
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1100607-v1 advanced LIGO 12/2/11

EtherCAT Setup of Modbus Devices

Daniel Sigg

Distribution of this document:

LIGO Scientific Collaboration

This is an internal working note

of the LIGO Laboratory.

California Institute of Technology

LIGO Project – MS 18-34

1200 E. California Blvd.

Pasadena, CA 91125

Phone (626) 395-2129

Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology

LIGO Project – NW22-295

185 Albany St

Cambridge, MA 02139

Phone (617) 253-4824

Fax (617) 253-7014

E-mail: info@ligo.mit.edu

LIGO Hanford Observatory

P.O. Box 159

Richland WA 99352

Phone 509-372-8106

Fax 509-372-8137

LIGO Livingston Observatory

P.O. Box 940

Livingston, LA 70754

Phone 225-686-3100

Fax 225-686-7189

http://www.ligo.caltech.edu/

advLIGO LIGO- T1100607-v1

 2

1 Introduction

This document describes the setup of the D1100251, the 384 Channel Acromag Binary Output

chassis, and the HMS AB9000, Anybus X-gateway Modbus-TCP for EtherCAT. The D1100251

contains 4 Acromag ES2113-0100 units. These are 96 channel binary input/output modules that are

controlled through a Modbus-TCP interface. Combining these units with the Anybus X-gateway

makes the IO channels transparently accessible through EtherCAT. Look for data sheets, manuals,

application notes and setup software in C1107420.

2 Setting up the ES2113

The first step is to set up the IP address. Look up the available addresses in E1101144. Looking

from the front into the D1100251 chassis, the PCB 1 is on the top left. The PCB 2 is on the top

right, the PCB 3 is on the bottom left and PCB 4 is on the bottom right. Locate the manual and the

application note for the ES2113 in C1107420.

By default each ES2113 has an IP address of 128.1.1.100. Hook up the Ethernet of the first unit to

a computer and make sure its IP address is 128.1.1.111. Try to open a web page with http://

128.1.1.100. If this doesn’t work, one may have to factory reset the unit. For this turn it off, pull the

toggle switch to the up position and turn on the power. Now hold the toggle switch in the up

position for at least 10 seconds. After releasing the unit should have reset itself to 128.1.1.100.

No make sure the network configuration page looks like Figure 1. The default user name and

password are User/password. Do not change this. Make sure you have the correct IP address and

subnet mask. For the gateway use the “X.X.X.1” address. We are using a static IP address and ports

are operated in hub configuration. You can use the wink on/off button to turn on/off a blinking

green LED at the front of the Acromag unit. This is to make sure that the correct PCB is selected.

The IO configuration page should be left in the default position after factory reset as seen in

Figure 2.

Continue this procedure for all 4 PCBs. Finally, daisy chain the Ethernet of all 4 PCBs and hook it

to the rear panel CAT5 feedthroughs.

Add a label to the D1100251 that lists the IP addresses as configured.

https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=33399
https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=76580
https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=76567

advLIGO LIGO- T1100607-v1

 3

Figure 1: ES2113 network configuration.

advLIGO LIGO- T1100607-v1

 4

Figure 2: ES2113 IO Configuration page.

3 Setting up the AB9000

Locate the user manual for the AB9000 in C1107420. Make sure the AB9000 contains a SD card.

Then, hook up the Ethernet of the Modbus side of the AB9000 to a computer. By default its IP

address should be set to 192.168.0.100. You can use the Anybus IPconfig utility, to locate this

address (part of C1107420). This utility may also allow you to change the IP address of the unit

temporarily. If so, set it to the same subnet as the ES2113 units but with the address “.1”. If not set

the computer network port to the same subnet as the AB9000 but a different address, say

https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=76567

advLIGO LIGO- T1100607-v1

 5

192.168.0.111. Now, point a web browser to 192.168.0.100. It should somewhat similar to

Figure 3.

Figure 3: Home page of the AB9000.

Select the Modbus client page and make sure to change the IP address, subnet mask, DHCP setting,

HICP, start-up operation mode and freeze setting so it looks like in Figure 4 but with the correct IP

address. Save the settings.

Select the Modbus server page. Add the first Modbus server which should correspond to PCB 1 of

D1100251. Leave the port and protocol at 502 and TCP, respectively. Now select the transaction

link and add 3 transaction as shown in Figure 6. Go back to the server list and add the next server

for PCB 2. Add the same transactions and repeat adding servers for PSB 3 and 4. The final page

should look similar to Figure 5. Save the settings.

Select the EtherCAT page and enable the mapped live list. The setup should look like Figure 7.

Finally, go to the X-gateway management page and store the settings and reboot. If the IP address

was changed, the new IP address will go into effect after the reboot of the AB9000. Make sure the

computer network port is set accordingly. Now, connect the D1100251 Modbus Ethernet port to the

second Modbus port of the AB9000. It should now be possible to look at the web pages of all 5

devices.

advLIGO LIGO- T1100607-v1

 6

Figure 4: AB9000 Modbus client setup.

advLIGO LIGO- T1100607-v1

 7

Figure 5: AB9000 Modbus server setup.

advLIGO LIGO- T1100607-v1

 8

Figure 6: AB9000 Modbus server transaction setup.

advLIGO LIGO- T1100607-v1

 9

Figure 7: AB9000 EtherCAT setup.

advLIGO LIGO- T1100607-v1

 10

Figure 8: AB9000 Mapping.

Check the mapping on the AB9000 using the mapping overview page. It should look like Figure 8.

Up to 2 D1100251 can be connected to a single AB9000. Repeat the setup for the D1100251 but

make sure to use a different set of IP addresses on the same subnet. Then, move to the Modbus

server page on the AB9000 and add 4 corresponding server entries.

advLIGO LIGO- T1100607-v1

 11

4 Setting up TwinCAT

Locate the EtherCAT slave TwinCAT application note as well as the ABXS_ECT file in

C1107420. The ABXS_ECT file can also be downloaded from the HMS web page. This may be

necessary if an AB9000 with a more recent firmware release is used. Copy the ABXS_ECT file to

“C:\Program files\TwinCAT\Io\EtherCAT\” before you start the TwinCAT system manager. Start

the TwinCAT system manager.

Connect a EtherCAT output port of the computer to the EtherCAT input port of the AB9000. Make

sure the EtherCAT NIC is recognized by the TwinCAT system manager. Now you should be able

to scan for new devices and recognize the AB9000. Go to its process data tab and load the PDO

information from the device. Now the input and output variables should be available. They have

intuitive names likes SubIndex 001, etc. Try to go to active run. This should start the data transfer.

Figure 9: TwinCAT system manager.

https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=76567

advLIGO LIGO- T1100607-v1

 12

Starting (active) run mode sometimes fails after the AB9000 has been reconfigured. The easiest

remedy is to delete the X-gateway box and rescan the EtherCAT chain.

Finally, go back to the AB9000 web page and check the home page for errors. When working, it

should look like Figure 3. You can also look the transaction monitor page and check for errors, see

Figure 10.

Figure 10: AB9000 transaction monitor.

advLIGO LIGO- T1100607-v1

 13

5 PLC Programming with TwinCAT

A TwinCAT example project with a single AB9000 and a single D1100251 can be found in the zip

associated with this document. The example code uses three main structures for the hardware input,

the hardware outputs and the user interface, respectively.

Figure 11: Program structures and sub structures.

A function block is used to transfer data from the input and output structures to the user structure.

The mapping of IO channels to the variables is described in T1100195-v1. Two functions are used

to obtain the channel and chassis index, respectively. The main program is straight forward and just

calls the function block using global variables for the main structures.

TYPE _IscWhiteningIn :

STRUCT

 LiveList: ARRAY[1..8] OF BYTE;

 PCB: ARRAY[1..4,1..13] OF WORD;

 InfoDataState: WORD;

END_STRUCT

END_TYPE

TYPE _IscWhiteningOut :

STRUCT

 PCB: ARRAY[1..4,1..6] OF WORD;

END_STRUCT

END_TYPE

TYPE IscWhitening :

STRUCT

 Chassis: ARRAY[1..6] OF IscWhiteningChassis;

END_STRUCT

END_TYPE

TYPE IscWhiteningChannel :

STRUCT

 Valid: BOOL; (* read only *)

 Switches: BYTE; (* read only *)

 Toggle: BYTE;

 SetVal: BYTE;

END_STRUCT

END_TYPE

TYPE IscWhiteningChassis :

STRUCT

 Channels: ARRAY[1..8] OF IscWhiteningChannel;

END_STRUCT

END_TYPE

https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=33399
https://dcc.ligo.org/DocDB/0057/T1100195/001/acromag_mapping_v1.pdf

advLIGO LIGO- T1100607-v1

 14

Figure 12: Function block.

FUNCTION_BLOCK IscWhiteningFB

VAR_INPUT

 In: _IscWhiteningIn;

END_VAR

VAR_OUTPUT

 Out: _IscWhiteningOut;

END_VAR

VAR_IN_OUT

 Val: IscWhitening;

END_VAR

VAR_TEMP

 pcb: INT;

 port: INT;

 chassis: INT;

 chn: INT;

 LiveVal: WORD;

 OutVal: WORD;

END_VAR

FOR pcb := 1 TO 4 DO

 FOR port := 1 TO 6 DO

 OutVal := 0;

 LiveVal := SHR (BYTE_TO_WORD (In.LiveList[1]) OR

 SHL (BYTE_TO_WORD (In.LiveList[2]), 8),

 3*(pcb-1)) AND 16#0007;

 chassis := IscWhiteningChassisIndex (pcb, port, TRUE);

 chn := IscWhiteningChannelIndex (pcb, port, TRUE);

 Val.Chassis[chassis].Channels[chn].Switches :=

 WORD_TO_BYTE (In.PCB[pcb,port] AND 16#00FF);

 Val.Chassis[chassis].Channels[chn].Valid :=

 (LiveVal = 16#0007) AND

 ((In.InfoDataState AND 16#3F) = 8) AND

 ((In.PCB[pcb,port+7] AND 16#0002) = 0);

 Val.Chassis[chassis].Channels[chn].SetVal :=

 Val.Chassis[chassis].Channels[chn].SetVal XOR

 Val.Chassis[chassis].Channels[chn].Toggle;

 Val.Chassis[chassis].Channels[chn].Toggle := 0;

 OutVal := BYTE_TO_WORD

 (Val.Chassis[chassis].Channels[chn].SetVal);

 chassis := IscWhiteningChassisIndex (pcb, port, FALSE);

 chn := IscWhiteningChannelIndex (pcb, port, FALSE);

 Val.Chassis[chassis].Channels[chn].Switches :=

 WORD_TO_BYTE (SHR (In.PCB[pcb,port] AND 16#FF00, 8));

 Val.Chassis[chassis].Channels[chn].Valid :=

 (LiveVal = 16#0007) AND

 ((In.InfoDataState AND 16#3F) = 8) AND

 ((In.PCB[pcb,port+7] AND 16#0002) = 0);

 Val.Chassis[chassis].Channels[chn].SetVal :=

 Val.Chassis[chassis].Channels[chn].SetVal XOR

 Val.Chassis[chassis].Channels[chn].Toggle;

 Val.Chassis[chassis].Channels[chn].Toggle := 0;

 OutVal := OutVal OR SHL (BYTE_TO_WORD

 (Val.Chassis[chassis].Channels[chn].SetVal), 8);

 Out.PCB[pcb,port] := OutVal;

 END_FOR;

END_FOR;

END_FUNCTION_BLOCK

advLIGO LIGO- T1100607-v1

 15

Figure 13: Channel index function.

FUNCTION IscWhiteningChannelIndex : INT

VAR_INPUT

 PCB: INT;

 Port: INT;

 LSB: BOOL;

END_VAR

VAR

END_VAR

CASE PCB OF

 1: CASE Port OF

 1 : IscWhiteningChannelIndex := 1;

 2 : IscWhiteningChannelIndex := 3;

 3 : IscWhiteningChannelIndex := 5;

 4 : IscWhiteningChannelIndex := 1;

 5 : IscWhiteningChannelIndex := 3;

 6 : IscWhiteningChannelIndex := 5;

 ELSE

 IscWhiteningChannelIndex := 0;

 END_CASE;

 2: CASE Port OF

 1 : IscWhiteningChannelIndex := 5;

 2 : IscWhiteningChannelIndex := 7;

 3 : IscWhiteningChannelIndex := 1;

 4 : IscWhiteningChannelIndex := 5;

 5 : IscWhiteningChannelIndex := 7;

 6 : IscWhiteningChannelIndex := 1;

 ELSE

 IscWhiteningChannelIndex := 0;

 END_CASE;

 3: CASE Port OF

 1 : IscWhiteningChannelIndex := 7;

 2 : IscWhiteningChannelIndex := 1;

 3 : IscWhiteningChannelIndex := 3;

 4 : IscWhiteningChannelIndex := 7;

 5 : IscWhiteningChannelIndex := 1;

 6 : IscWhiteningChannelIndex := 3;

 ELSE

 IscWhiteningChannelIndex := 0;

 END_CASE;

 4: CASE Port OF

 1 : IscWhiteningChannelIndex := 3;

 2 : IscWhiteningChannelIndex := 5;

 3 : IscWhiteningChannelIndex := 7;

 4 : IscWhiteningChannelIndex := 3;

 5 : IscWhiteningChannelIndex := 5;

 6 : IscWhiteningChannelIndex := 7;

 ELSE

 IscWhiteningChannelIndex := 0;

 END_CASE;

 ELSE

 IscWhiteningChannelIndex := 0;

END_CASE;

IF (NOT LSB AND (IscWhiteningChannelIndex > 0)) THEN

 IscWhiteningChannelIndex := IscWhiteningChannelIndex + 1;

END_IF;

END_FUNCTION

advLIGO LIGO- T1100607-v1

 16

Figure 14: Chassis index function.

FUNCTION IscWhiteningChassisIndex : INT

VAR_INPUT

 PCB: INT;

 Port: INT;

 LSB: BOOL;

END_VAR

VAR

END_VAR

CASE PCB OF

 1 : CASE Port OF

 1..3 : IscWhiteningChassisIndex := 4;

 4..6 : IscWhiteningChassisIndex := 1;

 ELSE

 IscWhiteningChassisIndex := 0;

 END_CASE;

 2 : CASE Port OF

 1..2 : IscWhiteningChassisIndex := 5;

 3 : IscWhiteningChassisIndex := 6;

 4..5 : IscWhiteningChassisIndex := 2;

 6 : IscWhiteningChassisIndex := 3;

 ELSE

 IscWhiteningChassisIndex := 0;

 END_CASE;

 3 : CASE Port OF

 1 : IscWhiteningChassisIndex := 4;

 2..3 : IscWhiteningChassisIndex := 5;

 4 : IscWhiteningChassisIndex := 1;

 5..6 : IscWhiteningChassisIndex := 2;

 ELSE

 IscWhiteningChassisIndex := 0;

 END_CASE;

 4: CASE Port OF

 1..3 : IscWhiteningChassisIndex := 6;

 4..6 : IscWhiteningChassisIndex := 3;

 ELSE

 IscWhiteningChassisIndex := 0;

 END_CASE;

 ELSE

 IscWhiteningChassisIndex := 0;

END_CASE;

END_FUNCTION

advLIGO LIGO- T1100607-v1

 17

Figure 15: Main program.

VAR_GLOBAL

 Whitening1In AT %IB0: IscWhiteningIn;

 Whitening1Out AT %QB0: IscWhiteningOut;

 Whitening1: IscWhitening;

END_VAR

PROGRAM MAIN

VAR

 Whitening1FB: IscWhiteningFB;

 Counter: INT := 200;

END_VAR

Whitening1FB (In := _Whitening1In, Out => _Whitening1Out,

 Val := Whitening1);

(* do some testing *)

IF (Counter <= 0) THEN

 Whitening1.Chassis[1].Channels[1].Toggle := 1;

 Counter := 200;

ELSIF (Counter = 100) THEN

 Whitening1.Chassis[5].Channels[7].Toggle := 16#F0;

 Counter := Counter - 1;

ELSE

 Counter := Counter - 1;

END_IF;

END_PROGRAM

