Suspension Modeling in Mathematica ${ }^{\text {TM }}$

e2e Group Meeting
10 March 2005

Motivation

- Wanted an AdvLIGO SUS design model to go beyond the Matlab model of Torrie, Strain et al.
- Desired features:
" Full 3D with provision for asymmetries
" Proper blade model
" Wire bending elasticity
" Arbitrary damping and consequent thermal noise
" Export to other environments such as Matlab/Simulink and E2E.
- Mathematica code originally developed for modeling the Xpendulum was available -> reuse and extend.

Toolkit Features

- The toolkit is a Mathematica "package", PendUtil.nb, for specifying different configurations (e.g., quad, triple etc) in a (relatively) userfriendly way
- Supported features:
» 6-DOF rigid bodies for masses (no internal modes)
" Springs described by an elasticity tensor and a vector of pre-load forces
" Massless wires (i.e., no violin modes) but detailed elasticity model from beam equation
" Arbitrary frequency-dependent damping on all sources of elasticity
" Symbolic up to the point of minimizing the potential to find the equilibrium position
" Calculates elasticity and mass matrices semi-numerically (symbolic partial derivatives of functions with mostly numeric coefficients)
" Eigenfrequencies and eigenmodes calculated numerically
" Reasonable runtime:
- 2 minutes for quad model with just wire longitudinal elasticity (adequate for most control theory purposes)
- 2 hours with wire bending elasticity (required for thermal noise estimates)
" Structured to make version control easy

Normal Mode Calculation (i)

- Express the potential energy of the system in terms of the coordinates:

$$
E_{P}=E_{P}\left(x_{1}, \ldots x_{n}\right)=E_{P}(\mathbf{x})
$$

- Express the kinetic energy of the system in terms of the coordinates and coordinate velocities:

$$
E_{K}=E_{K}\left(x_{1}, \ldots x_{n}, \dot{x}_{1}, \ldots \dot{x}_{n}\right)
$$

- Minimize the potential energy to find the equilibrium values of the coordinates.

$$
\left.\mathbf{x}_{e q}=\left(x_{1(e q)}, \ldots x_{n(e q)}\right)\right)^{\mathrm{T}}
$$

Normal Mode Calculation (ii)

- Create a matrix of second derivatives of the potential energy, a.k.a., the potential energy matrix or the stiffness matrix.

$$
\mathbf{K}: K_{i j}=\left.\frac{\partial E_{P}}{\partial x_{i} \partial x_{j}}\right|_{\mathbf{x}=\mathbf{x}_{e q}} \quad E_{P}=E_{P}\left(\mathbf{x}_{e q}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{e q}\right)^{\mathrm{T}} \mathbf{K}\left(\mathbf{x}-\mathbf{x}_{e q}\right)
$$

- Create a matrix of second derivatives w.r.t. velocity, a.k.a., the kinetic energy matrix or the mass matrix.

$$
E_{K}=\frac{1}{2} \dot{\mathbf{x}}^{\mathrm{T}} \mathbf{M} \dot{\mathbf{x}}
$$

Normal Mode Calculation (iii)

- Do a simultaneous diagonalization of the stiffness and mass matrices to obtain the eigenfrequencies and eigenmodes:

$$
\mathbf{K e}_{i}=\omega_{i}^{2} \mathbf{M} \mathbf{e}_{i} \quad \mathbf{x}_{i}(t)=\mathbf{x}_{e q}+\mathbf{e}_{i} e^{\omega_{i} t} \quad f_{i}=\omega_{i} / 2 \pi
$$

- For a practical calculation potential matrix step needs to be considerably elaborated, partly for efficiency and partly to support additional calculations such as transfer functions and thermal noise estimates.

Other coordinates

- Also need to consider coordinates of structure - constant during normal mode motion but movable when injecting displacement inputs:

$$
\mathbf{s}=\left(s_{1}, \ldots s_{l}\right)^{\mathbf{T}} \quad \mathbf{s}_{\text {nom }}=\left(s_{1 \text { (nom })}, \ldots s_{l \text { (nom })}\right)^{\mathbf{T}}
$$

- And "floats", coordinates of things such as junctions between elastic elements in series - not independent of normal mode coordinates:

$$
\mathbf{q}=\left(q_{1}, \ldots q_{m}\right)^{\mathbf{T}}
$$

Master Potential Matrix

- To work with all types of coordinates efficiently, define master potential matrix:

$$
\mathbf{P}: E_{p}=E_{p}\left(\mathbf{x}_{c q}, \mathbf{q}_{c q}, \mathbf{s}_{n o n}\right)+\frac{1}{2}\left(\mathbf{x}^{\mathrm{T}}-\mathbf{x}_{c q}^{\mathrm{T}} \quad \mathbf{q}^{\mathrm{T}}-\mathbf{q}_{c q}^{\mathrm{T}} \quad \mathbf{s}^{\mathrm{T}}-\mathbf{s}_{n o m}^{\mathrm{T}}\right) \mathbf{P}\left(\begin{array}{l}
\mathbf{x}-\mathbf{x}_{c q} \\
\mathbf{q}-\mathbf{q}_{e q} \\
\mathbf{s}-\mathbf{s}_{n m n}
\end{array}\right)
$$

- It has a block structure with many useful submatrices:

$$
\mathbf{P}=\left(\begin{array}{ccc}
\mathbf{K} & \mathbf{C}_{X Q} & \mathbf{C}_{X S} \\
\mathbf{C}_{Q X} & \mathbf{Q} & \mathbf{C}_{Q S} \\
\mathbf{C}_{S X} & \mathbf{C}_{S Q} & \mathbf{S}
\end{array}\right) \quad \quad \mathbf{C}_{X Q}=\mathbf{C}_{Q X}^{\mathbf{T}}
$$

LIGO Effective Potential and Coupling Matrices

- If there are any float coordinates, K submatrix of P is not appropriate to use in the normal mode analysis, since it assumes $q=$ const whereas actually:

$$
\mathbf{q}=\mathbf{q}_{e q}-\mathbf{Q}^{-1} \mathbf{C}_{Q x}\left(\mathbf{x}-\mathbf{x}_{e q}\right)
$$

- The effective potential matrix is

$$
\mathbf{K}_{e f f}=\mathbf{K}-\mathbf{C}_{x Q} \mathbf{Q}^{-1} \mathbf{C}_{Q x}
$$

- Similarly the effective coupling matrix converting displacement inputs of the structure to forces on the normal mode coordinates is

$$
f_{x s}=\mathbf{C}_{X S(\text { eff })}\left(\mathbf{s}-\mathbf{s}_{\text {nom }}\right)=\left(C_{X S}-\mathbf{C}_{x \rho} \mathbf{Q}^{-1} \mathbf{C}_{Q S}\right)\left(\mathbf{s}-\mathbf{s}_{\text {nom }}\right)
$$

Damping

- Damping can be represented by a complex elastic modulus:

$$
k \rightarrow k_{0}\left(\varepsilon^{\prime}(\omega)+i \varepsilon^{\prime \prime}(\omega)\right)
$$

- Strictly, the Kramers-Kronig relation applies:

$$
\varepsilon^{\prime}(\omega)-1=\frac{2}{\pi} P V \int_{-\infty}^{\infty} \frac{\varepsilon^{\prime \prime}(x)}{x-\omega} d x \quad \varepsilon^{\prime \prime}(\omega)=-\frac{2}{\pi} P V \int_{-\infty}^{\infty} \frac{\varepsilon^{\prime}(x)-1}{x-\omega} d x
$$

- However often the variation in the real part can be ignored:

$$
k \rightarrow k_{0}(1+i \phi(f))
$$

- Need to consider total potential as sum of terms, each with different damping:

$$
\mathbf{P}=\sum \mathbf{P}_{i}\left(\varepsilon_{i}^{\prime}(f)+i \varepsilon_{i}^{\prime \prime}(f)\right)
$$

Dissipation Dilution and Pendulums (i)

- Two independent reasons why pendulums have low loss:
" Restoring force is gravitational
" Restoring force is sideways component of a tension
- Reason \#2 would still apply if the tension were supplied by a second spring:
- Why? Because when a spring is used to create a restoring force by first generating a static force and then coupling that to the load by a variable mechanical advantage, the length change is only second order in amplitude.

Dissipation Dilution and Pendulums (ii)

- Why is it important to get this right? Because the normal mode formalism mixes up the two cases depending on the coordinates used and the stiffness of the wire:

- No stretch of spring for pendulum mode in polar coordinates vs. second order stretch in Cartesian coordinates.
- Solution: recompute potential matrix with tension zeroed

Equations of Motion

- The net equation of motion is then,

$$
\mathbf{K}_{e f f}\left(\mathbf{x}-\mathbf{x}_{e q}\right)+\mathbf{M} \dot{\mathbf{x}}=\mathbf{f}_{x}+\mathbf{C}_{x s(e f f)}\left(\mathbf{s}-\mathbf{s}_{n o m}\right)
$$

- Or in the frequency domain:

$$
\mathbf{K}_{e f f}\left(\mathbf{x}-\mathbf{x}_{e q}\right)-(2 \pi f)^{2} \mathbf{M}\left(\mathbf{x}-\mathbf{x}_{e q}\right)=\mathbf{f}_{x}+\mathbf{C}_{X S(e f f)}\left(\mathbf{s}-\mathbf{s}_{n o m}\right)
$$

- This can be solved for \mathbf{x} for a sequence of different values of f to give force-input or displacement-input transfer functions as a function of frequency.
- Thermal noise is calculated in usual way from complex admittance.

Models

- Two major families of models have been defined:
" The triple models reflect a generic GEO-style pendulum with 3 masses, 6 blade springs and 10 wires.
" The quad models reflect a standard AdvLIGO quad pendulum, with 4 masses, 6 blade springs and 14 wires.
- Within each family there are three variants
" The "full" version, where the tips of the blade springs are modeled as 6DOF rigid bodies attached to their bases by 6-DOF springs
" The "lite" version, where the tips of the blade springs are connected to their bases by geometrical constraints in 5 DOFs and elastically in 1 DOF.
" The xtra-lite version, where the tips of the blade springs are massless.
- The "xtra-lite" models are preferred for time-domain simulation because they have the smallest matrices and no high-frequency eigenmodes due to the blades.

Triple Pendulum Model

- 2 blade springs
- 2 wires
- "upper" mass
- 4 blade springs
- 4 wires
- "intermediate" mass
- 4 fibres
- optic

Quad Pendulum

- 2 blade springs
- 2 wires
- "top" mass
- 2 blade springs
- 4 wires
- "upper" mass
- 2 blade springs
- 4 wires
- "intermediate" mass
- 4 fibres
- optic

Defining a Model (i)

- Define the "variables" (cf. x in the theory - example from the xtra-lite triple):
- allvars = \{
" $\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1, \mathrm{yaw} 1$, pitch1,roll1,
" $x 2, y 2, z 2, y a w 2, p i t c h 2, r o l l 2$,
" $\mathrm{x} 3, \mathrm{y} 3, \mathrm{z} 3, y a w 3, p i t c h 3$, roll3
- \};
- Define the "floats" (cf. q in the theory):
"allfloats = \{
-qul,qur,qlf,qlb,qrf,qrb
" $\}$;
- Define the "parameters" (cf. s in the theory):
- allparams = \{
" $x 00, \mathrm{y} 00, \mathrm{z} 00$, yaw00, pitch00, roll00
- \};

Defining a Model (ii)

- Define coordinate lists for rigid bodies of interest:
- optic $=\{x 3, y 3, z 3, y a w 3, ~ p i t c h 3, ~ r o l l 3\} ;$
- support $=\{x 00, \mathrm{y} 00, \mathrm{z} 00, \mathrm{yaw} 00$, pitch00, roll00\};
- Define coordinate lists for points on rigid bodies
- massUl=\{0,-n1,d0\}; (* left wire attachment point on upper mass *)
- Define list of gravitational potential terms:
- gravlist = \{\}; (* initialize list *)
- AppendTo[gravlist, m3 g z3]; (* typical item *)

Defining a Model（iii）

－Define list of wires，each with the following format
\｛
》 coordinate list defining first mass，
＂attachment point for first mass（local coordinates），
＂attachment vector for first mass，
＂coordinate list defining second mass，
》 attachment point for second mass（local coordinates），
＂attachment vector for second mass，
》 Young＇s modulus，
＂unstretched length，
» Iongitudinal elasticity，
＂vector defining principal axis 1 ，
＂moment of area along principal axis 1，
＂moment of area along principal axis 2，
》 Iinear elasticity type，
＂angular elasticity type，
＂torsional elasticity type，
》 shear modulus，
＂cross sectional area for torsional calculations，
＂torsional stiffness geometric factor

Defining a Model（iv）

－Define list of springs，each with following format：
\｛
》 coordinate list defining first mass，
» attachment point for first mass（local coordinates），
＂attachment angles for first mass（yaw，pitch，roll），
＂coordinate list defining second mass，
＂attachment point for second mass（local coordinates）
» attachment angles for second mass（yaw，pitch，roll），
＂damping type，
》 6×6 elasticity matrix，
＂ $1 * 6$ pre－load force／torque vector
－\}
－Define kinetic energy
－IM3 $=\{\{I 3 x, 0,0\},\{0, I 3 y, 0\},\{0,0, I 3 z\}\} ;(*$ typical MOI tensor）
－kinetic $=$（
》 ．．．
＞$\quad+(1 / 2) \mathrm{m} 3$ Plus＠＠（Dt［b2s［optic，COM］，t］＾2）
» $+(1 / 2)$ omegaB［yaw3，pitch3，roll3］．IM3．omegaB［yaw3，pitch3，roll3］
－）；
10－Mar－05

Defining a Model (v)

- Define default values of constants
- defaultvalues $=\{$

```
g -> 9.81, (* value given numerically *)
```

m3 -> Pi*r3^2*t3, (* value given in terms of other constants *)
...
x00 -> 0, (* value for nominal position of structure *)
$\mathrm{y} 00 \rightarrow 0$,
z00 -> 0 ,
damping[imag, dampingtype] $->$ (phi\&) (* value for frequency dependence of damping *)
\};

- Define starting point for finding equilibrium position:
- startpos = \{

》 $\mathrm{x} 1 \mathrm{-} 0$,
" $\mathrm{y} 1->0$,
》 ...

- \};

10-Mar-05

Defining a Model (vi)

- Define model-specific utilities:
" A function to list eigenmodes in a table
" pretty[eigenvector]
" A function to plot eigenmode shapes
" eigenplot[eigenvector, amplitude, \{viewpoint\}]
" Vectors representing force and displacement inputs and displacement outputs of interest
" structurerollinput = makeinputvector[roll00];
" opticxinput = makefinputvector[x3];
" opticx = makeoutputvector[x3];
" Rotation matrices to put angle variables in a more easily interpretable basis:
" e2ni;

Sample Output (i)

- Transfer function from x displacement of support to x motion of optic (quad model, reference parameters of 20031114):

Sample Output (ii)

- Thermal noise in x motion of optic (quad model, reference parameters of 20031114):

Export to Matlab/Simulink

Export to E2E

Status

- Toolkit and quad and triple models defined and published:
» http://www.ligo.caltech.edu/~mbarton/SUSmodels/indexMB.html
" T020205-01
- Export of state-space matrices to E2E programmed.
- Simple E2E model using triple data is working.
- Need to do similar test model for quad data.
- Need to add local control systems.
- Need to define E2E blocks for all pendulum designs.
- Need to add global control (when finalized - ages off yet).
- Need to start on SEI.

