
10-Mar-05 LIGO-G050239-00-D 1

Suspension Modeling in
Mathematica™

e2e Group Meeting
10 March 2005

10-Mar-05 LIGO-G050239-00-D 2

Motivation
 Wanted an AdvLIGO SUS design model to go beyond the

Matlab model of Torrie, Strain et al.
 Desired features:

» Full 3D with provision for asymmetries
» Proper blade model
» Wire bending elasticity
» Arbitrary damping and consequent thermal noise
» Export to other environments such as Matlab/Simulink and E2E.

 Mathematica code originally developed for modeling the X-
pendulum was available -> reuse and extend.

10-Mar-05 LIGO-G050239-00-D 3

Toolkit Features
 The toolkit is a Mathematica “package”, PendUtil.nb, for specifying

different configurations (e.g., quad, triple etc) in a (relatively) user-
friendly way

 Supported features:
» 6-DOF rigid bodies for masses (no internal modes)
» Springs described by an elasticity tensor and a vector of pre-load forces
» Massless wires (i.e., no violin modes) but detailed elasticity model from beam equation
» Arbitrary frequency-dependent damping on all sources of elasticity
» Symbolic up to the point of minimizing the potential to find the equilibrium position
» Calculates elasticity and mass matrices semi-numerically (symbolic partial derivatives of functions

with mostly numeric coefficients)
» Eigenfrequencies and eigenmodes calculated numerically
» Reasonable runtime:

– 2 minutes for quad model with just wire longitudinal elasticity (adequate for most control theory purposes)
– 2 hours with wire bending elasticity (required for thermal noise estimates)

» Structured to make version control easy

10-Mar-05 LIGO-G050239-00-D

Normal Mode Calculation (i)
 Express the potential energy of the system in terms of the

coordinates:

 Express the kinetic energy of the system in terms of the
coordinates and coordinate velocities:

 Minimize the potential energy to find the equilibrium values
of the coordinates.

4

EP = EP x1, ...xn() = EP x()

 EK = EK x1, ...xn , x1, ...xn()

xeq = x1 eq(), ...xn eq()()T

10-Mar-05 LIGO-G050239-00-D

Normal Mode Calculation (ii)
 Create a matrix of second derivatives of the potential

energy, a.k.a., the potential energy matrix or the stiffness
matrix.

 Create a matrix of second derivatives w.r.t. velocity, a.k.a.,
the kinetic energy matrix or the mass matrix.

5

K : Kij =
∂EP

∂xi∂x j x=xeq
EP = EP xeq() + 1

2 x − xeq()T K x − xeq()

M : Mij =
∂EK

∂ xi∂ x j x=0
x=xeq

 EK = 1
2 xTMx

10-Mar-05 LIGO-G050239-00-D

Normal Mode Calculation (iii)
 Do a simultaneous diagonalization of the stiffness and mass

matrices to obtain the eigenfrequencies and eigenmodes:

 For a practical calculation potential matrix step needs to be
considerably elaborated, partly for efficiency and partly to
support additional calculations such as transfer functions
and thermal noise estimates.

6

Kei =ω i
2Mei xi t() = xeq + eieω it fi =ω i 2π

10-Mar-05 LIGO-G050239-00-D

Other coordinates
 Also need to consider coordinates of structure - constant

during normal mode motion but movable when injecting
displacement inputs:

 And “floats”, coordinates of things such as junctions
between elastic elements in series - not independent of
normal mode coordinates:

7

q = q1, ...qm()T

s = s1, ...sl()T snom = s1(nom) , ...sl (nom)()T

10-Mar-05 LIGO-G050239-00-D

Master Potential Matrix
 To work with all types of coordinates efficiently, define

master potential matrix:

 It has a block structure with many useful submatrices:

8

P : EP = EP xeq ,qeq , snom() + 1
2 xT − xeqT qT − qeqT sT − snomT()P

x − xeq
q− qeq
s − snom

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

P =
K CXQ CXS

CQX Q CQS

CSX CSQ S

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

CXQ = CQX
T

10-Mar-05 LIGO-G050239-00-D

Effective Potential and Coupling
Matrices

 If there are any float coordinates, K submatrix of P is not
appropriate to use in the normal mode analysis, since it
assumes q=const whereas actually:

 The effective potential matrix is

 Similarly the effective coupling matrix converting
displacement inputs of the structure to forces on the normal
mode coordinates is

9

q = qeq −Q−1CQX x − xeq()

Keff = K −CXQQ−1CQX

fxs = CXS(eff) s − snom() = CXS −CXQQ−1CQS() s − snom()

10-Mar-05 LIGO-G050239-00-D

Damping
 Damping can be represented by a complex elastic modulus:

 Strictly, the Kramers-Kronig relation applies:

 However often the variation in the real part can be ignored:

 Need to consider total potential as sum of terms, each with
different damping:

10

k→ k0 ′ε ω() + i ′′ε ω()()

′ε ω()−1= 2
π
PV ′′ε x()

x −ω−∞

∞

∫ dx ′′ε ω() = − 2
π
PV ′ε x()−1

x −ω−∞

∞

∫ dx

k→ k0 1+ iφ f()()

P = Pi∑ ′εi f() + i ′′εi f()()

10-Mar-05 LIGO-G050239-00-D

Dissipation Dilution and
Pendulums (i)

 Two independent reasons why pendulums have low loss:
» Restoring force is gravitational
» Restoring force is sideways component of a tension

 Reason #2 would still apply if the tension
were supplied by a second spring:

 Why? Because when a spring is used to
create a restoring force by first generating
a static force and then coupling that to the load by a
variable mechanical advantage, the length change
is only second order in amplitude.

11

10-Mar-05 LIGO-G050239-00-D

Dissipation Dilution and
Pendulums (ii)

 Why is it important to get this right? Because the normal
mode formalism mixes up the two cases depending on the
coordinates used and the stiffness of the wire:

 No stretch of spring for pendulum mode in polar coordinates
vs. second order stretch in Cartesian coordinates.

 Solution: recompute potential matrix with tension zeroed
out, then:

12

P = Pi tension_off ′εi f() + i ′′εi f()()()∑ + Pi tension_on − Pi tension_off()∑

10-Mar-05 LIGO-G050239-00-D

Equations of Motion
 The net equation of motion is then,

 Or in the frequency domain:

 This can be solved for x for a sequence of different values
of f to give force-input or displacement-input transfer
functions as a function of frequency.

 Thermal noise is calculated in usual way from complex
admittance.

13

 Keff x − xeq() +Mx = fx +CXS(eff) s − snom()

Keff x − xeq()− 2π f()2M x − xeq() = fx +CXS(eff) s − snom()

10-Mar-05 LIGO-G050239-00-D

Models
 Two major families of models have been defined:

» The triple models reflect a generic GEO-style pendulum with 3 masses, 6
blade springs and 10 wires.

» The quad models reflect a standard AdvLIGO quad pendulum, with 4
masses, 6 blade springs and 14 wires.

 Within each family there are three variants
» The “full” version, where the tips of the blade springs are modeled as 6-

DOF rigid bodies attached to their bases by 6-DOF springs
» The “lite” version, where the tips of the blade springs are connected to their

bases by geometrical constraints in 5 DOFs and elastically in 1 DOF.
» The xtra-lite version, where the tips of the blade springs are massless.

 The “xtra-lite” models are preferred for time-domain
simulation because they have the smallest matrices and no
high-frequency eigenmodes due to the blades.

14

10-Mar-05 LIGO-G050239-00-D

Triple Pendulum Model

 2 blade springs
 2 wires
 “upper” mass
 4 blade springs
 4 wires
 “intermediate” mass
 4 fibres
 optic

15

10-Mar-05 LIGO-G050239-00-D

Quad Pendulum
 2 blade springs
 2 wires
 “top” mass
 2 blade springs
 4 wires
 “upper” mass
 2 blade springs
 4 wires
 “intermediate” mass
 4 fibres
 optic

16

10-Mar-05 LIGO-G050239-00-D

Defining a Model (i)
 Define the “variables” (cf. x in the theory - example from the

xtra-lite triple):
 allvars = {

» x1,y1,z1,yaw1,pitch1,roll1,

» x2,y2,z2,yaw2,pitch2,roll2,

» x3,y3,z3,yaw3,pitch3,roll3
 };

 Define the “floats” (cf. q in the theory):
»allfloats = {

–qul,qur,qlf,qlb,qrf,qrb
»};

 Define the “parameters” (cf. s in the theory):
 allparams = {

» x00, y00, z00, yaw00, pitch00, roll00
 };

17

10-Mar-05 LIGO-G050239-00-D

Defining a Model (ii)
 Define coordinate lists for rigid bodies of interest:
 optic = {x3, y3, z3, yaw3, pitch3, roll3};
 support = {x00, y00, z00, yaw00, pitch00, roll00};

 Define coordinate lists for points on rigid bodies
 massUl={0,-n1,d0}; (* left wire attachment point on upper mass *)

 Define list of gravitational potential terms:
 gravlist = {}; (* initialize list *)
 AppendTo[gravlist, m3 g z3]; (* typical item *)

18

10-Mar-05 LIGO-G050239-00-D

Defining a Model (iii)
 Define list of wires, each with the following format
 {

» coordinate list defining first mass,

» attachment point for first mass (local coordinates),

» attachment vector for first mass,

» coordinate list defining second mass,

» attachment point for second mass (local coordinates),

» attachment vector for second mass,

» Young's modulus,

» unstretched length,

» longitudinal elasticity,

» vector defining principal axis 1,

» moment of area along principal axis 1,

» moment of area along principal axis 2,

» linear elasticity type,

» angular elasticity type,

» torsional elasticity type,

» shear modulus,

» cross sectional area for torsional calculations,
» torsional stiffness geometric factor

 }

19

10-Mar-05 LIGO-G050239-00-D

Defining a Model (iv)
 Define list of springs, each with following format:
 {

» coordinate list defining first mass,

» attachment point for first mass (local coordinates),

» attachment angles for first mass (yaw, pitch, roll),

» coordinate list defining second mass,

» attachment point for second mass (local coordinates),

» attachment angles for second mass (yaw, pitch, roll),

» damping type,

» 6x6 elasticity matrix,

» 1*6 pre-load force/torque vector

 }

 Define kinetic energy
 IM3 = {{I3x, 0, 0}, {0, I3y, 0}, {0, 0, I3z}}; (* typical MOI tensor)
 kinetic = (

» …

» +(1/2) m3 Plus@@(Dt[b2s[optic,COM],t]^2)

» +(1/2) omegaB[yaw3, pitch3, roll3].IM3.omegaB[yaw3, pitch3, roll3]

» …
);

20

10-Mar-05 LIGO-G050239-00-D

Defining a Model (v)
 Define default values of constants
 defaultvalues = {

» g -> 9.81, (* value given numerically *)

» …

» m3 -> Pi*r3^2*t3, (* value given in terms of other constants *)

» …

» x00 -> 0, (* value for nominal position of structure *)

» y00 -> 0,

» z00 -> 0,

» …

» damping[imag,dampingtype] -> (phi&) (* value for frequency dependence of damping *)

» …
 };

 Define starting point for finding equilibrium position:
 startpos = {

» x1 ->0,

» y1 ->0,

» …
 };

21

10-Mar-05 LIGO-G050239-00-D

Defining a Model (vi)
 Define model-specific utilities:

» A function to list eigenmodes in a table
» pretty[eigenvector]

» A function to plot eigenmode shapes
» eigenplot[eigenvector, amplitude, {viewpoint}]

» Vectors representing force and displacement inputs and displacement
outputs of interest

» structurerollinput = makeinputvector[roll00];

» opticxinput = makefinputvector[x3];

» opticx = makeoutputvector[x3];

» Rotation matrices to put angle variables in a more easily interpretable basis:
» e2ni;

22

10-Mar-05 LIGO-G050239-00-D

Sample Output (i)
 Transfer function

from x
displacement of
support to x
motion of optic
(quad model,
reference
parameters of
20031114):

23

10-Mar-05 LIGO-G050239-00-D

Sample Output (ii)
 Thermal noise in

x motion of optic
(quad model,
reference
parameters of
20031114):

24

10-Mar-05 LIGO-G050239-00-D

Export to Matlab/Simulink

25

10-Mar-05 LIGO-G050239-00-D

Export to E2E

26

10-Mar-05 LIGO-G050239-00-D 27

Status
 Toolkit and quad and triple models defined and published:

» http://www.ligo.caltech.edu/~mbarton/SUSmodels/indexMB.html
» T020205-01

 Export of state-space matrices to E2E programmed.
 Simple E2E model using triple data is working.
 Need to do similar test model for quad data.
 Need to add local control systems.
 Need to define E2E blocks for all pendulum designs.
 Need to add global control (when finalized - ages off yet).
 Need to start on SEI.

