## Finding Electromagnetic Counterparts of Gravitational Wave Signals in the Transient Universe



Caltech 11.1.11

### The Plan

- Introduction
- Past and present multimessenger efforts with LIGO & Virgo
  - ExtTrig
  - LOOCUP
- Looking towards aLIGO

### I got IFOs in different area codes













S5/VSR1

Start of S6/VSR2

### End of S6/VSR3





### Multimessenger Astronomy: An overview

Gravitational wave and electromagnetic signals provide complimentary information about an event.

- GW
  - Progenitor properties, e.g. mass
  - Luminosity distance
  - Bulk motion dynamics
  - Direct probe of the central engine

► EM

- Sky location
- Host galaxy
- Redshift
- Gas environment

### Multimessenger Astronomy: An overview

Gravitational wave and electromagnetic signals provide complimentary information about an event.

- GW
  - Progenitor properties, e.g. mass
  - Luminosity distance
  - Bulk motion dynamics
  - Direct probe of the central engine

► EM

- Sky location
- Host galaxy
- Redshift
- Gas environment

Information from both gives us a more complete picture of the event















Allows for possibility of imaging corresponding EM signals as they occur.

Credit: NASA



LOOCUP



Credit: ROTSE

### GRB 070201: A success story

LIGO observations ruled out an inspiral progenitor in M31 at >99% confidence.\* They allow a soft gamma repeater (SGR) progenitor.†

\* Abbott et al, ApJ 681, 1419 (2008)
† Ofek et al, ApJ 681, 1464 (2008); Mazets et al, ApJ 680, 545 (2008)



### GRB 070201: A success story

THE ASTROPHYSICAL JOURNAL, 681:1464-1469, 2008 July 10 © 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.

#### GRB 070201: A POSSIBLE SOFT GAMMA-RAY REPEATER IN M31<sup>1</sup>

E. O. OFEK,<sup>2</sup> M. MUNO,<sup>2</sup> R. QUIMBY,<sup>2</sup> S. R. KULKARNI,<sup>2</sup> H. STIELE,<sup>3</sup> W. PIETSCH,<sup>3</sup> E. NAKAR,<sup>2</sup>
 A. GAL-YAM,<sup>4</sup> A. RAU,<sup>2</sup> P. B. CAMERON,<sup>2</sup> S. B. CENKO,<sup>2</sup> M. M. KASLIWAL,<sup>2</sup>
 D. B. FOX,<sup>5</sup> P. CHANDRA,<sup>6,7</sup> A. K. H. KONG,<sup>8,9</sup> AND R. BARNARD<sup>10</sup>
 Received 2007 December 13; accepted 2008 February 18

#### GRB 051103 and GRB 070201 as Giant Flares from SGRs in Nearby Galaxies

D. Frederiks\*, R. Aptekar\*, T. Cline<sup>†</sup>, J. Goldsten\*\*, S. Golenetskii\*, K. Hurley<sup>‡</sup>, V. Ilinskii\*, A. von Kienlin<sup>§</sup>, E. Mazets\* and V. Palshin\*

<sup>\*</sup>Ioffe Physico-Technical Institute, St. Petersburg, 194021, Russia <sup>†</sup>Goddard Space Flight Center, NASA, Greenbelt, MD 20771, USA <sup>\*\*</sup>The Johns Hopkins University Applied Physics Laboratory, MD 20723, USA <sup>‡</sup>Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720-7450, USA <sup>§</sup>Max-Plank-Institut für extraterrestrische Physik, D-85741 Garching, Germany

Abstract. The Konus-Wind observations of extremely bright short hard GRB 051103 and GRB 070201 are presented. Results of gamma-ray data temporal and spectral analysis together with IPN sources localization are bringing evidences of the bursts being initial pulses of Giant Flares from Soft Gamma-ray Repeaters in the nearby galaxies M81/M82 and M31.

Keywords: gamma-ray bursts, soft gamma-ray repeaters, M31, M81/M82 group PACS: 95.85.Pw, 98.70.Rz, 98.56.Ne, 97.60.Jd



ndromeda

00<sup>h</sup>38<sup>m</sup>

00<sup>h</sup>40<sup>m</sup>

\* Abbott et al, ApJ 68
† Ofek et al, ApJ 681, Mazets et al, ApJ 68

а

### Other ExtTrig efforts

- SGRs
- Supernovae
- Neutrinos
- Radio bursts



### LOOCUP: A work in progress\*



\*Final analysis results pending

### LOOCUP: A work in progress\*



\*Final analysis results pending

### Overview of the pipeline





- > Multi Band Template Analysis
- > Matched filter search (2PN)
- > Typical latencies ~ a few minutes, including 1 minute to get h(t)!
- > Only triple coincident events sent out for followup





### Sky localization

Use the time-delay between detector sites and the amplitude measured at each site to localize sources on the sky.

### One big problem

# Poor sky localization. Optimistically **tens** of square degrees, even for advanced detectors<sup>\*</sup>.





Credit: Zsolt Frei et al (1995)

Incorporating Astrophysical Priors Kopparapu, Hanna, Kalogera, O'Shaughnessy, González, Brady & Fairhurst (2008)

### Number of galaxies at 10Mpc



### Number of galaxies at 20Mpc



### Number of galaxies at 30Mpc



### Number of galaxies at 40Mpc



### Blue luminosity at 10Mpc



### Blue luminosity at 20Mpc



### Blue luminosity at 30Mpc



### Blue luminosity at 40Mpc



### Sky localization performance



- > Simulated signals (injections) put into real detector noise from week 6 of S6/VSR2
- > Injection parameters taken from the low mass region of parameter space (systems more likely to contain a neutron star)
- > Emphasis on low signal-to-noise ratio (SNR) injections
- > Characterize performance by the area contained in the pixels ranked above the true location ("Searched Area")



## Sky localization performance



### Sky localization performance



### Sky localization performance: SNR dependence



### Sky localization performance: Telescope tilings I



### Sky localization performance: Telescope tilings II





### Prospects for aLIGO

Cannon *et al* (2011)



## Coordination could be the key to success!

Singer, LP, Speranza (in prep)
#### Looking towards Advanced LIGO

- Better galaxy catalogs? (Do they even help?) Kulkarni & Kasliwal (2009)
- Improved astrophysical priors, e.g. to account for kicks
- EM expectations? Metzger et al (2010) Nakar & Piran(2011)
- Better coordination with EM astronomers, e.g. observing and analysis strategies
- GW latency expectations
- Better EM coverage/More EM partners



# The Completeness Problem

Catalog is roughly 80% complete to 40Mpc and only about 50% complete at 100Mpc.

Advanced LIGO can see BNSs to ~400Mpc



Kopparapu et al (2008)















#### The telescope network



#### Possibilities for the advanced detector era



## The immediate future

- Incorporate signal amplitude information for better sky localization.
- Get CBCs into the wide field followup effort.
- Determine feasibility of pointing at double coincident triggers.



### Part II: Looking for GWs in pulsar timing data or Another way to bridge the EM-GW astronomy gap

#### Pulsar Timing: A Nano-Hertz GW detector

- Pulsars are stable rotators that emit a steady train of EM pulses.
- GWs affect the pulse times of arrival.



#### Effect of a gravitational wave on pulsar radio pulses



b/c GW metric is purely spatial

#### Effect of a gravitational wave on pulsar radio pulses

$$\begin{aligned} \frac{d\sigma^{t}}{d\lambda} &= -\frac{1}{2}\nu^{2}p^{i}p^{j}\dot{h}_{ij} \\ & \text{Now need to connect time derivatives} \\ & \text{with derivates wrt affine parameter} \\ & \frac{dh_{ab}(t-\hat{\Omega}\cdot\vec{x})}{d\lambda} = \nu(1+\hat{\Omega}\cdot\hat{p})\frac{\partial h_{ab}(t-\hat{\Omega}\cdot\vec{x})}{\partial t} \\ & \text{Therefore: } -\frac{1}{\nu}\frac{d\nu}{d\lambda} = \frac{1}{2}\frac{\hat{p}^{i}\hat{p}^{j}}{1+\hat{\Omega}\cdot\hat{p}}\frac{dh_{ij}(t-\hat{\Omega}\cdot\vec{x})}{d\lambda} \\ \\ & \frac{\nu_{\rm P}-\nu_{\rm E}}{\nu_{\rm P}} = \frac{1}{2}\frac{\hat{p}^{i}\hat{p}^{j}}{1+\hat{\Omega}\cdot\hat{p}}\left[h_{ij}^{\rm P}-h_{ij}^{\rm E}\right] \\ & \text{Therefore: } -\frac{1}{2}\frac{\hat{p}^{i}\hat{p}^{j}}{1+\hat{\Omega}\cdot\hat{p}}\left[h_{ij}^{\rm P}-h_{ij}^{\rm E}\right] \\ & \text{Timing residuals just an integral of redshift} \\ & \text{Anolm, Ballmer, Creightor, LP, Stemens (2009)} \end{aligned}$$

#### The optimal statistic

Consider the statistic:

$$Y = \int dt \int dt' s_1(t) s_2(t') Q(t-t')$$

Maximize the SNR:

$$\tilde{Q}(f) = \chi \frac{\Omega_{\rm gw}(|f|)\gamma(|f|)}{|f|^3 P_1(|f|)P_2(|f|)}$$

#### Multiple detectors





Smaller variance => less noisy

Credit: David Champion

#### Cosmological sources



## The MBHB background is expected at $~A\sim 10^{-15}$

## The current upper limit is at $A = 1.1 \times 10^{-14}$

Where 
$$\Omega_{gw} = \frac{2\pi^2}{3H_0^2} f^2 A^2 \left(\frac{f}{yr^{-1}}\right)^{2\alpha}$$

And  $\alpha = -2/3$  (Phinney 2001)

#### Sensitivity estimate

For a flat spectrum in  $\Omega$ 



 $\Omega_{\rm UL} \propto \frac{\sigma_t^2}{N_p N T^4}$ 

 $h_c^2(f) = \frac{3H_0^2}{32\pi^3} \frac{1}{f^2} \Omega(f)$ 

#### Sensitivity estimate



#### The reality

- Reported timing residuals are usually weighted, not rms.
- This kind of upper limit does not consider the effects of the timing procedure.



- Start with something like this
- Correct for clock errors



 Now move to barycentric reference frame and correct for atmospheric delays, solar system dispersion, Shapiro delay...



• Then fit out ISM effects, spin down, possible binary parameters...



• Iterate until you get something like this.

#### The reality

- Reported timing residuals are usually weighted, not rms.
- This kind of upper limit does not consider the effects of the timing procedure.
- Reliable upper limits must account for the effects of the timing procedure.
- In progress\*...

#### Future work

• Publish the best upper limit to date on the stochastic background in the nano-Hertz region.

#### Future work

- Publish the best upper limit to date on the stochastic background in the nano-Hertz region.
- Make a detection?



#### Verbiest et al MNRAS (2009)

#### Future work

- Publish the best upper limit to date on the stochastic background in the nano-Hertz region.
- Make a detection?
- Develop methods for detecting other types of signals: Burst\*, continuous...
- Make GW detection part of the timing process.

#### Summary

- The next 5-10 years is an exciting time for GW physics.
- Measurements across spectral bands will force new interactions between GW and EM astronomers.
- LIGO, Virgo and pulsar timing all have a role to play in GW astronomy.







### The Overlap Reduction Function

The ORF describes the reduction in sensitivity due to the fact that the detectors are neither coincident nor coaligned.

For ground-based interferometers it is known analytically [Flannagan (1993)]





From Allen & Romano (1999)





From Anholm, Ballmer, Creighton, LP, Siemens (2009)

#### Specifics

- Simple threshold-based approach.
- Thresholds set by the percentage of injections recovered with a particular accuracy.



## Simulation parameters\*:

- Only consider triple coincidence
- Individual masses uniformly distributed between 1-15 Msun
- Maximum total mass of 20 Msun
- Logarithmically distributed in distance between 10-40 Mpc

#### \*LP and others (in prep)

#### Enhancement

Problem:

- SNR does not accumulate uniformly across the frequency band of the detector.
- Phase difference does accumulate uniformly across the frequency band.

## Solution:

Measure the time the signal crosses some reference frequency in the high SNR region of the frequency band, NOT the end time. (F Acernese et al 2007)

#### Comparison of Timing Accuracy


## Comparison of Timing Accuracy

