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1 Introduction

The 2°¢ generation detectors, which are now being assembled (Advanced LIGO, Advanced
Virgo, and KAGRA), are expected to be limited by quantum noise over nearly the entire
GW band (10 - 10000 Hz). By quantum noise, we refer to the ground state fluctuations of
the EM field which beat with the laser field to produce shot noise and radiation pressure
noise.

To upgrade those detectors it is essential to reduce this quantum noise. There are several
configurations that have been proposed within the community [1]. They generally fall into
the following four categories:

injection of squeezed light with a phase shifting filter cavity

frequency dependent readout quadrature (a.k.a. variational readout)

e using coherent feedback to modify the dynamics of the test masses, e. g., the optical
spring effect associated with the detuned signal recycling

injecting multiple carrier fields

They all require, to a certain extent, introducing additional optics and increasing the com-
plexity of the detectors. In this technical note we include realistic losses and quantitatively
compare these configurations using the same baseline interferometer configuration.

We numerically optimize the sensitivity of the different configurations, which, following the
convention of the LSC Instrument Science white paper [2], we call LIGO3, with the following

cost function: ;
max haaviico }
C(x) = / dlog f lo {— . 1
(z) - g flog — (1)

Here [fiin, fmax] 1S the frequency span with fui, = 10Hz and fr.x = 4040Hz for the op-
timization; x are the set of parameters that we want to optimize; hagyrico is the design
sensitivity of AdvLIGO; and hyigos is the sensitivity of the advanced configuration. Notice
that the integration variable is log f instead of f, which means that we want to maximize
the improvement over AdvLIGO in the log-log scale. We have considered the following
configurations:

1. frequency dependent squeeze angle—injecting squeezed light with an optical filter cav-
ity [3]

2. frequency dependent readout—filtering the output with a cavity to measure appropriate
quadratures at different frequencies [3, 4];

3. speed-meter configurations—measuring quantity that is proportional to the test mass
speed at low frequencies [5, 6, 7, §]

4. long signal recycling cavity—elongating the recycling cavity to have a frequency-dependent

response in the signal-recycling cavity
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5. dual-carrier scheme—introducing an additional carrier light to gain another readout
channel [9];

6. local-readout scheme—being a special case of the dual-carrier scheme in which the
additional carrier is anti-resonant in the arm cavity and resonant in the power-recycling
cavity [10].

These configurations are not excluded from each other and can be combined in different ways.
In particular, we not only consider them standalone, but also combine (i) and (ii)—input
and output filter cavities—with other schemes.

Input filtering with high thermal noise Input filtering with low thermal noise
m {  — Signal-recycled (AdVLIGO-type) | { — Signal-recycled (AdvLIGO-type)
1075 ' Long signal recycling cavity 107*r E —— Long signal recycling cavity
H 4km speed meter ! 4km speed meter
i —— Local readout (dual carrier) ' —— Local readout (dual carrier)
\ Seismic noise \ Seismic noise
a 10722t '-‘ Gravity Gradient (10 x reduction) 10—22¢ '-‘ Gravity Gradient (10 x reduction)
i Suspension thermal (120K Si suspension ' Suspension thermal (20K Si suspension)
EN y Coating Brownian (2.5 x reduction) . Coating Brownian (7 x reduction)
)
2107%3¢ 10723t
10—24 L 10—24 L
10 10° 10° 10 10° 10°
Frequency [Hz] Frequency [Hz]

Figure 1: Plot showing the optimized total noise spectrum for different configurations with
frequency-dependent squeezing (input filtering). The left (right) one assumes high (low) thermal
noise.

The optimization results are shown in Fig. 1 and Fig 2, where we plot the total noise spectrum
(the quantum noise + the classical noises) for different configurations with frequency depen-
dent squeezing (input filtering) and variational readout (output filtering). In producing the
left ones in these two figures, we assume a moderate reduction in the thermal noise and the
same mass and optical power as those for AdvLIGO. In producing the right ones in these
figures, we assume a more optimistic reduction in the thermal noise and, in addition, the test
mass to be 150 kg and a maximal optical power to be 3 MW. As we can see, by adding just
one filter cavity to the signal-recycled interferometer (AdvLIGO topology), we can already
obtain a broadband improvement over AdvLIGO. Further low-frequency enhancement can
be achieved by applying either the speed meter or the local-readout (dual-carrier Michelson)
scheme.

The outline of this note goes as follows: in Sec. 2, we introduce the topologies and features
of different configurations that we are about to compare; in Sec.3, we will compare their
broadband sensitivity by optimizing their parameters under the same cost function defined
in Eq. (1); in Sec.5, we will summarize our main results. In the appendices, we present a
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Figure 2: Plot showing the optimization results for different configuration with variational readout
(output filtering). The left (right) one assumes high (low) thermal noise.

table of the optimal optical parameters, summarize the basics of quantum noise calculation,
and also define the variables used here relative to the previous theoretical papers on the

topic.
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2 Optical Topologies

In this section, we describe the optical topologies that we compare in Section 3. The quantum
noise spectral density of these topologies are evaluated by using the standard input-output
formalism, and we give a brief introduction to it in the App. B. With the additional optics,
the topologies to be considered have different input-output relations from that of a tuned
signal-recycling interferometer, e.g., the scheme for the advanced LIGO, and thus different
quantum noise spectra.

2.1 Frequency-dependent squeezing—input filtering

l

GWs

Test mass

!

- —

] ﬂ v Input v filter Optical transfer & Output
u A noise 4 cavity function
e Filter cavity
Faraday isolator Ng

?gqueezed light

O

Figure 3: Schematics showing the frequency-dependent squeezing scheme (left) and its associated
flow chart (right).

The first scheme is frequency-dependent squeezing. Unlike the vacuum state of which the
spectral density matrix is an identity matrix, the squeezed light has the following noise
spectral density matrix:

[ S11 St } [ cosh 2r — sinh 2r cos 2¢p — sinh 2r sin 2¢p @)

So1 S99 - — sinh 2r sin 2¢p cosh 2r — sinh 2r cos 2¢

where 7 is called the squeezing factor (10 dB squeezing means that e* = 10) and ¢ is the
squeezing angle, e.g., when ¢ = 7/2 and r > 0, S1; = €?",S19 = S91 = 0,59 = ™", the
fluctuation in the phase quadrature is squeezed compared with that of the vacuum (which
is equal to 1). Frequency-dependent squeezing, as shown schematically in Fig. 3, utilizes an
optical cavity to rotate the amplitude and phase quadratures, or equivalently the squeezing
angle, in a frequency-dependent way. Specifically, the amplitude and phase quadratures, a,
and as, after being filtered by the optical cavity are:

[ a1 () ] _ gilar—ai)/2 { cos ot —sin S0 ] { a($) ] (3)

s Fa o4 +o_
sin === cos ~5— as ()

and . is defined as:
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s _ WFOL-A 4
C T EQ-A (4)

where A and ~ are the detune and bandwidth of the filter cavity, respectively. The quadra-
tures undergo a frequency-dependent rotation of (ay + «_)/2, and if the frequency de-
pendency is appropriate, one can rotate the squeezing angle such that the quantum noise
spectrum is reduced by an overall factor that is equal to €2, namely (in the case of the tuned
interferometer)

Sp(Q) = e % [/C(Q) + ﬁ] hSQQL. (5)

For illustration, in Fig. 4, we show the resulting noise spectrum in the ideal case without
optical loss (the effect of the optical loss will be discussed later). As we can see, the squeezing
angle rotates in such a way that at low frequencies the fluctuation in the amplitude quadra-
ture is squeezed—thus reducing the radiation-pressure noise, while at high frequencies the
phase quadrature is squeezed—thus reducing the shot noise. In order to achieve the desired
rotation of squeezing angle, the filter cavity needs to have a bandwidth that is comparable
to the detection bandwidth—this indicates a high-finesse cavity is necessary if the cavity
length is short. The specification for the filter cavity can almost be analytically calculated
by using the method outlined in [7]. To account for optical loss accurately, we use numerical
methods to optimize the parameters of the filter cavity.

10_21 Phs Phs Phs

Ideal case without optical loss

Amp Amp ') Am
—10~ 22\ \} Q Jg}
TN
= /2 rotation of squeezing angle
g 10-23
3 10
n
$ m/4r
Frequency depender\lt\s\queezing
‘ ‘ . 0 2 13
10 10 10° 10 10 10
Frequency [Hz] Frequency [Hz]

Figure 4: Noise spectrum for frequency-dependent squeezing (left) and rotation of the squeezing
angle (right).

2.2 Frequency Dependent Readout—Output Filtering

A close related counterpart to the input filtering is the variational readout, and as shown
schematically in Fig. 5, it uses an optical cavity to filter the detector output which allows one
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Figure 5: Schematics showing the frequency dependent (or variational) readout scheme (left) and
its associated flow chart (right).

to measure different optical quadratures at different frequencies. The filter cavity has the
same functionality as in the case of the frequency-dependent squeezing—the only difference
is that it rotates the optical quadratures of the output instead of input. In the ideal case, this
scheme can coherently cancel the radiation-pressure noise at low-frequencies [3]. To illustrate
how this works, we use the tuned interferometer, of which the input-output relation is given
by Eq. (32). If we choose a proper local-oscillator phase and make the quadrature angle to

be ( that is not equal to zero (phase quadrature), we have [cf. Eq. 32]:
be (£2) = b1 (2) sin ¢ + b (€2) cos ¢
= e*?[sin ¢ — K(Q) cos (Ja (Q) + €% cos € az () + €' cos (/ QIC(Q)@. (6)
SQL

Here the first term, proportional to a;, is the radiation pressure noise; the second term,
proportional to as, is the shot noise; the third term is the signal. As we can see, if the
quadrature angle ¢ in the following frequency dependency way:

tan ¢ = K(€), (7)

the first radiation-pressure noise term would be canceled, and give rise to a shot-noise only
sensitivity. Since the phase for the local oscillator is usually fixed, before beating with the
local oscillator we need to rotate the output quadratures with a filter cavity to achieve such
a frequency-dependent quadrature readout.

The resulting noise spectrum for this scheme is simply:

51(0) = oo ®)
MUTRQ) 2
If we simultaneously inject phase squeezed light, we will have:
e hiqy,
Sh(2) = : 9
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In Fig. 6, we plot the noise spectrum in the ideal lossless case with the low-frequency
radiation-pressure noise completely evaded. In reality, due to the presence of optical loss,
such a cancelation cannot be perfect. In the numerical optimization, we will take into account
the optical loss and optimize the parameters for the filter cavity.
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Figure 6: Plot showing the noise spectrum for the variational readout scheme (red curve) and
with additional phase squeezed light injection (purple curve).

2.3 The Effects of Optical Losses

In the previous two subsections, we introduced the frequency-dependent squeezing (input
filtering) and the variational readout (output filtering). For illustration, we assumed the
ideal case without any optical loss. Even though we will include realistic optical loss in the
numerical optimization, it is worth mentioning briefly how the optical loss influences the
performance of these two schemes, as we will combine them with other advanced schemes
discussed in later subsections.

Frequency-dependent squeezing.—For the frequency-dependent squeezing scheme, the optical
loss introduces additional (vacuum) noise that is uncorrelated with the input squeezed light:

a; = /nn+ /1 —na, (10)
ay = /Mne + /1 —nas, (11)

where 7 quantifies the optical loss—one ppm loss means that n = 1075—and n,, are as-
sociated noises in the amplitude and phase quadratures. These noises will deteriorate the
squeezing. For instance, the amplitude squeezed light originally has S}, = e™?" with r > 0.
Due to the optical loss, from Eq. 10, it becomes:

h=0—ne+n. (12)
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For a completely lossy case with n = 1, we have S1; = 1 and the squeezing simply vanishes.

The squeezed light at different frequencies experiences different optical loss of the filter cavity.
The low-frequency part enters the cavity and circulates for multiple times, while the high-
frequency part barely enters the cavity. Therefore, the optical loss affects the low-frequency
part most significantly. In terms of noise spectrum, we approximately have (again assume
the tuned interferometer):

) = {1 e+ + e LR (13

in contrast to Eq. (5). Compared with ideal frequency-dependence squeezing case, the low-
frequency radiation-pressure noise increases due to the optical loss and the high-frequency
shot noise remains almost the same.

Variational readout.—For variational readout, the additional noise introduced by the op-
tical loss influences the output and modifies the input-output relation as (use the tuned
interferometer for illustration [cf. Eq. (32)]):

bll T 2ig 1 0 aq i¢ 0 h
= 1- 1-— —. (14
{blz] ﬁ[”2]+ " [—’C1Ha2]+ T VAR g MY

Due to the presence of uncorrelated noise, the condition in Eq.(??) not longer provides
radiation-pressure noise cancelation. By optimizing the quadrature angle (, for the tuned
interferometer with phase squeezed light injection, one can find the optimal sensitivity, in
contrast to Eq. (9), reads:

2r —2r h2
ceI(Q) e —1—(—,} SqL (15)

S’”‘(Q)_[ T KW | 2

with e =n/(1 —n) = 7.

Comparison.—Here we make a comparison between these two schemes in terms of the sig-
nificance of the optical loss. We only focus at the low-frequency part of the sensitivity,
as mentioned earlier that the optical loss of the filter cavity is only important at low fre-
quencies. Therefore, we just need to compare the numerical factor of the radiation-pressure
noise: (1 —n)e 2" + n for the frequency-dependent squeezing scheme and € e* /(e + €2") for
the variational-readout scheme. In Fig.7, we plot these two factors as a function of the
round-trip loss of the cavity. As we see, the variational-readout scheme is more susceptible
to the optical loss, but it has a better performance compared with the frequency-dependent
squeezing if the optical loss can be low.

2.4 Long signal-recycling cavity

In this subsection, we will discuss the long signal-recycling cavity scheme. As shown in
Fig. 8, the signal recycling mirror is moved further away from the beam splitter compared
with the AdvLIGO configuration. In the usual case when the beam splitter and the signal-
recycling mirror are close to each other, the signal-recycling cavity is relatively short (order
of 10 meters) and one can ignore the phase shift difference between different sidebands with
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Figure 7: Plot showing the loss factor as a function of round-trip loss of the cavity for two schemes
(the smaller is the loss factor, the better is the performance). The total optical loss 7 is equal to
the round-trip loss multiplied by the number of bounce. Here we have assumed a finesse to be
around 1.5 x 10%.

|
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[ B | | noise function P recycling Output

closed portﬂ H

SRM

O

Figure 8: Schematics showing the long signal-recycling cavity scheme (left) and its associated flow
chart (right). The signal-recycling mirror coherently reflects back the signal, forming a feedback
loop as indicated in the flow chart.

frequency ranging from 10 - 10000 Hz, namely QL /c ~ 0 with Ly, being the signal-recycling
cavity length. We can therefore treat the signal-recycling cavity as an effective compound
mirror with complex transmissivity and reflectivity, which is the approach applied in Ref. [11].
With a long signal-recycling cavity, however, QL /c is not negligible and different sidebands
pick up different phase shifts. Specifically, the transfer function matrix for the quadratures
due to the free propagation in the signal-recycling cavity is given by:

ior. | cos ATy, —sin ATy,

ST . 16

€ sin A1, cos ATy (16)

with 75, = Lg/c and A the detune frequency of the signal-recycling cavity. After taking

into account this fact, one can then apply the standard procedure to derive the input-output

relation for this scheme. The final expression is quite lengthy and not illuminating, and we
will not show it here. We will evaluate its noise spectrum numerically.
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2.5 Speed meter

The motivation for speed meter arises from the perspective of viewing the gravitational-
wave detector as a quantum measurement device. Normally, we measure the test mass
position at different times to infer the gravitational-wave signal. However, position is not
a conserved dynamical quantity of the test mass which is treated as a free mass in the
theoretical model. According to the quantum measurement theory [12], such a measurement
process will inevitably introduce additional back action and perturb the test mass motion.
In the context here, the back action is the radiation-pressure noise. In order to evade the
back action, one needs to measure the conserved dynamical quantity of the test mass—the
momentum or the energy. Since the momentum is proportional to the speed, that is why
speed meter is ideal for measuring gravitational wave with no radiation-pressure noise [5].

l

GWs
— Testmass
- —_—
H input Optical transfer sloshing
1 u H noise function W cavity Output
i
closed port D rul
sloshing cavity
O

Figure 9: Schematics showing the speed-meter configuration (left) and its flow chart (right).

There are several speed-meter configurations, e.g., the Sagnac interferometer [8] and a recent
proposed scheme by using different polarizations[13]. In Fig.9, we show one particular
variant of them, which is proposed in Ref.[7]. It uses a sloshing cavity. We can gain a
qualitative understanding of how such a scheme allows us to measure the speed of the test
mass. Basically, the information of test mass position at an early moment is stored in the
sloshing cavity, and it coherently superposes (but with a minus sign due to the phase shift
in the tuned cavity) with the output of the interferometer which contains the current test
mass position. The sloshing happens at a frequency that is comparable to the detection
frequency, and the superposed output is, therefore, equal to the derivative of the test-mass
position, i.e., the speed.

The detail of this scheme has been presented in Ref.[7], in particular the input-output
relation which will be used in the numerical optimization. At this moment, we just show the
resulting quantum-noise spectrum for this scheme:

Sn(@) = —-Tsa an)

T Kan(Q) 2

with 16 p
Ko () = T (18)

" meL[(@ = B ]
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Figure 10: Plot showing the noise spectrum for the speed-meter configuration for two different
optical powers.

There is no radiation-pressure noise at low frequencies, and therefore the sensitivity is only
limited by the amount of optical power that we have. This noise spectrum is shown in
Fig.10. The low-frequency spectrum has the same slope as the standard quantum limit,
which is a unique feature of speed meter. When the optical is high enough, we can surpass
the standard quantum limit.

One important characteristic frequency for this type of speed meter is the sloshing frequency

ws, and it is defined as
c T,
= — _— 1
wi=o\ T (19)

where T is the power transmissivity for the front mirror of the sloshing cavity and L is the
cavity length. To achieve a speed response in the detection band, this sloshing frequency
needs to be around 100Hz. For a 4km arm cavity—/L = 4000 and 100m sloshing cavity—
L, = 100, it requires the transmittance of the sloshing mirror to be

T, ~ 30 ppm. (20)

This puts a rather tight constraint on the optical loss of the sloshing cavity. To release such a
constraint on the optical loss, we can use the fact that w, only depends on the ratio between
the transmissivity of the sloshing mirror and the cavity length and we can therefore increase
the cavity length.

2.6 Multiple Carrier Fields

In this section, we will introduce the multiple carrier light scheme, and in particular, we
will focus on the dual-carrier case as shown schematically in Fig.11. The additional carrier
light provides us another readout channel. As these two carriers can have a very large
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Figure 11: Schematics showing the dual-carrier scheme (left) and its flow chart (right).

frequency separation, we can in principle design the optics in such a way that they have
different optical power and see different detune and bandwidth. In addition, they can be
independently measured at the output. This allows us to gain a lot flexibilities and almost
provides multiple interferometers but within the same set of optics.

These two optical fields are not completely independent, and they are coupled to each other
as both act on the test masses and sense the test-mass motion (shown pictorially by the flow
chart in Fig. 11). More explicitly, we can look at the input-output relation for this scheme
in the simple case with both fields are tuned:

A A
i 10 o o][a" 0
o0 || ka1 VKK o | | aY || vk | o
bgB) 0 0 1 0 agB) 0 hsqr’
bgB) —/KiKp 0 —Kxg 1 agB) 2K B
where we have ignored uninteresting phase factor ¢ and we have introduced
(A) (A) (B) (B)
16 P 16 P
Ka= o 74 Kp = <o 18 (22)

 mLe2(02 +43)’  mLe2(Q2 +43)

The term —/K4Kp in the transfer function matrix indicates the coupling between these
two optical fields, and it comes from the fact that the radiation-pressure noise from the first
one is sensed by the second one and vise versa.

As mentioned earlier, because the frequency separation between them is much lager than

t%le) detect(io)n band, these two fields can be measured independently and give two outputs
b and bP):
¢ ¢

b = bV sin ¢4 + b5V cos Ca, b = b sin C + b5 cos (. (23)
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To achieve the optimal sensitivity, we need to combine them with the optimal filters C4(£2)
and Cp(2), obtaining
o A B
D) = Ca()BY (Q) + Cr()p (92). (24)

In [9], the authors have shown the procedure for obtaining the optimal sensitivity and the
associated optimal filters in the general case with multiple carriers. Here we plot the resulting
noise spectrum. Given the input-output relation: b = Ma + vh—a simplified vector form
of Eq. (21), the noise spectrum that gives the optimal sensitivity is:

-1
Su(Q) = [UTMLd(MhdM MTM;d)—thdv] , (25)

where we have defined:

My, = [sinCA cos Ca 0 0 } (26)

0 0 sin(p cos(p

This result is used for our numerical optimization in Sec. 3.

2.7 Local Readout

l

GWs
End test mass
- —
ﬂ | | Input test mass o
———
— input Optical transfer [
EN D noise function — Output
N

Figure 12: Diagram of the local-readout topology (left) and the resulting feedback loops (right).

In this subsection, we will discuss the local-readout scheme, as shown schematically in Fig. 12.
It is actually a special case of the dual-carrier scheme mentioned in the pervious subsection—
the second carrier light is only resonant in the power-recycling cavity and is anti-resonant in
arm cavity (barely enters the arm cavity). Why we single this scheme out of the general dual-
carrier scheme and give it a special name is more or less due to a historic reason. This scheme
was first proposed in Ref. [10] and was motivated by trying to enhance the low-frequency
sensitivity of a detuned signal-recycling interferometer, which is not as good as the tuned
signal-recycling due to the optical-spring effect. The name—“local readout” —originates from
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the fact that the second carrier only measures the motion of the input test mass (ITM) which
is local motion in the proper frame of the beam splitter and does not contain gravitational-
wave signal. One might ask: “how can we recover the detector sensitivity if the second
carrier measures something that does not contain the signal?” Interestingly, even though no
signal is measured by the second carrier, it measures the radiation-pressure noise of I'TM
introduced by the first carrier which has a much higher optical power due to the amplification
of the arm cavity, as shown schematically by the flow chart of Fig.12. By combining the
outputs of two carriers optimally, we can cancel some part of the radiation-pressure noise
and enhance the sensitivity—the local-readout scheme can therefore be viewed as a noise-
cancelation scheme. The cancelation efficiency is only limited by the radiation-pressure noise
of the second carrier.

To evaluate the sensitivity for this scheme rigorously, one has to treat the input test mass
(ITM) and end test mass (ETM) individually, instead of assuming a single reduced mass as
we did for those schemes mentioned earlier. One can refer to [10] for details.
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3 Numerical Optimization

In this section, we will show the detail of numerical optimizing sensitivities of those schemes
introduced in the previous section.

3.1 Including the classical noises

High thermal noise model Low thermal noise model
[ Seismic noise ’ [ Seismic noise
10~ 2 Gravity Gradient (10 x reduction) 102k Gravity gradient (10 x reduction)
Suspension thermal (120K Si blade & fibre) Suspension thermal (20K Si blade & fibre)
Coating Brownian (2.5 x reduction) Coating rownian (7 x reduction)
a'107 21 10-221
‘N
=
g
3
= 10—23 L 10—23
9}
10724+ 10~

10° 10° 10! 10° 10
Frequency [Hz] Frequency [Hz]

10!

Figure 13: Plot showing the high classical noise model (left) and the low classical noise model
(right).

For optimization, we also take into account the various classical noises (also called the clas-
sical noises distinguished from the quantum noise). The dominant classical noises in the
detection frequency band are (i) the seismic noise arising from the ground motion; (ii) the
gravity gradient noise due to the Newtonian gravity from inhomogeneous distribution of
matter around the test mass; (iii) the suspension thermal noise originating from the random
thermal fluctuation of the suspension wire; (iv) the coating thermal noise due to thermal
fluctuation of the coating. In order for the advanced schemes to have any meaningful im-
provements over AdvLIGO, those classical noises have to be lower than the design specifi-
cation of AdvLIGO. We assume two noise models: (i) the high classical noise model-—10 x
reduction of the gravity gradient noise, cryogenic 120K Si suspension, and 2.5 x reduction
(in strain) of the coating thermal noise; (ii) the low classical noise model-—10 x reduction
of the gravity gradient noise, cryogenic 20K Si suspension, and 7 x reduction of the coating
thermal noise. The corresponding noise spectrum for these two models are shown in Fig. 13.
The code for generating these curves is GWINC.

3.2 Cost function

The final optimization result critically depends on the cost function. In the literature,
optimizations have been carried out by using a cost function that is source-oriented—trying
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to maximize the signal-to-noise ratio for particular astrophysical sources. Here we apply
a rather different cost function, as shown in Eq. (1), that tries to maximize the broadband
improvement over AdvLIGO. This follows the same philosophy of designing AdvLIGO which
aims at a factor of 10 broadband improvement over initial LIGO.

3.3 Optimization results

When making optimization, we separate the configurations into two groups: (i) the frequency-
dependent squeezing (input filtering) group, in which we consider adding input filter cavities
to those configurations mentioned in Sec.2; (ii) the variational-readout (output filtering)
group, in which we consider adding output filter cavities. Note that for those multiple-
carrier schemes, e.g., the local-readout scheme, the number of filter cavities is equal to the
number of carrier light, and the number of optimization parameters is therefore increased
proportionally. In real implementation, one might specifically design one filter cavity that is
able to simultaneously filter several carrier light with different filtering parameters, and we
can then reduce the number of optics.

The optimization result for the input-filtering group has been shown at the very beginning,
i.e., in Fig. 1. Notice that, in the plot, we did not show the dual-carrier scheme with both
carrier light resonant in the arm cavity, and only show the local-readout scheme in which
only one carrier is resonant in the arm cavity. This is due to the interesting fact that when
we fix the total power of the two carriers, the optimal power for one carrier turns out to be
zero—this simply recovers the single-carrier case. Admittedly, this is due to the specific cost
function and the thermal-noise model that we have chosen. In general, it is not clear that
this would be optimal.

The optimization result for the output-filtering group has been shown in Fig. 2. It is clear that
the general features are identical to the input-filtering one. The only prominent difference
comes from the low-frequency sensitivities. This is attributable to the susceptibility to
loss of the variational readout scheme, as mentioned early in Sec.2.3. Again, we can see
that the speed meter and the local-readout scheme allows a significant improvement at low
frequencies.

In Appendix A, we have listed the optimal values for the different parameters.

To manifest the quantum noise contribution to the total noise spectrum, we show only the
quantum noise spectrum in Fig. 14 and Fig. 15. It is clear that only at low frequencies do
these schemes differ from each other distinctively. The low-frequency classical thermal noise,
to great extents, smears off the difference. Therefore, unless significant changes can be made
to reduce the low-frequency thermal noise, a sound reasoning—for choosing one advanced
configuration over the other as a candidate for upgrade—should be based on the additional
complexity involved, as different schemes do not perform drastically different after taking
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Figure 14: Plot showing the corresponding quantum noise contribution to the noise spectrum

shown in Fig. 1.

Output filtering with high thermal noise
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Figure 15: Plot showing the corresponding quantum noise contribution to the noise spectrum

shown in Fig. 2.

into account the classical thermal noise.
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Input —)T)_ TQ(Q) - )_eiQTaTm_ GWs

Photo- :
detector U T(2) —A(—e QTarmf—

Test mass

Figure 16: Schematics illustrating the generic four-port filter that can be applied in between the
test mass and the photodetector. Here we are considering one sideband frequency Q; 7arm = L/c is
the time delay by the interferometer arm.

4 Future study

In the current study, we only cover a few topologies among those that have been proposed
in the literature. To proceed, one approach is to further expand the list of configurations,
but this is a rather daunting task given the huge number of possible combinations. An
alternative that we shall apply in the future is viewing optical and mechanical components
as linear filters, and seeking the answer to the following question: “What is the optimal filter
that we should place in between the test mass and the photodetector such that the specific
cost function is minimized or the signal-to-noise ratio is maximized if we know features of
the signal spectrum?” Similar questions have been frequently asked in designs of electronic
circuits. The only subtlety is that we are dealing with quantum fluctuation — there are
certain constrains on the filters that one can apply in order not to destroy the quantum
coherence, especially in the case of amplitude filtering.

Being concrete, let us look at the structure of the detection process more carefully. The
mirror-endowed test mass, which contains the GW signal, turns ingoing optical field into
outgoing field which in turn is detected by the photodetector. In between the test mass and
the photodetector, the most generic filter we can apply is a four-port filter, as illustrated in
Fig. 16. The transfer functions of such a four-port filter — T,,(2), Tp(Q2), R.(2) and R,(Q)*
— are not independent and need to satisfy the Stokes relation due to energy conservation
and time-reversal symmetry. Specifically, if we separate their amplitude and phase shown as
follows:

T.(Q) = |T(Q)e" ), T(Q) = |Tu(2)|e'*@,
R,(Q) = ‘RQ(Q)‘ewa(Q), Ry(Q) = ‘Rb(Q)|eW’7(Q), (27)

the Stokes relation dictates the following constraints:

T =T, R = [B(Q)],  [T(Q] +[RQ)* =1,
g1 _ i@ iea@+ipn() _ _ 26u() (28)

In order to obtain the optimal four-port filter given a certain cost function, we can either
(i) parameterize those transfer functions in terms of zeros and poles and optimize them

IFor simplicity, here we use the sideband picture instead of quadrature, otherwise these transfer functions
will be transfer matrices.
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Figure 17: Schematics illustrating the scheme that we will numerically optimize (top). Each of
these transfer functions corresponds to a cascade of (optomechanical) cavities in series (bottom).

— this requires mapping between zeros and poles to the physical setup, which is highly
nontrivial, or (ii) insert a number of cavities and optimize the parameters — this is more
transparent in terms of finding out the physical scheme. As a first attack, we will apply the
latter approach, as illustrated in Fig. 17. Not only do we consider input filtering 77({2) and
output filtering 75(2), we also include the intra-cavity filtering 75(€2) and T (€2) — the filters
sit inside the signal-recycling cavity (the sloshing cavity in the speed-meter configuration is
one special example of the intra-cavity filtering). These filters are different cascades of
cavities that can either have fixed mirrors (the passive cavity) or a movable end mirror (the
optomechanical cavity). The usual passive optical cavity only allows us to create a frequency-
dependent phase shift on the sidebands, or equivalently, frequency-dependent rotation of the
amplitude and phase quadratures. By adding control light and allowing the end mirror
to be movable, we can also create frequency-dependent amplitude modulation, similar to
the ponderomotive squeezer proposed in Ref.[14]. Recently such active optomechanical
cavity has triggered interesting discussion among the gravitational-wave community, as it
allows us to filter the audio-band signal with table-top setups[15]. However, to realize it
experimentally, the mirror thermal noise needs to be low enough such that the quantum
coherence shall not be destroyed. This implies that cryogenic temperature is necessary
which is rather challenging to realize. In the numerical optimization, we will study influence
of the thermal noise in the optomechanical cavity on the sensitivity.
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5 Conclusions

We have optimized the quantum noise spectrum for a few different configurations that are
candidates for the 3rd generation LIGO. In particular, we have considered the frequency
dependent squeezing (input filtering) and variational readout (output filtering); introducing
additional filter cavities either at the input or the output ports. Limited by thermal noise
at low frequencies, the difference among these configurations is not very prominent. This
leads us to the conclusion that adding one input filter cavity to AdvLIGO seems to be the
most feasible approach for upgrading in the near term, due to its simplicity compared with
other schemes. If the low-frequency thermal noise can be reduced in the future, the speed
meter and the multiple-carrier scheme can provide significant low-frequency enhancement of
the sensitivity. This extra enhancement will, for some low enough thermal noise, be enough
to compensate for their extra complexity.
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A Optimal Parameters

Optimal parameters for the configurations with frequency dependent squeeze angle in the
high thermal noise model are listed in Table 1. The nominal parameters common among
different configurations are: m = 50 kg, Tpry = 0.03, Tiry = 0.01 and maximal input power
is equal to 125 W, which corresponds to around 1 MW circulating in the arm cavity. For the
speed meter, the length of the sloshing cavity is 4 km and the power transmittance for the
sloshing mirror is equal to 0.001. Note that all the configurations are tuned, as a broadband
sensitivity is preferred, given the particular cost function that we have chosen.

Configurations Py (W) | Ty | Ty (ppm) | Ay (Hz) | figure of merit
Signal-recycling 1250 | 0.11 | 2453 | —284 9279.2
Long signal recycling 125.0 0.17 307.0 —35.8 21427
Speed meter 125.0 0.04 317.7 —18.5 2324.8
Local readout (carrier A) | 125.0 0.12 171.0 —19.0 2378.4
Local readout (carrier B) | 120.2 | 0.0003 159.0 —13.6 -

Table 1: Optimal parameters for different configurations with frequency-dependent squeezing in
the high thermal noise model. Here P, is the input optical power, Ty, is the power transmittance of
the signal recycling mirror, T’ is the power transmittance for the front mirror of the filter cavity, A
is the detune frequency of the filter cavity, and figure of merit is equal to 1000/C with C the value
of the cost function defined in Eq. 1—the larger the figure of merit is, the better the broadband
sensitivity is.

The optimal parameters for the high thermal noise model for different configurations with
frequency dependent (variational) readout quadrature are listed in the Table 2. The common
parameters are the same as those for the frequency dependent squeezing.

Configurations Py (W) | Ty | Ty (ppm) | Af (Hz) | figure of merit
Signal-recycling 125.0 0.08 207.7 —22.7 2114.5
Long signal recycling 125.0 | 0.10 234.5 —25.6 1970.5
Speed meter 125.0 0.27 349.2 —17.9 2301.3
Local readout (carrier A) | 125.0 | 0.15 892.8 —22.2 2262.8
Local readout (carrier B) | 26.4 | 0.001 907.0 —10.6 -

Table 2: Optimal parameters for different configurations with variational readout in the high
thermal noise model.

The optimal parameters for different configurations with frequency dependent squeezing in
the low thermal noise model are listed in the Table 3. The common parameters for different
configurations are: m = 150kg, Tpry = 0.03, Ti7m = 0.01 and maximal input power is equal
to 500 W, which corresponds to approximately 3 MW intra cavity power.

The optimal parameters for the low-noise model for different configurations with frequency
dependent readout quadrature are listed in the Table 4.
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Configurations Py (W) | Ty | Ty (ppm) | Ay (Hz) | figure of merit
Signal-recycling 500.0 0.06 185.1 —21.8 2839.5
Long signal recycling 500.0 0.11 264.3 —30.6 2672.8
Speed meter 500.0 0.23 364.9 —21.3 2953.9
Local readout (carrier A) | 500.0 0.13 260.1 —30.3 3007.9
Local readout (carrier B) | 200.0 | 0.0005 1000 10.2 -

Table 3: Optimal parameters for different configurations with frequency-dependent squeezing in
the low thermal noise model.

Configurations Py (W) | Ty | Ty (ppm) | Af (Hz) | figure of merit
Signal-recycling 500.0 | 0.09 246.2 —27.6 2692.7
Long signal recycling 500.0 | 0.15 331.0 —-37.0 2515.3
Speed meter 500.0 0.23 364.9 —21.3 2953.9
Local readout (carrier A) | 317.6 | 0.12 237.4 —23.3 2822.6
Local readout (carrier B) | 10.0 | 0.001 184.6 —15.3 -

Table 4: Optimal parameters for different configurations with frequency dependent readout
quadrature in the low thermal noise model.

B Basics of Quantum Noise

In this section, we will briefly review the basics for evaluating quantum noise in an interfer-
ometric gravitational-wave detection by using the input-output formalism. Additionally, we
will discuss the principle behind the use of filter cavities for reducing the quantum noise. For
more detail, one can refer to the review article by Danilishin and Khalili in Living Reviews
in Relativity [?].

B.1 Input-output formalism

GWs

Test mass

Input Optical transfer
[ 1 | Z | | noise function ~ Output
_

Vacuum input noise

N

Figure 18: Schematics showing the configuration of an interferometric gravitational-wave (GW)
detector (left) and the flow chart denoting the input and output (right).
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When analyzing the quantum noise of an interferometric gravitational-wave detector, shown
schematically in Fig. 18, the usual applied assumption is the linearity and stationarity of
the system; a frequency-domain analysis can therefore be applied with the noise and signal
propagating through the system via various linear transfer functions. There are two types
of noise: (i) the shot noise, also called the readout noise, is the one that comes from the
measurement device itself—in the context here, arising from the phase fluctuation of the
light, and it usually decreases as we increase the measurement strength (the optical power).
Its propagation is denoted by the lower path of the flow chart in Fig. 18 (ii) the back-action
noise, also called the radiation-pressure noise here, is the one that disturbs the signal due to
noise in the device, and it usually increases when the measurement strength increases. Its
propagation is shown by the upper path of the flow chart in Fig. 18. In general, these two
types of noise are mixed with each other. To evaluate detector sensitivity, the key is then to
analyze how the noise and signal propagates and to identify those transfer functions, which
give the input-output relation.

For interferometric gravitational-wave detectors, the photocurrent output /., that we mea-
sure is linearly proportional to a certain optical quadrature—a linear combination of the
amplitude quadrature b; and phase quadrature by?:

Tout (£2) o< by (€2) sin ¢ + bo(2) cos ¢, (29)

where we usually call ¢ the readout quadrature angle and it depends on the phase of the
local oscillator (the optical field that beats with the interferometer output). In terms of
amplitude and phase quadratures, the input-output relation can generally be put into the
following form:

o ][ e [a@ ]+ [ e oo

Here 2 = 27 f is the angular frequency; b;(a1) and by(az) are the output (input) amplitude
quadrature and phase quadrature, respectively; M;; are the elements of the transfer matrix,
which depends on the specific optical configuration; v; quantify the detector response to the
gravitational-wave strain h. Different configurations will have different transfer matrices and
response functions to the gravitational-wave signal—thus different input-output relations. In
the following sections, we will see an interesting zoo of them. Once we know the input-output
relation and the readout quadrature angle (, it then becomes rather straightforward to eval-
uate the detector sensitivity which is quantified by the noise spectral density * (normalized
with respect to the signal):

(sin¢ cos ()M S M (sin ¢ cos ()T
(sin¢ cos C)vvf(sin¢ cos ()T

where S is the noise spectral-density matrix for the input amplitude quadrature a; and the
phase quadrature ag—(ai(Q)a;r-(Q’»sym = 715,;(Q)0(2— Q) (i,7 = 1,2), and in particular
for non-squeezed light (vacuum) input, its elements are Sj; = S12 = 1 and Sjp = So; = 0

(uncorrelated amplitude and phase noise).

Sh(§2) =

(31)

2These quadratures are related to the upper sideband b(€2) and lower sideband b(—$) via by = [b(Q) +
B O)]/VZ and by = () — b (~)}/(iv2).

3The single-sided spectral density S4(Q) for any quantity A is defined through [cf. Eq. (22) in Ref. [3]]:
(A(DAT(Y))sym = 2(A(Q)AT(Q) + AT(Q)A(Q)) = 12m54(2)5(2 — Q).
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Figure 19: The quantum-noise spectral density Sfll/ % for a tuned interferometer given the same
specification of AdvLIGO—m = 40kg and P, = 800kW.

Take a tuned interferometer (a close model for the tuned operational mode of AdvLIGO)
for instance, as shown in Ref. [3], the input-output relation is given by:

{28 1 - { k() (” {Z;Egi } +ei¢[ /R } ZSL) 3

We have introduced:

B _ 27 L. _ 8h
¢ = arctan(Q)/v), K(Q) = P2+ 2)’ hsqu = 1/ Y (33)

with 7 the arm cavity bandwidth, L the length of arm cavity, parameter ¢, = 8woP./(mLc),
wy the laser frequency, and P, the intra-cavity power. If we measure the phase quadrature
by choosing the quadrature angle ( = 0, the corresponding noise spectral density will be:

1 ] hé 8
Sp(Q) = {IC(Q) 4 m] % > h3qL = — e

(34)
The first term, proportional to the optical power (K o P.), is the radiation-pressure noise
and comes from the fluctuation of the input amplitude quadrature a;; the second term,
inversely proportional to the optical power, is the shot noise and comes from the fluctuation
of the input phase quadrature as. In this simple scenario, the sensitivity is limited by the
standard quantum limit (SQL)—the benchmark for the strength of quantum noise [12]. In
Fig. 19, we plot S ,1/ 2(Q)—the radiation-pressure noise dominates at low frequencies and the
shot noise dominates at high frequencies.
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C Optical loss and optimal filter cavity length

It is essential to gain a full understanding—through experiments and numerical modelings—
of how the optical loss scales as the cavity length, and this will determine the cavity length
for achieving the optimal sensitivity. Here we will provide a qualitative estimate of the
dependence of sensitivity on the optical loss and the cavity length, the connection between
which is left for further investigation.

Given a filter cavity, the quantum coherence, or equivalently the detector sensitivity, is
affected by the total loss of the cavity £ which is equal to the round-trip loss € multiplied by
the number of bounce N ~ 2/T; with T being the transmittance of the cavity input mirror
(assuming a totally reflected end mirror), namely

£ ~ 2¢/T. (35)

In addition, since the filter cavity bandwidth ~; needs to be comparable to the detection
bandwidth 7 of the interferometer in order to reduce the quantum noise, we require vy =
cTo/(4L ) =~ ~, where Ly is the filter cavity length. It follows that

Ty ~ 4yL;/c. (36)

Therefore, the total optical loss is given by:

Ce€ €
a [ES—
2’7Lf Lf’

~
~

(37)

which means that the total optical loss depends on the ratio between the round-trip loss and
the filter cavity length. If the loss is independent of the cavity length—usually not the case,
a long filter cavity can relax the requirement on the round-trip optical loss. In general, to
determine the optimal cavity length, we have to work out the dependence of the round-trip
optical loss on the cavity length.
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