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1 Summary

We describe the coordinate transforms used to drive and monitor the ISI optical table in
the Euler basis of the suspension on that table.

2 Introduction

We have created a set of basis transform matrices to allow one to easily transform between
the motion of the ISI platform in the ISI’s cartesian basis and the motion about the
suspension point of the various optics in the Euler basis about the suspension point for
the pendulum chain. In Advanced LIGO, the in-vacuum seismic isolation (ISI) platforms
provide a new opportunity to characterize and control motion exciting the suspensions
that are mounted to them. However, the suspension points of the pendulum chains are not
colocated with the center of the ISI coordinate system, and in most cases the orientation



of the optics is not aligned with the global directions. Thus, while it is possible to monitor
and drive the suspensions from the ISI tables, it is not always obvious how to do this
in the Euler basis of the suspension. For example, pitch about the suspension point of
MC1 involves significant contributions of the ISI signals in X, Y, Z, RX and RY. Further,
there are often multiple suspensions per platform, where their local coordinate systems
are misaligned from each other, see Figure 1 for example. Therefore we have created
and implemented projection matrices in the control diagrams to make the transformations
simple. At this writing, the transforms all occur in the ISI models, but we expect this will
soon begin to happen in the SUS models, and perhaps in other places as well.

This document describes how to use the projection matrices, and also serves to sup-
plement the function projectSEI2SUS.m, which generates a pair of 6 × 6 transformation
matrices M(~r, θ) which convert between the ISI’s local Cartesian coordinate system and
Euler coordinates about the suspension point of a given suspension chain.

~S = (X; Y; RZ; Z; RX; RY) (1)

into the local SUS Euler basis

~E = (L; T; V; R; P; Y) (2)

or Longitudinal, Transverse, Vertical, Roll, Pitch, and Yaw, such that
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~E = M(~r, θ) ~S. (3)

where ~r is a vector connecting the origin of the two systems, and θ is the angle between
the ISI’s X axis, and the SUS L axis. Figure 2 shows the transformation between such
coordinates in graphical form. Note that in this transformation, those displaced from each
other, we assume that the SEI Z and SUS V axes remain aligned.

TOP VIEW NO LASER 

HAM2-L1 

Figure 1: Top-down view of L1-HAM2, from D0900365. Each suspension’s longitudinal
axis is shown in green, and the HAM-ISI’s X and Y axes are shown in black.

3 Definitions

The transforms are defined to be between the center of the Cartesian coordinate system for
the ISI stage rigidly connected to the optical table (i.e. stage 1 for the HAM-ISI and stage
2 for the BSC-ISI) and the suspension point, treated as a single point centered vertically
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Figure 2: Transformation breakdown between an ISI’s local Catersian coordinate system
(in black) and a given suspension’s local coordinate system (in green), whose origins are
separated by a vector ~r, and X and L axes separated by an angle θ.

with the plane formed by the physical wire break off points at the under-surface of top-
most blade-wire clamps, and centered horizontally on a line parallel with the center of
mass of the suspended optic of interest) of the pendulum. The suspension point location
is projected from and given using the ISI coordinate system as the origin (x = y = z = 0).
We assume the optic face is perpendicular to the horizontal plane of the optics table, and
therefore parallel with local gravity – the x, y-plane is parallel to the L, T -plane. If not,
then you’ll have to be smart enough to make your own transformation matrix code (see
LIGO-P050030). The orientation, θ, of the optic is defined by the angle of the Longitudinal
direction for the optic, relative to the +x direction of the optical table, in the +rz direction
of the ISI table (i.e. CCW as seen from above). For example, the HR coating of the ITMY
optic is pointed in the +y direction, so we can say its orientation is +90 degrees. The HR
coating of the ETMX optic is pointed back along -x, so its orientation is +180 degrees.

The distance between the vertical planes of the ISI coordinate system and Suspension
point is derived from knowing the vertical distance between the ISI origin and the optical
table, ∆zISI , summed with the vertical distance between the optical table and the sus-
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pension point, ∆zSUS , and any vertical spacers, ∆zspacer. In the ISI coordinate systems,
the z=0 plane is defined by the plane created by the inner-most stage horizontal actuators
(i.e. stage 2 for a BSC-ISI and stage 1 for a HAM-ISI) – which should be pretty well
aligned with that stage’s lower zero moment plane. The optical table for the BSC-ISI is
182 mm below the stage 1-2 actuator plane, so ∆z = −0.182 m (E1200419). The optical
table for the HAM-ISI is 218 mm above the stage 0-1 actuator plane, so ∆z = +0.218
m(LIGO-T1000388). The vertical location of suspension point plane with respect for all
suspension types are shown in Table 1. Spacer heights for HAM suspensions can be found
in LIGO-T1000228, there are no spacers for BSC suspensions.

Table 2 shows the components of the final displacement vector ~r = [x, y, z], and orien-
tation (yaw), θ, between the ISI and Suspension Point coordinate systems in addition to a
few other useful bits of information.

Table 1: Vertical location of the suspension point plane for each aLIGO suspension type.
Distances were “measured” using the SolidWorks eDrawings cited, measuring from the
optical table mounting surface to one the bottoms of the top-most blade wire clamps
(assuming all suspension points are at the same height).

Suspension Type ∆zSUS [mm] Reference
HAUX 394.865 LIGO-D1000120-v10
HTTS 248.451 LIGO-D1001396-v3
OMCS 646.990 LIGO-D0900295-v1
TMTS ???? LIGO-D0901880-v3
HSTS 826.596 LIGO-D020700-v1
HLTS 806.264 LIGO-D070447-v2
BSFM -40.3 LIGO-D1000392-v2
QUAD -100.3 LIGO-D0901346-v9

4 Generation and Use of the Projections

The projections are all calculated by the Matlab wrapper script
${SUS SVN}/Common/MatlabTools/make ISI2SUS projections.m
The locations of the optics are stored in the function
${SUS SVN}/Common/MatlabTools/SEI2SUScoordinates.m
All the matrices, and some other info are all saved to a single file, which is saved in the
ISC portion of the userapps SVN. It is saved as a single file because that was simpler. It
is in ISC because projecting from one subsystem to another is a systems sort of issue. The
data file is:
${userapps}/trunk/isc/common/projections/ISI2SUS projection file.mat
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Table 2: Location of the suspension point origin relative to the Cartesian coordinate system
for the ISI stage to which it is rigidly connected.

x, y, z location of orientation
IFO Optic Chamber suspension point [m] ([deg], rel. to +X) ref doc
H2 ETMY BSC6 0.2, -0.3698, -0.2823 270 deg LIGO-D0900515
H2 ITMY BSC8 0.2, 0.426, -0.2823 90 deg LIGO-D0900363
H2 FMY BSC8 0.179, -0.386, -0.2223 45.4 deg LIGO-D0900364
H1 MC1 HAM2 0.0227, 0.2288, 1.06 44.3 deg LIGO-D0901088
H1 MC2 HAM3 0.035, 0.4874, 1.071 180 deg LIGO-D0901099
H1 MC3 HAM2 0.0227, 0.7462, 1.06 -44.3 deg LIGO-D0901089
H1 PRM HAM2 -0.1098, -0.6282, 1.064 0.34 deg LIGO-D0901090
H1 PR2 HAM3 0.2868, -0.5304, 1.073 180 deg LIGO-D0901098
H1 PR3 HAM2 0.3308, -0.1768, 1.024 0.64 deg LIGO-D0901086
H1 SRM HAM5 0.3075, 0.1761, 1.116 93.3 deg LIGO-D0901133
H1 SR2 HAM4 -0.5959, -0.3107, 1.126 -87.6 deg LIGO-D0901128
H1 SR3 HAM5 -0.1755, 0.4554, 1.096 90.8 deg LIGO-D0901132
H1 ITMY BSC1 0.2, 0.2926, -0.2823 90 deg LIGO-D0901140
H1 BS BSC2 -0.1814, -0.2058, -0.2223 135 deg LIGO-D0901145
H1 ITMX BSC3 0.3305, -0.2, -0.2223 0 deg LIGO-D0901149
H1 IM1 HAM2 -0.4669, 0.7631, 0.629 -54.6 deg LIGO-D1200623
H1 IM2 HAM2 -0.8638, -0.4891, 0.629 65 deg LIGO-D1200625
H1 IM3 HAM2 -0.193, 0.4989, 0.629 244 deg LIGO-D1200626
H1 IM4 HAM2 -0.5696, -0.6383, 0.629 36.1 deg LIGO-D1200624
L1 MC1 HAM2 0.0235, 0.2279, 1.05 44.3 deg LIGO-D0900413
L1 MC2 HAM3 0.035, 0.4874, 1.055 180 deg LIGO-D0900526
L1 MC3 HAM2 0.02268, 0.7462, 1.05 -44.3 deg LIGO-D0900414
L1 PRM HAM2 -0.1055, -0.6282, 1.054 0.3 deg LIGO-D0900415
L1 PR2 HAM3 0.2981, -0.5304, 1.063 180 deg LIGO-D0900524
L1 PR3 HAM2 0.3318, -0.1722, 1.024 0.65 deg LIGO-D0900368
L1 SRM HAM5 0.3075, 0.1761, 1.117 93.4 deg LIGO-D0900463
L1 SR2 HAM4 -0.5959, -0.3107, 1.145 -87.6 deg LIGO-D0900424
L1 SR3 HAM5 -0.1743, 0.4554, 1.115 90.8 deg LIGO-D0900461
L1 ITMX BSC3 0.3305, -0.2, -0.2223 0 deg LIGO-D0900495
L1 BS BSC2 -0.1814, -0.2058, -0.2223 135 deg LIGO-D0900431
L1 ITMY BSC1 0.2, 0.3006, -0.2823 90 deg LIGO-D0900445
L1 IM1 HAM2 -0.4669, 0.7631, 0.6191 -54.6 deg LIGO-D1101537
L1 IM2 HAM2 -0.8638, -0.4891, 0.6191 65 deg LIGO-D1101539
L1 IM3 HAM2 -0.1933, 0.499, 0.6191 245 deg LIGO-D1101540
L1 IM4 HAM2 -0.5695, -0.6383, 0.6191 36.1 deg LIGO-D1101538
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In the file are two data structures:
read me - Which is filled with hopefully useful information, and
ISI2SUSprojections - filled with projection matrices.

So far, we have defined the following optics:
h2: itmy, fmy, etmy
l1: mc1, mc2, mc3, prm, pr2, pr3, srm, sr2, sr3, itmy, bs, itmx, im1 (sm1), im2 (pmmt1),
im3 (pmmt2), im4 (sm2)
l1: mc1, mc2, mc3, prm, pr2, pr3, srm, sr2, sr3, itmy, bs, itmx, im1 (sm1), im2 (pmmt1),
im3 (pmmt2), im4 (sm2)
(i.e. every H1 and L1 optic but the ETMs, OMC, Tip-Tilts and the TMSs).

The data stucture is pretty simple:
For each optic, there is an entry in a large data structure. The entry includes reference info
on the optic, including: the location of the optic w.r.t. the center of the optical table, the
location of the optic w.r.t. the center of the ISI cartesian basis, and the yaw of the optic,
CCW from the +x direction, in degrees, as seen from above. The optic’s chamber, systems
drawing number and url are also included. Each optic has the 6x6 matrix EUL2CART, for
the projection from Euler to ISI cartesian basis, which is used for the drive for the ISI. The
final entry is the 6x6 matrix CART2EUL (the inverse of EUL2CART) which is used to
populate the monitor path matrix CART2EUL, which projects motion in the ISI cartesian
basis (as measured by the GS13s) to motion in the Euler basis about the suspension point
for monitoring input motion to the suspension.

The data structure is named ISI2SUSprojections, with fields for each IFO and subfields
for each optic. Each optic has the 8 sub-sub fields listed above,
i.e. ISI2SUSprojections.ifo.optic.matrix name, etc.
For example, the data for the H1 MC3 is, in matlab,
>> ISI2SUSprojections.h1.mc3
ans =

location from ISI origin: [0.0227 0.7462 1.0604]
location from optics table: [0.0227 0.7462 0.84242]

yaw: -44.3
chamber: ‘HAM2’

reference dwg: ‘D0901089’
reference url: ‘https://dcc.ligo.org/cgi-bin/private/...

DocDB/ShowDocument?docid=2670’
CART2EUL: [6x6 double]
EUL2CART: [6x6 double]

6

https://dcc.ligo.org/cgi-bin/private/...
DocDB/ShowDocument?docid=2670


5 CART2EUL: PRM Example
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Figure 3: Top view of HAM2-ISI w/ PRM, from D0901090. The red hexagon outlines the
HAM-ISI stage 1 optical table, and the red + is the center of the ISI Cartesian coordinate
system. The purple diamond is the suspension point for the PRM optic (shown as a blue
rectangle). The purple suspension point is at (x, y, z) = (−0.1098,−0.6282, 1.064) [m]
from the ISI center. The HR surface of the optic points in the (+x,+y) direction, with an
orientation of +0.34◦.

The matrix to convert the HAM-ISI Cartesian coordinate system to the PRM suspension
point’s Euler Basis is
ISI2SUSprojections.h1.prm.CART2EUL.
The value of this matrix is
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X Y RZ Z RX RY
Long 1 0.0059 0.6275 0 -0.0063 1.0636
Trans -0.0059 1 -0.1135 0 -1.0636 -0.0063
Vert 0 0 0 1 -0.6282 0.1098
Roll 0 0 0 0 1 0.0059
Pitch 0 0 0 0 -0.0059 1
Yaw 0 0 1 0 0 0

Table 3: Transformation matrix from the Cartesian Basis of the HAM-ISI to the Euler
Basis of the PRM Suspension Point. A Longitudinal drive for the Suspension Point is a
comprised of some component of X, Y, RZ, RX, and RY.

+RY -RY

+dVRY

HAM2 ISI Optical Table HAM2 ISI Optical Table

+dVRX

+Z

+X+Y

+Z

+X+Y

Suspension 
Point

ISI Origin

beam beam

(a) (b)

Suspension 
Cage

Figure 4: Two side-view drawings of HAM2-ISI with PRM, showing the (among other
things) resulting positive vertical displacement, +dV of the suspension point from look-
ing (a) along the +Y direction, with exaggerated +RX motion about the ISI coordinate
center, and (b) along the +X direction, with exaggerated -RY motion about the ISI co-
ordinate center. The red rectangle is the outline of the HAM ISI stage 1 optical table,
and the red + is the center of the ISI cartesian coordinate system. The purple diamond
is the suspension point for the PRM suspension chain. The purple suspension point is at
(x, y, z) = (−0.1098,−0.6282, 1.064) [m] from the ISI center (though the cartoon is only ap-
proximately to scale, and the optic orientation, and +RX and -RY motions are exaggerated
for clarity).
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6 EUL2CART: ETMY Example

BSC6 ISI 
optical table 

ISI Origin

ETMY

Suspension
Point b

eam

Figure 5: Top view of BSC6-ISI w/ ETMY, from D0900515. The red circle outlines the
ISI stage 2 optical table, and the red + is the center of the ISI Cartesian coordinate
system. The purple diamond is the suspension point for the ETMY optic (shown as a blue
rectangle). The purple suspension point is at (x, y) = (+0.200,−0.3698) [m]. The HR
surface of the optic points in the -Y direction, so the orientation is +270◦.

The matrix to convert from Euler basis coordinates to ISI coordinates is
ISI2SUSprojections.h2.etmy.EUL2CART.
The value of this matrix is:
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Long Trans Vert Roll Pitch Yaw
X 0 1.0000 0 -0.2860 0 -0.3698
Y -1.0000 0 0 0 -0.2860 -0.2000

RZ 0 0 0 0 0 1.0000
Z 0 0 1.0000 -0.2000 0.3698 0

RX 0 0 0 0 1.0000 0
RY 0 0 0 -1.0000 0 0

Table 4: Transformation matrix from the Euler Basis of the ETMY suspension to the
Cartesian basis of the ISI. A Longitudinal drive for the Suspension is a drive in the -
Y direction of the ISI. To Pitch the optic about the suspension point, the ISI table will
translate in the -Y direction, translate in the + Z direction, and rotate in the +RX direction,
as shown in figure 6.

Suspension
Point

beam

ET
M

Y

-Y

ISI Origin

BSC6 ISI optical table 

+Z

beam

ET
M

Y

-Y

+Z

pi
tc

h around suspension point

Figure 6: Side drawing of BSC6-ISI with ETMY, looking along the +X direction, showing
(hopefully) exaggerated pitch motion about the ETMY suspension point. The red rectangle
is the outline of the ISI stage 2 optical table, and the red + is the center of the ISI cartesian
coordinate system. The purple diamond is the suspension point for the ETMY optical
chain. The purple suspension point is at Y = -0.3698 m, Z = -0.286 m from the ISI center,
or -0.104 meter from the optical table surface. If the optical table has positive pitch about
the ETMY suspension point, the center of the ISI table will rotate in the +RX direction,
and translate in +Z and -Y.

7 The Transform Calculation

We desire the matrix transformation that takes us from signals in the local SEI Cartesian
basis (Eq. 1), into the local SUS Euler basis (Eq. 2), as in Eq. 3. This is done in three
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steps, for clarity, by splitting the transformation into separate matrices, i.e.,

M = R T C (4)

where

• C re-orders the SEI local coordinates from those motivated by its local sensors to a
more traditional Cartesian order.

• T(~r) translates the origin of the SEI basis to the SUS basis, creating an intermediate
“primed” Cartesian coordinate basis.

• R(θ) rotates the axes about the Z ′ axis.

7.1 Re-order SEI Signals

The SEI group has defined the order in which they propagate Cartesian signals through
their subsystem in such a way that their internal basis transform matrices look roughly
block-diagonal. As a result, the six cartesian degrees of freedom are in a “non-traditional”
order, as seen in Eq. 1. Since the SUS group’s signal vector follow a more traditional or-
dering of translation-then-rotation degrees of freedom, we begin with a re-ordering matrix,

~C = C ~S (5)



X
Y
Z
RX
RY
RZ

 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0





X
Y
RZ
Z
RX
RY

 (6)

where ~C is a “traditionally ordered” cartesian signal vector.

7.2 Translate Origin

Next we translate the origin of the Cartesian basis along a vector ~r, such that

X ′

Y ′

Z ′

RX ′

RY ′

RZ ′

 = T(~r)



X
Y
Z
RX
RY
RZ

 (7)
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Because the primed coordinates are not rotated with respect to the unprimed, we expect
translation and rotation degrees of freedom do be the same. However, small rotations about
the unprimed origin (~C(4 : 6) = ~R = [RX;RY ;RZ]) cause some translation in the primed
origin (~C ′(1 : 3) = ~X ′ = [X ′;Y ′;Z ′]) because of the lever arm, ~r, between them. To
account for this, we need the cross product between the unprimed rotations and the lever
arm such that the primed translational degrees of freedom,

~X ′ = ~X + ~R× ~r (8)

Given that the vector ~r is fixed, we can formulate the matrix notation for the cross product
with a generic signal input vector ~R,(

~R× ~r
)

i
= −

(
~r × ~R

)
i

= −
3∑

j=1

3∑
k=1

εijkrjRk 3∑
j=1

εijkaj = caik =

 0 −a3 a2

a3 0 −a1

−a2 a1 0


(
~R× ~r

)
i

= −
3∑

k=1

crikRk(
~R× ~r

)
= −cr ~R (9)

Otherwise there is no “cross coupling” between the degrees of freedom, so the upper left
and lower right quadrants are identity, and the lower left quadrant is zeros. The translation
matrix therefore takes the form

X ′

Y ′

Z ′

RX ′

RY ′

RZ ′

 =


I −cr

0 I





X
Y
Z
RX
RY
RZ


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or more explicitly,

~C ′ = T(~r) ~C (10)



X ′

Y ′

Z ′

RX ′

RY ′

RZ ′

 =



1 0 0 0 +rz −ry
0 1 0 −rz 0 +rx
0 0 1 +ry −rx 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





X
Y
Z
RX
RY
RZ

 (11)

where, rx, ry and rz are the three Cartesian components of ~r in the unprimed basis.

7.3 Rotate About Z’

Here, things are greatly simplified given that we only desire to rotate about the Z ′ (or V )
axis. The rotation will therefore effect only the X,Y and RX,RY degrees of freedom. The
2D rotation matrix that rotates the coordinate system (not the vector itself), is

R2D(θ) =
(

cos θ sin θ
− sin θ cos θ

)
(12)

This rotation applies to both the translation and the rotation axes. Since we know Z,RZ
don’t change, the full rotation matrix is simply

~E = R(θ) ~C ′ (13)



L
T
V
R
P
Y

 =



cos θ sin θ 0 0 0 0
− sin θ cos θ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0
0 0 0 0 0 1





X ′

Y ′

Z ′

RX ′

RY ′

RZ ′

 (14)
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7.4 The Full Transform

Just for completeness, if we combine Eqs. 6, 11, and 14, the total transformation matrix
becomes

~E = M(~r, θ) ~S
= R(θ) T(~r) C ~S

L
T
V
R
P
Y

 =



cos θ sin θ (rx sin θ − ry cos θ) 0 −rz sin θ rz cos θ
− sin θ cos θ (rx cos θ + ry sin θ) 0 −rz cos θ −rz sin θ

0 0 0 1 ry −rx
0 0 0 0 cos θ sin θ
0 0 0 0 − sin θ cos θ
0 0 1 0 0 0





X
Y
RZ
Z
RX
RY


(15)

8 Practical Implementation

For a detailed description of the practical implementation of these matrices, including
calibration of the respective channels involved, see LHO aLOG 4553. Though the aLOG
refers to H1 SUS PR2, and the matrices used are unique to that suspension, all calibration
and AI/AA filters described the log are the same for every suspension (in fact, they are
literally copy and pasted).
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