
10-Mar-05 LIGO-G050239-00-D 1

Suspension Modeling in
Mathematica™

e2e Group Meeting
10 March 2005

10-Mar-05 LIGO-G050239-00-D 2

Motivation
 Wanted an AdvLIGO SUS design model to go beyond the

Matlab model of Torrie, Strain et al.
 Desired features:

» Full 3D with provision for asymmetries
» Proper blade model
» Wire bending elasticity
» Arbitrary damping and consequent thermal noise
» Export to other environments such as Matlab/Simulink and E2E.

 Mathematica code originally developed for modeling the X-
pendulum was available -> reuse and extend.

10-Mar-05 LIGO-G050239-00-D 3

Toolkit Features
 The toolkit is a Mathematica “package”, PendUtil.nb, for specifying

different configurations (e.g., quad, triple etc) in a (relatively) user-
friendly way

 Supported features:
» 6-DOF rigid bodies for masses (no internal modes)
» Springs described by an elasticity tensor and a vector of pre-load forces
» Massless wires (i.e., no violin modes) but detailed elasticity model from beam equation
» Arbitrary frequency-dependent damping on all sources of elasticity
» Symbolic up to the point of minimizing the potential to find the equilibrium position
» Calculates elasticity and mass matrices semi-numerically (symbolic partial derivatives of functions

with mostly numeric coefficients)
» Eigenfrequencies and eigenmodes calculated numerically
» Reasonable runtime:

– 2 minutes for quad model with just wire longitudinal elasticity (adequate for most control theory purposes)
– 2 hours with wire bending elasticity (required for thermal noise estimates)

» Structured to make version control easy

10-Mar-05 LIGO-G050239-00-D

Normal Mode Calculation (i)
 Express the potential energy of the system in terms of the

coordinates:

 Express the kinetic energy of the system in terms of the
coordinates and coordinate velocities:

 Minimize the potential energy to find the equilibrium values
of the coordinates.

4

EP = EP x1, ...xn() = EP x()

 EK = EK x1, ...xn , x1, ...xn()

xeq = x1 eq(), ...xn eq()()T

10-Mar-05 LIGO-G050239-00-D

Normal Mode Calculation (ii)
 Create a matrix of second derivatives of the potential

energy, a.k.a., the potential energy matrix or the stiffness
matrix.

 Create a matrix of second derivatives w.r.t. velocity, a.k.a.,
the kinetic energy matrix or the mass matrix.

5

K : Kij =
∂EP

∂xi∂x j x=xeq
EP = EP xeq() + 1

2 x − xeq()T K x − xeq()

M : Mij =
∂EK

∂ xi∂ x j x=0
x=xeq

 EK = 1
2 xTMx

10-Mar-05 LIGO-G050239-00-D

Normal Mode Calculation (iii)
 Do a simultaneous diagonalization of the stiffness and mass

matrices to obtain the eigenfrequencies and eigenmodes:

 For a practical calculation potential matrix step needs to be
considerably elaborated, partly for efficiency and partly to
support additional calculations such as transfer functions
and thermal noise estimates.

6

Kei =ω i
2Mei xi t() = xeq + eieω it fi =ω i 2π

10-Mar-05 LIGO-G050239-00-D

Other coordinates
 Also need to consider coordinates of structure - constant

during normal mode motion but movable when injecting
displacement inputs:

 And “floats”, coordinates of things such as junctions
between elastic elements in series - not independent of
normal mode coordinates:

7

q = q1, ...qm()T

s = s1, ...sl()T snom = s1(nom) , ...sl (nom)()T

10-Mar-05 LIGO-G050239-00-D

Master Potential Matrix
 To work with all types of coordinates efficiently, define

master potential matrix:

 It has a block structure with many useful submatrices:

8

P : EP = EP xeq ,qeq , snom() + 1
2 xT − xeqT qT − qeqT sT − snomT()P

x − xeq
q− qeq
s − snom

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

P =
K CXQ CXS

CQX Q CQS

CSX CSQ S

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

CXQ = CQX
T

10-Mar-05 LIGO-G050239-00-D

Effective Potential and Coupling
Matrices

 If there are any float coordinates, K submatrix of P is not
appropriate to use in the normal mode analysis, since it
assumes q=const whereas actually:

 The effective potential matrix is

 Similarly the effective coupling matrix converting
displacement inputs of the structure to forces on the normal
mode coordinates is

9

q = qeq −Q−1CQX x − xeq()

Keff = K −CXQQ−1CQX

fxs = CXS(eff) s − snom() = CXS −CXQQ−1CQS() s − snom()

10-Mar-05 LIGO-G050239-00-D

Damping
 Damping can be represented by a complex elastic modulus:

 Strictly, the Kramers-Kronig relation applies:

 However often the variation in the real part can be ignored:

 Need to consider total potential as sum of terms, each with
different damping:

10

k→ k0 ′ε ω() + i ′′ε ω()()

′ε ω()−1= 2
π
PV ′′ε x()

x −ω−∞

∞

∫ dx ′′ε ω() = − 2
π
PV ′ε x()−1

x −ω−∞

∞

∫ dx

k→ k0 1+ iφ f()()

P = Pi∑ ′εi f() + i ′′εi f()()

10-Mar-05 LIGO-G050239-00-D

Dissipation Dilution and
Pendulums (i)

 Two independent reasons why pendulums have low loss:
» Restoring force is gravitational
» Restoring force is sideways component of a tension

 Reason #2 would still apply if the tension
were supplied by a second spring:

 Why? Because when a spring is used to
create a restoring force by first generating
a static force and then coupling that to the load by a
variable mechanical advantage, the length change
is only second order in amplitude.

11

10-Mar-05 LIGO-G050239-00-D

Dissipation Dilution and
Pendulums (ii)

 Why is it important to get this right? Because the normal
mode formalism mixes up the two cases depending on the
coordinates used and the stiffness of the wire:

 No stretch of spring for pendulum mode in polar coordinates
vs. second order stretch in Cartesian coordinates.

 Solution: recompute potential matrix with tension zeroed
out, then:

12

P = Pi tension_off ′εi f() + i ′′εi f()()()∑ + Pi tension_on − Pi tension_off()∑

10-Mar-05 LIGO-G050239-00-D

Equations of Motion
 The net equation of motion is then,

 Or in the frequency domain:

 This can be solved for x for a sequence of different values
of f to give force-input or displacement-input transfer
functions as a function of frequency.

 Thermal noise is calculated in usual way from complex
admittance.

13

 Keff x − xeq() +Mx = fx +CXS(eff) s − snom()

Keff x − xeq()− 2π f()2M x − xeq() = fx +CXS(eff) s − snom()

10-Mar-05 LIGO-G050239-00-D

Models
 Two major families of models have been defined:

» The triple models reflect a generic GEO-style pendulum with 3 masses, 6
blade springs and 10 wires.

» The quad models reflect a standard AdvLIGO quad pendulum, with 4
masses, 6 blade springs and 14 wires.

 Within each family there are three variants
» The “full” version, where the tips of the blade springs are modeled as 6-

DOF rigid bodies attached to their bases by 6-DOF springs
» The “lite” version, where the tips of the blade springs are connected to their

bases by geometrical constraints in 5 DOFs and elastically in 1 DOF.
» The xtra-lite version, where the tips of the blade springs are massless.

 The “xtra-lite” models are preferred for time-domain
simulation because they have the smallest matrices and no
high-frequency eigenmodes due to the blades.

14

10-Mar-05 LIGO-G050239-00-D

Triple Pendulum Model

 2 blade springs
 2 wires
 “upper” mass
 4 blade springs
 4 wires
 “intermediate” mass
 4 fibres
 optic

15

10-Mar-05 LIGO-G050239-00-D

Quad Pendulum
 2 blade springs
 2 wires
 “top” mass
 2 blade springs
 4 wires
 “upper” mass
 2 blade springs
 4 wires
 “intermediate” mass
 4 fibres
 optic

16

10-Mar-05 LIGO-G050239-00-D

Defining a Model (i)
 Define the “variables” (cf. x in the theory - example from the

xtra-lite triple):
 allvars = {

» x1,y1,z1,yaw1,pitch1,roll1,

» x2,y2,z2,yaw2,pitch2,roll2,

» x3,y3,z3,yaw3,pitch3,roll3
 };

 Define the “floats” (cf. q in the theory):
»allfloats = {

–qul,qur,qlf,qlb,qrf,qrb
»};

 Define the “parameters” (cf. s in the theory):
 allparams = {

» x00, y00, z00, yaw00, pitch00, roll00
 };

17

10-Mar-05 LIGO-G050239-00-D

Defining a Model (ii)
 Define coordinate lists for rigid bodies of interest:
 optic = {x3, y3, z3, yaw3, pitch3, roll3};
 support = {x00, y00, z00, yaw00, pitch00, roll00};

 Define coordinate lists for points on rigid bodies
 massUl={0,-n1,d0}; (* left wire attachment point on upper mass *)

 Define list of gravitational potential terms:
 gravlist = {}; (* initialize list *)
 AppendTo[gravlist, m3 g z3]; (* typical item *)

18

10-Mar-05 LIGO-G050239-00-D

Defining a Model (iii)
 Define list of wires, each with the following format
 {

» coordinate list defining first mass,

» attachment point for first mass (local coordinates),

» attachment vector for first mass,

» coordinate list defining second mass,

» attachment point for second mass (local coordinates),

» attachment vector for second mass,

» Young's modulus,

» unstretched length,

» longitudinal elasticity,

» vector defining principal axis 1,

» moment of area along principal axis 1,

» moment of area along principal axis 2,

» linear elasticity type,

» angular elasticity type,

» torsional elasticity type,

» shear modulus,

» cross sectional area for torsional calculations,
» torsional stiffness geometric factor

 }

19

10-Mar-05 LIGO-G050239-00-D

Defining a Model (iv)
 Define list of springs, each with following format:
 {

» coordinate list defining first mass,

» attachment point for first mass (local coordinates),

» attachment angles for first mass (yaw, pitch, roll),

» coordinate list defining second mass,

» attachment point for second mass (local coordinates),

» attachment angles for second mass (yaw, pitch, roll),

» damping type,

» 6x6 elasticity matrix,

» 1*6 pre-load force/torque vector

 }

 Define kinetic energy
 IM3 = {{I3x, 0, 0}, {0, I3y, 0}, {0, 0, I3z}}; (* typical MOI tensor)
 kinetic = (

» …

» +(1/2) m3 Plus@@(Dt[b2s[optic,COM],t]^2)

» +(1/2) omegaB[yaw3, pitch3, roll3].IM3.omegaB[yaw3, pitch3, roll3]

» …
);

20

10-Mar-05 LIGO-G050239-00-D

Defining a Model (v)
 Define default values of constants
 defaultvalues = {

» g -> 9.81, (* value given numerically *)

» …

» m3 -> Pi*r3^2*t3, (* value given in terms of other constants *)

» …

» x00 -> 0, (* value for nominal position of structure *)

» y00 -> 0,

» z00 -> 0,

» …

» damping[imag,dampingtype] -> (phi&) (* value for frequency dependence of damping *)

» …
 };

 Define starting point for finding equilibrium position:
 startpos = {

» x1 ->0,

» y1 ->0,

» …
 };

21

10-Mar-05 LIGO-G050239-00-D

Defining a Model (vi)
 Define model-specific utilities:

» A function to list eigenmodes in a table
» pretty[eigenvector]

» A function to plot eigenmode shapes
» eigenplot[eigenvector, amplitude, {viewpoint}]

» Vectors representing force and displacement inputs and displacement
outputs of interest

» structurerollinput = makeinputvector[roll00];

» opticxinput = makefinputvector[x3];

» opticx = makeoutputvector[x3];

» Rotation matrices to put angle variables in a more easily interpretable basis:
» e2ni;

22

10-Mar-05 LIGO-G050239-00-D

Sample Output (i)
 Transfer function

from x
displacement of
support to x
motion of optic
(quad model,
reference
parameters of
20031114):

23

10-Mar-05 LIGO-G050239-00-D

Sample Output (ii)
 Thermal noise in

x motion of optic
(quad model,
reference
parameters of
20031114):

24

10-Mar-05 LIGO-G050239-00-D

Export to Matlab/Simulink

25

10-Mar-05 LIGO-G050239-00-D

Export to E2E

26

10-Mar-05 LIGO-G050239-00-D 27

Status
 Toolkit and quad and triple models defined and published:

» http://www.ligo.caltech.edu/~mbarton/SUSmodels/indexMB.html
» T020205-01

 Export of state-space matrices to E2E programmed.
 Simple E2E model using triple data is working.
 Need to do similar test model for quad data.
 Need to add local control systems.
 Need to define E2E blocks for all pendulum designs.
 Need to add global control (when finalized - ages off yet).
 Need to start on SEI.

