYStruct and for the corner it stays IfoStruct.
A program running in the corner, has to define an IfoStruct only. A program which runs in either
the X-end or the Y-end has to define all three. It should use “End” in the IfoStruct to denote the
end station, “X” within the IfoXStruct and “Y” within the IfoYStruct.
The Ifo variable is the one you use in the main program, since it is the same between all
instantiations of the code. The former is used by OPC or TwinCAT-EPICS-gateway to
communicate with the outside world. So, internally one may see variable names start with
Ifo.TCS.End..., whereas EPICS/opc would see L1:TSC-X_...
The programmer has to define IfoStruct, IfoXStruct and IfoYStruct.in the main code. These
structures need to be identical with the only difference that in IfoXStruct the parameter name is X,
Y in IfoYStruct, and End in IfoStruct. Of course, if the system name is TCS, then one has to define
a TcsXStruct, TcsEndStruct and TcsYStruct, each with its own X, Y and End parameters.
Dynamically, the variable IfoId and LocId (both enums) are available to distinguish site and
location.

LIGO LIGO-E1200225-v7

 16

2.5.3 Interferometer and OPC Export Variable
In the above example the OPC export variable was name after the interferometer T1 and was of
the type IfoXStruct. In order to hide the interferometer details form the normal program a generic
interferometer variable is defined in the Global_Variables_IFO resource. It looks like this:

VAR_GLOBAL

 Ifo AT %MB0: IfoStruct;

END_VAR

Notice that both variables are located at the same address! The program would use Ifo, whereas
the OPC server would read T1, but both instances represent the same data in memory. For this to
work in the end station, three similar structures are required: IfoStruct (generic), IfoXStruct (OPC
in EX) and IfoYStruct (OPC in EY). These structures absolutely must contain the same element
types in the same order. For example, the ifo structure could contain an ALS subsystem structure.
They would be named AlsStruct, AlsXStruct and AlsYStruct, respectively. Now, these ALS
structure all contain the structure AlsEndStruct, but now the element names are different. They are
End, X and Y, respectively. This way the code addresses Als variable with the prefix Ifo.Als.End,
whereas the L1 target in the Y end station would provide its OPC access at L1.Als.Y.

2.6 Installation and Configuration Scripts
The installation scripts are located in the folder SlowControls\Scripts\Common. A separate
documentation is available with T1300175.
Typically, a user would run the “install_tc_target” shortcut which starts a GUI that allows the
selection of a target with associated PLCs as well as the desired action. Targets are defined in the
Scripts\Configuration folder. Each target requires its own folder in there, and each PLC requires
its own folder within the target folder. Target specific configuration scripts are specified in the
target folder, whereas PLC specific configurations are specified in the PLC folder. Typically, the
target configuration script should be sufficient.
Each target folder also requires a SYS folder which contains the TwinCAT system configuration
file (*.tsm). The TwinCAT system configuration in principle is identical between sites and end
stations, but there may be slight difference between locations that cannot be easily parameterized.
Since software updates are much more frequent than hardware changes, this should not pose a
problem.

https://dcc.ligo.org/LIGO-T1300175

LIGO LIGO-E1200225-v7

 17

3 TwinCAT Project Setup

3.1 Setting the Options in the Project

3.1.1 Project Information
Set the title information to the appropriate PLC and station. Since there are typically only source
files for corner and end station, there should be no indication of interferometer or which of the two
end stations.

3.1.2 Fonts and Path Options
Choose a fixed point font such as “Courier New”. The project library path should include the path
to the slow controls libraries.

LIGO LIGO-E1200225-v7

 18

LIGO LIGO-E1200225-v7

 19

3.1.3 Build Options
Make sure the “check overlapping memory areas” option is selected.

3.1.4 TwinCAT Options
Make sure the “Enable inline string functions” option is selected. This will allow us to use the
string functions in more than one task. By default they are not multi-thread safe. This option page
also allows to change the allocation for the different memory regions. For large project these limits
may have to be increased.

LIGO LIGO-E1200225-v7

 20

3.2 PLC Common Infrastructure
Each PLC project is required to implement the PlcInfo library. This library provides support for
reporting errors at the PLC level, it exports the software subversion number and it provides a set
of run-time information specific to the PLC.

3.2.1 Common libraries
The following libraries need to be imported for every project.

SaveRestore Support for saving user interface settings to a persistent memory
block. It also supports restoring these settings upon restart.

Error Support for error handling and reporting.

PlcInfo Support for reporting software version, run-time information and
top level errors

3.2.2 Error Handling
Each user interface structure is required to contain an error reporting structure of type ErrorStruct.
Error handling is supported with “Error” library. However, this abstraction cannot be propagated
to the highest level because a PLC only covers a subset of the available channels. For instance,
there are “H1:ALS“ channels in the corner and both end stations. This means that each of the three

LIGO LIGO-E1200225-v7

 21

associated PLCs will have a user structure H1.Als defined. If it would contain an error structure,
the names would collide. There is also no error at the H1 level for the same reason. Instead, the
error hierarchical error structures stop at the level one below. For instance, corner station PLC
would contain an error structure in the H1.Als.C structure, whereas the end stations would contain
error structures in the H1.Als.X and H1.Als.Y structures, respectively. Within each PLC code each
subsystem has a corresponding top level error reporting structure. These top level local error
structures are combined in a PLC error structure which is reported in the PlcInfo structure. The
PlcInfo structures are defined in the H1.Sys.EtherCAT structure. Each PLC has exactly one of
these structures and the name of the structure contains the target designator. For instance, the user
can access H1.Sys.EtherCat.C1Plc2, H1.Sys.EtherCat.X1Plc2 and H1.Sys.EtherCat.Y1Plc2 and
the Error element therein to learn about errors occurring with PLC2 of corner, end X and end Y,
respectively.

Since there is only one end station program, a little bit of magic with the overlapping H1 and Ifo
variables is required to make it all work.

LIGO LIGO-E1200225-v7

 22

The program unit for the Sys also requires a call to the top level error handler for the PLC which
collects the error from each subsystem and combines them into the PLC status information.

LIGO LIGO-E1200225-v7

 23

3.2.3 Software version
The subversion revision is a number describing a snapshot of the software in the archive. The
installation scripts for a PLC with make sure the archive is up-to-date before compiling the project.
The active subversion number is imported into the code and available to the user as part of the
PlcInfo structure.

LIGO LIGO-E1200225-v7

 24

3.2.5 Run-time information
Let’s take a look at the most important elements of the PlcInfo structure.

IfoId Interferometer identification, e.g. H1 or L1

LocationId Location of the computer, i.e., Corner, EndX or EndY

Status Top level error structure of the PLC

SvnRevision Subversion revision number

StartTime Time the PLC was started

CurrentTime Current system time

Hostname Computer name of the machine running the PLC

CpuUsage Percentage of CPU usage

SysLatencyActual Actual system latency

SysLatencyMax Maximum system latency

LIGO LIGO-E1200225-v7

 25

4 Naming Scheme

4.1 Names
Generally, verbose and descriptive names are preferred to short and abbreviated ones. This will
make the code more readable and help in maintenance and support. For example, Index is preferred
over I and TimingMasterFanout is preferred over Tmfo.

4.1.1 Variable Names
The naming of variables preferably should be unique in all libraries, following the camel case
notation: For each variable a meaningful, preferably short, English name should be used, the base
name. Always the first letter of a word of the base name is to be written uppercase, the remaining
letters lowercase; example: FastGain or InputOffset. Abbreviations are written starting with an
uppercase and then all lower case; example: VcoGain or TimingMasterFanout. Pointer variables
shall use the suffix Ptr, whereas constant variables may use the suffix Const.

4.1.2 Type Names
Type names follow the same rule as variable names. A complex type shall incorporate a suffix to
denote is derivation: Enum for ENUM, Struct for STRUCT and Array for ARRAY.
Structure members follow the rules of variables.

4.1.3 Function and Method Names
Function and method names follow the same rules as variables but with the suffix Fun. Internal
helper functions such as conversion routines can also use a lowercase name, so that they look more
in line with mathematical notation.

4.1.4 Function Block Names
The names of function blocks follow the same rules as variables but with the suffix FB. Interfaces
in TwinCAT 3 use the suffix I.

4.1.5 Names of Visuals
Visual interfaces have the suffix Vis.

LIGO LIGO-E1200225-v7

 26

4.1.6 Suffix Summary

Element Description suffix

Constant Constant value (optional, may be clear from context) Const

Pointer Pointer to a variable Ptr

ENUM Enumerated type Enum

STRUCT Record type Struct

ARRAY Array type Array

Function Function or Method declaration Fun

Function block Function block declaration FB

Interface Abstract function block or interface I

Visual Screen interface for diagnostics Vis

Table 5: Required suffix notation.

4.2 Hardware Channels
Variables that are connected to hardware channels are separated into input variables and output
variables. They must be located in the input and output shared memory regions, respectively. A
variable describing a list of input channels must have the suffix In. The corresponding structure
must have the suffix InStruct. An output channel list uses the suffix Out, whereas the output
structure uses OutStruct. Channels with different cycle time must be placed into different
structures. The above names are for the standard cycle time of 10 ms. Channels that need to be
updated at the fast rate need to prepend Fast to the above suffixes.

Element Description suffix

Input variable Input variable with standard update rate In

Output variable Output variable with standard update rate Out

Input variable Input variable with fast update rate FastIn

Output variable Output variable with fast update rate FastOut

Input STRUCT Input channel structure with standard update rate InStruct

Output STRUCT Output channel structure with standard update rate OutStruct

Input STRUCT Input channel structure with fast update rate FastInStruct

Output STRUCT Output channel structure with fast update rate FastOutStruct

Table 6: Input and output channel notation.

LIGO LIGO-E1200225-v7

 27

A code fragment declaring input and output channels in the global variable space:

PicoMotorFastIn AT %IB0100: PicoMotorFastInStruct;

PicoMotorFastOut AT %QB0200: PicoMotorFastOutStruct;

PicoMotorIn AT %IB0102: PicoMotorInStruct;

PicoMotorOut AT %QB0204: PicoMotorOutStruct;

4.3 Library Objects

4.3.1 Name Space
Libraries can optionally choose a name space following the variable name notation. This name
space is then used to prefix all exported objects. For example: the library TimingMasterFanout has
the name space prefix Timing. Within this library TimingSlaveDuoToneStructure,
TimingReadSlaveFun and TimingMasterFanoutFB are a valid structure, function and function
block, respectively.
Simple libraries that consist of an input structure, an output structure, an interface structure and a
function block are not required to choose an explicit name space, but are expected to use the library
name as the base for all four objects. Hence, they are defining an implicit name space with the
same name as the library name. For example: the library CommonMode may contain the structures
CommonModeInStruct, CommonModeOutStruct and CommonModeStruct as well as the function
block CommonModeFB.

4.3.2 Folder Names
Program object units (POUs) and data types are organized in folders. These folders are purely
organizational and are intended to help grouping items together for easier maintenance. In a library
all exported types, functions and function blocks are typically located at the top level. If there are
many objects, it may make sense to group them into folders. In any case, internal objects should
always be moved into a folder named Internal.

LIGO LIGO-E1200225-v7

 28

4.4 External Tags
External tags (channels) are organized in a hierarchical structure. Each system defines its own
structure. This continues with structures for subsystems that are contained in the system structures.

TYPE AlsEndStruct :

STRUCT

 Laser: ALSLaserStruct;

 VCO: LowNoiseVcoStruct;
 PZT1: PZTMirrorStruct;

 PZT2: PZTMirrorStruct;

 …

END_STRUCT

END_TYPE;

TYPE AlsYStruct :

STRUCT

 Y: AlsEndStruct;

END_STRUCT

END_TYPE
…

TYPE IfoStruct:

STRUCT

 Als: AlsYStruct;

 Asc: AscYStruct;
 Lsc: LscYStruct;

 Tcs: TcsYStruct;

END_STRUCT

END_TYPE;

VAR_GLOBAL PERSISTENT

 I1: IfoStruct; (*~ (OPC : 1 : visible for OPC-Server) *)

END_VAR;

This allows for exporting the entire interferometer interface structure at once and it allows for
generating tag names automatically while preserving the hierarchical organization.

LIGO LIGO-E1200225-v7

 29

5 OPC Access and Properties

5.1 OPC Access
The global variable describing the interface structure of the interferometer is made accessible to
the OPC server by using the OPC comments. Meaning,

H2: IfoStruct; (*~ (OPC : 1 : visible for OPC-Server)
 (OPC_PROP[8610] : h2ecatc1 : server name) *)

will make the entire h2 variable with all its sub elements will be visible through the OPC interface.
In turn, it can be interfaced to EPICS. Individual tags such as the FastGain of the LaserServo will
be available from the OPC server as “H2.Isc.Als.LaserServo.FastGain”. The default EPICS
channel name constructed from this tag will then become “H2:Isc-Als_LaserServo_FastGain”. Be
aware that IEC 61131-3 names are not case sensitive. The same is true for the corresponding
TwinCAT OPC names, whereas EPICS channel names are case sensitive.

5.2 OPC Properties
OPC properties are used to further describe the external tags. These properties are also used to fill
in the EPICS database fields. The properties have to be attached to the elements at the end of the
hierarchical structure. These are variables with a basic type like INT or LREAL. Due to the
program organization most of these variables are defined in libraries through structures. Therefore,
the OPC properties are written after the structure elements using the OPC comment structure. For
example:

TYPE LowNoiseVcoStruct :

STRUCT

 (* output tags *)

 PowerOk: BOOL; (*~

 (OPC_PROP[0005] :1: read-only)

 (OPC_PROP[0101] :Voltage monitor readback: DESC)

 (OPC_PROP[0106] :OK: ONAM)

 (OPC_PROP[0107] :OOR: ZNAM) *)

 TuneMon: LREAL; (*~

 (OPC_PROP[0005] :1: read-only)

 (OPC_PROP[0101] :Frequency offset monitor: DESC)

 (OPC_PROP[0100] :V: EGU)

 (OPC_PROP[0103] :-10: LOPR)

 (OPC_PROP[0102] :+10: HOPR)

 (OPC_PROP[8500] :3: PREC) *)

 ...

END_STRUCT

END_TYPE;

LIGO LIGO-E1200225-v7

 30

Property ID Description Record

5 Access control: 1 – read-only, 3- read/write all

100 EGU: Engineering units numeric

101 DESC: Description all

102 HOPR: High operations value numeric

103 LOPR: Low operation value numeric

104 DRVH: Maximum instrument range numeric

105 DRVL: Minimum instrument range numeric

106 ONAM: Label for closed (one) state binary

107 ZNAM: Label for open (zero) state binary

306 HYST: alarm deadband numeric

307 HIHI: hihi alarm level numeric

308 HIGH: high alarm level numeric

309 LOW: low alarm level numeric

310 LOLO: lolo alarm level numeric

8500 PREC: Display precision numeric

8510 to 8525 ZRST, ONST, ... FFST: Zero string, one string, ... fifteen string mb binary

8600 EPICS data type (bi, bo, ai, ao, longin, longout, stringin, stringout,
mbbi, mbbo, mbbiDirect, and mbboDirect)

all

8601 Input or output: overwrites the default behavior all

8602 TSE: Time stamp; default is -2 all

8603 PINI: default 1 for input and 0 for output records all

8604 DTYP: default is opc; can be overwritten with opcRaw all

8610 Default OPC server name; default is opc top level

8611 TwinCAT runtime name including ads routing info and port top level

8620 Alias for structure item or top level symbol top & items

8700 OSV: one alarm severity binary

8701 ZSV: zero alarm severity binary

8702 COSV: change of state alarm severity (mb) binary

8703 UNSV: unknown state alarm severity mb binary

8710 to 8725 ZRSV, ONSV, … FFSV: zero, one, … fifteen state alarm severity mb binary

8727 to 8730 HHSV, HSV, LSV and LLSV analog

8800 to 8999 FIELD: Any database field can be specified in the comment string;
does not perform any checks; use only when truly desperate

don’t use

Table 7: Supported OPC properties.

LIGO LIGO-E1200225-v7

 31

Only a small subset of EPICS database fields are supported. In general, fields associated with
conversion and calculations are not supported, since all processing should be done within the PLC
program. The supported general properties are listed in the above table.
If a property is specified for a structure, it is used as the default value for all its elements. It can be
overwritten by each element below. NO_ALARM, MINOR and MAJOR are the allowed alarm
severity values. HIHI and LOLO alarms are assigned major severity, if they are defined; whereas
LOW and HIGH alarms are assigned minor severity, if they are defined. Custom fields for are
currently not supported.

5.3 Automatic Type Support
By default all variables that are read-only will be represented by EPICS input records, whereas all
variables that have read/write access will be represented by EPICS output records. This behavior
can be overwritten, but there should never be a reason to.
The table below shows the default EPICS type selected for the database depending on the
TwinCAT datatype.

Type Description

longin/longout SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT, BYTE,
WORD, DWORD, LWORD

bi/bo BOOL

mbbi/mbbo Enumerated data type with 16 or fewer labels

stringin/stringout STRING

ai/ao REAL, LREAL, any other

Table 8: Automatic type support.

5.4 Enumerated Types
An enumerated type will be converted into a multi-bit binary record, if there are 16 or fewer labels
and if all numeric representations are between 0 and 15. There is no conversion possible. The
numeric value of the enum type has to be the same as its EPICS representation, i.e., The zero value
will be set to 0, etc. The string values of the multi-bit binary record are automatically set to the
labels of the enumerated type.

LIGO LIGO-E1200225-v7

 32

Since enum labels need to be unique in TwinCAT, one usually has to add a prefix to guarantee
that there are no name conflicts. This leads to somewhat cumbersome names in EPICS. It is
therefore possible to specify the EPICS enum labels specifically. Example:

TYPE IfoIdEnum : (IfoH1, IfoL1, IfoH2, IfoT1, IfoI1);

END_TYPE

(*~

 (OPC_PROP[8510] :H1: ZRST)

 (OPC_PROP[8511] :L1: ONST)

 (OPC_PROP[8512] :H2: TWST)

 (OPC_PROP[8513] :T1: THST)

 (OPC_PROP[8514] :I1: FRST)

*)

This leads to EPICS labels of the form H1, L1, etc. rather than the default IfoH1, IfoL1, etc.

5.5 Array Variables
Array variables are supported by IEC 61131-3 and can be exported through OPC as well. They
will also be accessible through EPICS, but require an extension to the LIGO channel naming
convention. For example, if the structure “L1.Io.Wfs1” contains the members:

TYPE DemodComplex:

STRUCT

 I: LREAL;

 Q: LREAL;

END_STUCT

END_TYPE;

Gain: ARRAY [1..4] OF LREAL;

Rotation: ARRAY [1..4,1..4] OF LREAL;

Signal: ARRAY [1..4] OF DemodComplex;

The corresponding OPC and EPICS variables are (with m and n ranging from 1 to 4):

Type OPC name EPICS name

LREAL L1.Io.Wfs1.Gain[m] L1:Io-Wfs1_Gain[m]

LREAL L1.Io.Wfs1.Rotation[m][n] L1:Io-Wfs1_Rotation[m][n]

LREAL L1.Io.Wfs1.Signal[m].I L1:Io-Wfs1_Signal[m]_I

LREAL L1.Io.Wfs1.Signal[m].Q L1:Io-Wfs1_Signal[m]_Q

Table 9: Array variables with OPC and EPICS.

Each individual array index will be exported as separate EPICS channel.

LIGO LIGO-E1200225-v7

 33

5.6 ICS Database Generation
All EPICS fields must be defined in the PLC through OPC properties. TwinCAT will automatically
generate an XML file with the extension “.tpy” which can be parsed to generate an EPICS database
file. The program EpicsDbGen is available to do this. It is called from the command line as follows:

Usage: EpicsDbGen ['options'] -i 'input' -o 'output'

 Generates an EPICS database from a TwinCAT tpy file.

 -ea exports all variables regardless of their opc setting

 -l[l][a|e|b] generate an [extended] [atomic|epics|burt] channel listing

 -r[n|d] [no|dot] conversion rule for EPICS names

 -c[u|l] force upper/lower case for EPICS names

 -nd eliminates leading dot

 -ni replaces array brackets with underscore

 -ns ignores channels of type string

 -sio splits database into input only and input/ouput recrods

 -sn 'num' splits database into files with no more than num records

 -i 'input' input file name (stdin when omitted)

 -o 'output' output database file (stdout when omitted)

The input file is the TwinCAT file with the extension “.tpy”. The output file can either be a list of
channels or an EPICS database file depending on the arguments. If no input file is specified, input
from the standard input is taken. If no output file is specified, the output is written to the standard
output.
The argument “-a” specifies that all global variables will be exported. The “-l” argument generates
a channel name list rather than a database file. With the “-ll” extension a long list is generated.
Normally, the case of the TwinCAT variable is preserved. However, the option “-cu” forces all
upper case names, whereas the option “-cl” forces all lower case names. If the option “-ni” is
specified, array indices of the form “[n]” are replaced by “_n” when translating to the EPICS
channel name.
The option “-sio” can be used to split the database records between input and in/out into separate
files. The option “-sn N” can be used to split files, so that they contain no more than N records.
Both options can be used individually or combined. If either option is used, an output file has to
be specified. For example, if the file name is “PLC.db”, the “-sio” option will generate two files
“PLC.in.db” and “PLC.io.db”. With the option “-sn 1000”, we will get “PLC.001.db”,
“PLC.002.db”, etc. Each file but the last will contains exactly 1000 records. Both options together
will generate files of the form “PLC.in.001.db” and “PLC.io.001.db”.

LIGO LIGO-E1200225-v7

 34

6 Documentation
A template for documenting a TwinCAT library exists in the DCC, F1200003. It contains the
project information, a description of the function blocks as well as detailed listing of the input and
output types. Some specialized libraries may require additional information for functions,
interfaces or global variables. An example can be found in E1200226.

6.1 Project Information
The following project information is required: title, version, name space, author and a short
description.

Field Description Mandatory

Title Name of the library, usually in camel case, e.g., LowNoiseVco Yes

Version Library version number, usually 1, 2, etc. Yes

TwinCAT Version of TwinCAT for which the library was developed Yes

Name space Name space of the library Yes, if exists

Author Name of the programmer Yes

Description Short description of the purpose of the library Yes

Error code Lists the available error codes Yes

Table 10: Project Information.

6.2 Type Information
Each external type of a library require the following information: name, definition and short
description. For a complex type each element should contain a short description as well.

Field Description Mandatory

Type name Name of the type, e.g., LowNoiseVcoStruct Yes

Definition Type definition used by the library Yes

Description Short description of the purpose of the type Yes

Elements For complex types a list of elements Yes, if exist

Table 11: Type Information.

https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=87715
https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=87716

LIGO LIGO-E1200225-v7

 35

6.3 Global Variables
Generally, there should be no need for global variables in a library. If they exist, the following
information is required: name, type, a possible initialization value and a short description.

Field Description Mandatory

Variable name Name of the global variable Yes

Type Type of the global variable Yes

Initialization Initialization value of the variable Yes, if exist

Description Short description of the purpose of the variable Yes

Table 12: Global variables.

6.4 Interfaces
In TwinCAT 3 abstract classes are called interfaces. They contain a list of abstract methods. Each
interface definition requires name, list of methods and a short description.

Field Description Mandatory

Interface name Name of the type, e.g., LowNoiseVcoStruct Yes

Methods List of methods used by the interface Yes

Arguments Each method can have a list of arguments Yes, if exist

Description Short description of the purpose of the interface Yes

Table 13: Interfaces.

6.5 Functions
Each function requires the following information: name, return type, list of input parameters, list
of output parameters, list of in/out parameters and a short description.

Field Description Mandatory

Name Name of the, e.g., TimingSlaveDuoToneReadFunc Yes

Return Return type Yes

Inputs List of input parameters Yes, if exist

Outputs List of output parameters Yes, if exist

In/Outs List of in/out parameters Yes, if exist

Description Short description of the purpose of the function or function block Yes

Table 14: Functions.

LIGO LIGO-E1200225-v7

 36

6.6 Function Blocks
Each function and function block requires the following information: name, list of input
parameters, list of output parameters, list of in/out parameters and a short description. In TwinCAT
3 function block are treated as classes and can extend a base class, inherit from an interface
definition and contain methods. If used, the information of all class elements are required.

Field Description Mandatory

Name Name of the function or function block, e.g., LowNoiseVcoFB Yes

Parent For classes that extend a parent function block Yes, if exist

Interfaces For classes that implement an interface Yes, if exist

Inputs List of input parameters Yes, if exist

Outputs List of output parameters Yes, if exist

In/Outs List of in/out parameters Yes, if exist

Methods List of methods used by the function block Yes, if exist

Description Short description of the purpose of the function or function block Yes

Table 15: Function blocks.

6.7 Visuals
Each visual screen element requires the following information: screen snapshot, name, a short
description and a list of placeholders. Placeholders are parameters denoted by $paramter_name$
in the visuals that are required to be defined when the visual is embedded. Since the visual of a
library usually represents an interface structure, there should be at least one placeholder parameter
denoting a variable of this type.

Field Description Mandatory

Name Name of the function or function block, e.g., IscWhiteningVis Yes

Description Short description of the purpose of the function or function block Yes

Placeholder Parameters used for variable substitution Yes, if exist

Table 16: Visuals.

	1
	1 Introduction
	1.1 Programming Languages
	1.2 Project Directories
	1.2.1 Target Area

	1.3 Project Archive
	1.3.1 Organization
	1.3.2
	1.3.3 Version Numbers

	1.4 Cycle Time
	1.5 Data Tags (Channels)
	1.5.1 Input/Output Convention
	1.5.2 Interface Variables

	1.6 OPC Interface

	2 Program Organization
	2.1 Library
	2.1.1 Hardware Input Structure
	2.1.2
	2.1.3 Hardware Output Structure
	2.1.4 Interface Structure
	2.1.5
	2.1.6 Error Handling
	2.1.7 Function Block
	2.1.8 Initialization
	2.1.9 Visual Screen Templates

	2.2 Global Variables
	2.3 Program
	2.4
	2.5 Project Files
	2.5.1 Imports
	2.5.2 Site and Location Customization
	2.5.3 Interferometer and OPC Export Variable

	2.6 Installation and Configuration Scripts

	3 TwinCAT Project Setup
	3.1 Setting the Options in the Project
	3.1.1 Project Information
	3.1.2 Fonts and Path Options
	3.1.3 Build Options
	3.1.4 TwinCAT Options

	3.2 PLC Common Infrastructure
	3.2.1 Common libraries
	3.2.2 Error Handling
	3.2.3 Software version
	3.2.4
	3.2.5 Run-time information

	4 Naming Scheme
	4.1 Names
	4.1.1 Variable Names
	4.1.2 Type Names
	4.1.3 Function and Method Names
	4.1.4 Function Block Names
	4.1.5 Names of Visuals
	4.1.6 Suffix Summary

	4.2 Hardware Channels
	4.3 Library Objects
	4.3.1 Name Space
	4.3.2 Folder Names

	4.4 External Tags

	5 OPC Access and Properties
	5.1 OPC Access
	5.2 OPC Properties
	5.3 Automatic Type Support
	5.4 Enumerated Types
	5.5 Array Variables
	5.6 ICS Database Generation

	6 Documentation
	6.1 Project Information
	6.2 Type Information
	6.3 Global Variables
	6.4 Interfaces
	6.5 Functions
	6.6 Function Blocks
	6.7 Visuals

