
Sine Wave Generation
using the
Goertzel Algorithm
T080112-00

Daniel Sigg
May 1st, 2008

Discrete Fourier Transform
The Goertzel algorithm is the implementation of a discrete Fourier transform as a inifinite-impulse response filter. Let's consider

(1)HHzL =
1

1 - W z-1
with W = e2 p i f ë fN and fN the Nyquist frequency.

The time domain representation of this filter is then given by

(2)yHnL = xHnL + W yHn - 1L = ‚
k=-¶

n

Wn-k xHkL = Wn ‚
k=-¶

n

W -k xHkL

If we set x HkL = 0 for all k < 0 and k = N , we get

(3)yHNL = W N ‚
k=0

N-1

W -k xHkL

which corresponds to the discrete Fourier term at frequency f with an additional scale factor W N . If we want to comnpute the
standard discrete Fourier transform, the above expression has to be evaluate for all W of the form Wk = e2 p i kêN with
k = 0, 1, ..., N - 1. In this case we get W N = 1. By setting up filters for all Wk we will get all the terms of a discrete Fourirer
transform in an albeit inefficiecient fashion. However, if we are only interested in a single or a few terms, this algorithm is more
efficient than computing a full FFT.

Going back to equation (1) this is strictly speaking not an IIR filter, because it consists of a single complex pole. We can fix this
by multiplying by I1 - W z-1M both in the denominator and the numerator

(4)HHzL =
1 - W z-1

1 - 2 cosH2 p f ê fN L z-1 + z-2
.

Now we have a normal two-pole filter followd by a complex zero. In the time domain this corresponds to

(5)
vHnL = 2 cosH2 p f ê fN L vHn - 1L - vHn - 2L + xHnL and
yHnL = vHnL - W vHn - 1L.

The key insighth is that the first line corresponds to a second-order filter section with fixed real coeffiecients. However, the
second line which involves a complex multiplication only needs to be computed once at the very end for yHNL.

The second line of equation (5) employs a complex coffient because we are interested in the complex Fourier coeffcient. If we
were to look for the real part, the imaginary part or the amplitude along a single direction y in the complex plane only, we can
rewrite equation (5) in the usual direct form II structure

(6)
vHnL = xHnL + a1 vHn - 1L + a2 vHn - 2L
yHnL = b0 vHnL + b1 v Hn - 1L.

Using

(7)Hsos =
1 a1 a2

b0 b1 b2

we get

(8)HsosHReL =
1 2 cos H2 p f ê fN L -1
1 -cosH2 p f ê fN L 0

,

(9)HsosHImL =
1 2 cos H2 p f ê fN L -1
0 sin H2 p f ê fN L 0

and

(10)HsosHyL =
1 2 cos H2 p f ê fN L -1

cosHyL -cosH2 p f ê fN + yL 0
.

Two things are noteworthy. First, in implementations of second-order filter sections the term b0 is often pulled out as an overall
gain factor by setting it to 1. This is not possible here when we are looking for the imaginary part. We can avoid this by using

(11)HsosHImL =
1 2 cos H2 p f ê fN L -1

sin H2 p f ê fN L 0 0

instead, and looking at yHn - 1L rather than yHnL. Secondly, one might also be interested in the absolute value or the phase angle.
This is straight forward to compute but will no longer constitute a linear filter. For example,

(12)
rHnL = vHn - 1L2 - 2 cosH2 p f ê fN L vHn - 1L vHn - 2L + vHn - 2L2 and

jHnL = arctan
sinH2 p f ê fN L vHn - 2L

vHn - 1L - cosH2 p f ê fN L vHn - 2L

yield the absolute value and complex phase angle, respectively. Of course, the arctan function needs to take into account in which
quadrant the complex number is in.

Sine Wave Generation
The Goertzel algorithm can also be used to generate a sine wave. Consider the input series xH0L = 1 and xHkL = 0 for all k ∫ 0, we
can see that equation (2) becomes simply

(13)yHnL = Wn = e2 p i n f ë fN

Taking the real part we get a pure cosine function, whereas the imaginary part yields the corresponding sine function.

2 Goertzel.nb

One problem which will occure for any real world implementation is that numerical round-off errors can accumulate over time. If
the desired sine wave has an integer number of cycles within M samples, the filter can simply be restarted every M samples. This
avoids the accumulation of numerical errors and the algorithm will give predictable results for any length of running.

If we are interested in a sine wave only, we can used HsosHImL from equation (11) and pull the factor b0 into the input series. We
then get yHnL = vHnL and the filter reduces to a complex pole only. To start the sine wave at zero, we restart the algorithm at
n = l M with l = 0, 1, 2, ..., we set the yHl M L = 0 and use the following input series

(14)xHkL = ‚
l=-¶

¶

dk,l M +1 sinH2 p f ê fN L

with d the Kronecker delta. This later algorithm has the advantage that the vHnL are always contained within -1 and +1. It is
therefore suitable for implementations which use fixed point number arithmetic. For a fixed point implementation of a cosine
function we need a different approach. Consider the trigonometric series sinHa0 + n aL and cosHa0 + n aL with n = 0, 1, ..., N - 1.
We make the ansatz

(15)
ysHnL = sin Ha0 + n aL = x sinHa0 + Hn - 2L aL + y sinHa0 + Hn - 1L aL
ycHnL = cos Ha0 + n aL = p cosHa0 + Hn - 2L aL + q cosHa0 + Hn - 1L aL

Using the trigonometric formulae for expanding sine and cosine of sums we find

(16)x = p = -1 and y = q = 2 cosHaL

Again, this corresponds to a simple second order filter section with a complex pole pair. The trick is to load the correct initializa-
tion coefficients into yH-1L and yH-2L. However, this is fairly straight forward

(17)
ysH-1L = sin Ha0 - aL and ysH-2L = sin Ha0 - 2 aL,
ycH-1L = cos Ha0 - aL and ycH-2L = cos Ha0 - 2 aL.

Of course, if both sine and cosine functions are required the CORDIC (coordinate rotational digital computer) algorithm could be
used as well. The CORDIC algorithm is not of the form of our second-order filter from above, but can be looked at as a two-input
two-output IIR filter. Let's look at the following trigonometric equation

(18)yHnL =
cos Ha0 + n aL
sin Ha0 + n aL =

cosHaL -sinHaL
sinHaL cosHaL yHn - 1L

Initializing it with

(19)yH-1L =
cos Ha0 - aL
sin Ha0 - aL

will lead to a simultanous generation of sine and cosine functions through coordinate rotation. This algorithm can be expanded to
include an input series

(20)yHnL =
cosHaL -sinHaL
sinHaL cosHaL yHn - 1L + xHnL.

This later algorithm can be initialize every M samples by setting all history values to zero. The following time series can be fed
into the algorithm to generate cosine and sine wave outputs of amplitude A

(21)xHkL = A ‚
l=-¶

¶ dk,l M

0
.

Goertzel.nb 3

Demodulation
Demodulating a signal with a sine or cosine function and then taking an average is very similar in concept to computing a
discrete Fourier coefficient. The descrite Fourier transform from above will compute the cosine and sine terms on time series of
fixed length. By virtue of summing over all samples an average is formed. The disadvantage of this algorithm is that it needs to
be restarted for every new time series. We prefer to have an algoithm which works continuously. We can write a demodulation as

(22)uHkL = W -k xHkL.
Then, we apply a single pole filter with exponential decay

(23)yHnL = r yHn - 1L + H1 - rL uHnL = H1 - rL ‚
k=-¶

n

rn-k uHkL.

Combining the two equations yields

(24)yHnL = W -nH1 - rL ‚
k=-¶

n

r n-k Wn-k xHkL.

Unfortunately, this algorithm generates an output series which is not really demodulated. An adidional rotation by Wn would be
required. If we also require a decimation by M and if we can adjust the demodulation frequency so that WM = 1, then the series
yHk M L will be the demodulated and filterd complex output. Only a single pole filter can be implemented in a straight forward
manner, so.

A more flexible approach is to used a cosine/sine generator and multiple the input time series by both of them to form a in-phase
and a quad-phase signal. Then, filters of any order can be applied to each phase independently. These two time series can be
thought of as a complex time series. They can easily be combined to adjust the demodulation phase, or to compute the absolute
value and phase angle.

Equations
GoertzelBasic[l, w] takes a time series l and applies the basic Gortzel algorithm without the complex zero. It can be used to
generate a sine wave. w denotes the angular frequency 2 p f ê fN .

GoertzelBasic@l_List, w_D := Block@
8old = 0, oldold = 0, i, new, res = 8<<,
For@i = 1, i <= Length@lD, ++i,

new = 2 Cos@wD old − oldold + lPiT;
AppendTo@res, newD;
oldold = old;
old = new;
D;
res
D

4 Goertzel.nb

Goertzel[l, w] takes a time series l and applies the Gortzel algorithm. Its output is complex and it can be used to compute a
discrete Fourier coefficent. w denotes the angular frequency 2 p f ê fN .
Goertzel[l, w, r] takes a time series l and applies the Gortzel algorithm incuding an additional pole. Its output is complex and it
can be used to form a demodulated filter signal. w denotes the angular frequency 2 p f ê fN . r denotes the filter coefficient of the
averaging pole.

Goertzel@l_List, w_D := BlockA
8old = 0, oldold = 0, i, new, res = 8<<,
ForAi = 1, i <= Length@lD, ++i,

new = 2 Cos@wD old − oldold + lPiT;
AppendToAres, new − Æ−Ç w oldE;

oldold = old;
old = new;
E;

res
E

Goertzel@l_List, w_, r_D := BlockA
8old = 0, oldold = 0, i, new, res = 8<<,
ForAi = 1, i <= Length@lD, ++i,

new = 2 r Cos@wD old − r2 oldold + lPiT;
AppendToAres, H1 − rL Inew − r Æ−Ç w oldME;

oldold = old;
old = new;
E;

res
E

Cordic[l, w] takes a 2-dimensional time series and applies the cordic algorithm using a simple rotation with each step. w denotes
the angular frequency 2 p f ê fN . The output is a two-dimensional series which can be used to generate a cosine and sine wave
simultanously.

In[770]:= Cordic@l_List, w_D := BlockB
8old = 80, 0<, i, new, res = 8<<,

ForBi = 1, i <= Length@lD, ++i,

new =
Cos@wD −Sin@wD
Sin@wD Cos@wD .old + lPiT;

AppendTo@res, newD;
old = new;

F;

res

F

Goertzel.nb 5

Tests
In[777]:= nn = 10 000;

np = 100.;
rr = 1 − 0.001;

mod = TableBExpB Ç
2 π i

np
F , 8i, nn<F;

uvec = TableBExpB Ç
2 π i

np
+ Ç πF , 8i, nn<F;

g = GoertzelBRe@uvecD,
2 π

np
, rrF;

h = g mod≠;
gg = Pick@g, Table@If@Mod@i, 100D m 0, True, FalseD, 8i, nn<DD;

In[785]:= ListPlot@Re@hD, Frame → True, GridLines → Automatic, PlotRange → 889000, 10 000<, Automatic<D

Out[785]=

9000 9200 9400 9600 9800 10 000
-0.50

-0.45

-0.40

-0.35

-0.30

In[786]:= uvec = Table@If@i m 2, Sin@ωD, 0D, 8i, 10<D;
g = GoertzelBasic@uvec, ωD êê TrigReduce

Out[787]= 80, Sin@ωD, Sin@2 ωD, Sin@3 ωD, Sin@4 ωD, Sin@5 ωD, Sin@6 ωD, Sin@7 ωD, Sin@8 ωD, Sin@9 ωD<

In[788]:= uvec = Table@If@i m 1, 1, 0D, 8i, 10<D; gC = Goertzel@uvec, ωD êê TrigReduce

Out[788]= 91, ÆÇ ω, Æ2 Ç ω, Cos@3 ωD + Ç Sin@3 ωD, Cos@4 ωD + Ç Sin@4 ωD, Cos@5 ωD + Ç Sin@5 ωD,

Cos@6 ωD + Ç Sin@6 ωD, Cos@7 ωD + Ç Sin@7 ωD, Cos@8 ωD + Ç Sin@8 ωD, Cos@9 ωD + Ç Sin@9 ωD=

In[789]:= uvec = Table@If@i m 1, 1, 0D, 8i, 10<D;
g = Re@Goertzel@uvec, ωDD êê ComplexExpand êê TrigReduce

Out[790]= 81, Cos@ωD, Cos@2 ωD, Cos@3 ωD, Cos@4 ωD, Cos@5 ωD, Cos@6 ωD, Cos@7 ωD, Cos@8 ωD, Cos@9 ωD<

In[791]:= uvec = Table@If@i m 2, 2 Cos@ωD,
If@i m 3, −1, 0DD, 8i, 10<D;

g = Re@Goertzel@uvec, ωDD êê ComplexExpand êê TrigReduce

Out[792]= 80, 2 Cos@ωD, Cos@2 ωD, Cos@3 ωD, Cos@4 ωD, Cos@5 ωD, Cos@6 ωD, Cos@7 ωD, Cos@8 ωD, Cos@9 ωD<

6 Goertzel.nb

In[793]:= vvec = Table@If@i m 1, 81, 0<, 80, 0<D, 8i, 10<D;
Cordic@vvec, ωD êê TrigReduce

Out[794]= 881, 0<, 8Cos@ωD, Sin@ωD<, 8Cos@2 ωD, Sin@2 ωD<, 8Cos@3 ωD, Sin@3 ωD<,
8Cos@4 ωD, Sin@4 ωD<, 8Cos@5 ωD, Sin@5 ωD<, 8Cos@6 ωD, Sin@6 ωD<,
8Cos@7 ωD, Sin@7 ωD<, 8Cos@8 ωD, Sin@8 ωD<, 8Cos@9 ωD, Sin@9 ωD<<

Goertzel.nb 7

