

EtherCAT for Advanced LIGO

January 4, 2012 Advanced LIGO

Implementation

G1200005-v1

Motivation

- □ Need to replace VME based EPICS system
- □ 100's of slow controls channels (tags) in ISC alone
- Vacuum system is still running legacy hardware
- Preferably a commercial solution
 - High reliability
 - Long term availability
 - Operator friendly (documentation, external support, etc.)
- Separate the computer from analog
 - Need a field bus, lot to choose from: Proprietary, Modbus, CANopen, Profibus/ProfiNet, EtherCAT, Sercos III, Ethernet IP, Devicenet, …

Why EtherCAT?

□ PSL is using it

- Experience in H1 squeezing experiment
- Modern design (Ethernet done right)
 - 100base Ethernet (no expensive backbone)
 - Low latency: Datagrams processed on the fly
 - Fast: 1-10 ms readout standard; 100us possible
 - Software: IEC 61131-3 with EPICS interface
- □ Cost effective for large number of slow channels
 - Stackable, DIN-rail mounted units with 1-4 channels typical
 - 16 bit analog channel: ~\$50-\$100
 - Binary channel: ~\$10-\$20

What is EtherCAT?

LIGO

What is EtherCAT?

□ Protocol: (Raw) Ethernet frames

- Memory mapped access (4GB)
- UDP/IP encapsulation possible

Performance

- Real-time kernel on PC
- 1000 distributed I/Os in only 30 µs

Topology

- Line, star or tree; hot connect of branches possible
- > up to 65,535 devices
- E-bus (LVDS) for DIN mounted modules
- Stand-alone modules (IP67)
- Distributed Clock
- Special Safety Terminal
- Useful information video

Where does it fit in?

Goal: Run slow controls hardware through EtherCAT

- Mode cleaner board, common mode board, RF distribution system, HWS, picomotors, shutters, timing system readback, etc.
 - Slow controls channels are connected to the fast system where it makes sense.
- No VME based systems in the long run
- No stand-alone EPICS RS232/Ethernet/Modbus controls computer
 - Need to port legacy systems: dust monitor, weather station, PC/104(?), etc.
 - ✤ Modbus: Use gateway to EtherCAT, see wiki.
- > Boot into the correct state \rightarrow no burt restore!
- □ EPICS:

- Soft IOC and transport layer
- Screens (medm for now)

Implementation in Advanced LIGO

□ Controller: TwinCAT

- Running on rack mounted PCs; 1 controller per building
- Full featured Programmable Logic Controller (PLC)
- OPC and EPICS OPC server for controls interface

IO Chassis

- \geq 3U, 24" deep; with 3 DIN rails
- Equipped with EtherCAT Terminals (mostly from Beckhoff)
 Stackable DIN mounted modules
- Field wiring to rear mounted interface connectors
 - Mostly D-sub, direct, or
 - DB37 to external signal concentrators

Networking

- Fiber between corner and ends (synchronization, data exchange)
- Separate controls network for vertex and ends, see <u>D1102294-v1</u>.

3U Chassis Design

G1200005-v1

LIGO

EtherCAT Coupler

E-Bus:

- Ethernet OUT (LVDS)
- Ethernet IN (LVDS)
- 5V Power

Power: – Positive (24V/5V) – Ground

– Shield

Coupler requires +24V to power E-Bus Separate power for terminals

G1200005-v1

4-channel binary TTL output

2-channel 16-bit analog input

LIGO

Ethernet Configuration

OPC and the EPICS OPC Server

- OPC: Industrial standard for exchanging controls data and events as well as their history
 - OPC classic: efficient transport requires Windows DCOM
 - OPC UA: modern, platform independent, strong security, information models (i.e., types and hierarchical organization)
 - Has been widely adapted by the automation industry A wide selection of software and hardware solutions are available that are supporting it
- EPICS OPC Server
 - OPC device support maintained at Bessy

Can we run OPC and EPICS in parallel to leverage existing software and also profit from commercial packages?

LIGO

Outlook

- Deploy the first system in January/February 2012
- □ Easy to expand; easy to add a few more channels
- Logic controllers and slow servos can be directly implemented in the TwinCAT PLC
- The next TwinCAT will support 64bit OS, multi-core and C++/Matlab
- Opens a way forward to adopt commercial solutions

Further Information

EtherCAT

- EtherCAT Technology Group
- Wikipedia
- □ Hardware and Software
 - Beckhoff website
- □ IEC 61131-3:
 - <u>R.W. Lewis, "Programming Industrial Control Systems Using IEC</u> <u>1131-3</u>"
- - OPC Foundation
 - EPICS OPC Server