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Organization

⚫ Gravitational waves
⚫ LIGO & GW detectors
⚫ RF readout
⚫ DC readout
⚫ The output mode cleaner
⚫ Results



3

Organization II
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Gravitational waves

⚫ predicted by general relativity
⚫ generated by accelerating mass
⚫ propagate at the speed of light
⚫ not yet detected directly
⚫ appear as a strain of spacetime
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Gravitational wave sources

long-term

transient

modeled unmodeled

binary
inspirals
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background
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supernova &
other bursts
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Gravitational wave detectors

★ not to scale!
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Network of detectors
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An interferometer of interferometers

★ not to scale!

It's interferometers
all the way down!

Terrapene carolina
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Sensitivity (noise floor)

(Previous)
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Enhanced LIGO

• Try out Advanced LIGO technologies

• Bet that increased sensitivity outweighs the downtime
      
   exposure = time * (range)^3

Increase the laser power
Output mode cleaner
DC readout

New Laser
New input optics
New Thermal Compensation
New Alignment Control

LIGO
Enhanced

LIGO
Advanced
LIGO

Upgrade&
Commissioning

Nov2005 Sep2007 July2009 Oct 2010

Initial

Construction begins 1994
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Michelson
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Fabry-Perot Michelson
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Power-Recycled Fabry-Perot Michelson
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Interferometer

?
How to detect it?

A suitably polarized GW
produces differential
phase modulation in the
two arms, which interferes
constructively at the beam
splitter and exits at the
output port.
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Detection: frequency domain picture

optical frequency -rf +rf-gw +gw

optical frequency -rf +rf-gw +gw

HETERODYNE (RF)

HOMODYNE (DC)

laser carrier
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Shot noise
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Heterodyne shot noise
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DC Readout vs balanced homodyne

laser source

Signal beam
+ Local oscillator
(coincident)

Arms
differentially
detuned

+

+

laser source

phase
modulator

Signal beam

Local oscillator
beam

Both arms
held on
resonance

-
+

Balanced homodyne DC Readout
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DC Readout: fringe view
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The Coupled Cavity
Michelson
interferometer
with 
power recycling
and
Fabry-Perot arms

power-recycling
cavity
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DC Readout

DARM_ERR

Looks pretty simple...
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DC Readout promises

• fundamental improvement in SNR

• technical improvement in SNR
 - perfect overlap of local oscillator and signal beams
 - junk light removal by OMC

• improved laser and oscillator noise couplings
  - exploit the amazing filtering ability of the interferometer

• Easier platform for squeezed light injection

• Easier to handle higher power
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Junk Light

Hermite-Gauss modes

Laguerre-Gauss modes ★ wikipedia

★ wikipedia
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DC Readout with OMC

DARM_ERR

Clean up the light at 
the AS port with an 
output mode cleaner.
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OMC design

Sam Waldman et al

beam from
interferometer

two
DC
photodiodes two quadrant 

photodiodes (QPDs)

monolithic, suspended, in-vacuum

bowtie cavity

fast and
slow
length
actuators

beam
steering
mirrors
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Dither Locking

in phase

180 degrees
out of phase

1. put in small dither sinusoid
2. demodulate output at same freq
== error signal!

no first-order response
at maximum
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OMC Length Control

DARM

Cavity length dithered at ~10 kHz via PZT actuator

PZT offloaded onto slow, long-range thermal actuator
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OMC Alignment Control

Initial idea: maximize transmission through the OMC

The mode cleaner will clean the modes if you can
identify what mode you want to keep.
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Junk light confuses simple servo

00 mode 01 mode

00 + 01 transmission
versus beam
pointing

01 mode leads 
the servo astray
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Drumhead Beacon Dither

Excite the test-mass
drumhead mode (9 kHz)

M.Evans/Nicolás(LHO)

Dither the "tip tilt" mirrors
at low frequency (~3 Hz)

Idea: Tag the photons in the arm by modulating the ETM

detect power in 
drumhead mode

demodulate at
dither frequency
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The eLIGO interferometer

homodyne

input
faraday
isolator

output
faraday
isolator

output mode cleaner

laser source input
mode
cleaner

Michelson
interferometer
with 
power recycling
and
Fabry-Perot arms

reflected
port

open
port

97%

3% heterodyne

radio-
frequency
oscillator

phase
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Commissioning

DECEMBER 2009

MAY 2008
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Noise Couplings

⚫ Oscillator amplitude
⚫ Oscillator phase
⚫ Laser intensity
⚫ Laser frequency
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Ref: J. Camp, et al., J. Opt. Soc. Am. A/ Vol. 17, No. 1/January 2000 
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Oscillator Amplitude noise
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Oscillator Phase noise
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Anatomy of intensity noise coupling
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Anatomy of intensity noise coupling II
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Laser intensity noise
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Laser frequency noise
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Shot noise
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Shot noise II
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Summary

Advanced LIGO

Enhanced LIGO

Initia
l LIGO

100 Hz 1 kHz10 Hz

strain
spectral 
density

frequency

Detector noise floor 
(lower is better)

1e-23

⚫ Installed OMC and set up DC readout
⚫ Commissioned control systems for OMC and DC readout
⚫ Measured and modeled noise couplings
⚫ Modeled and verified shot-noise performance
⚫ paper: http://arxiv.org/abs/1110.2815

1e-22

1e-21 1/rtHz

walrus without tusks

Enhanced LIGO:
25% increase in range,
factor of 2 in volume.
Lots of experience with
Adv LIGO technologies.
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Thanks for listening!

Thanks
for
listening!

Special thanks to 
Gaby González,  Valera Frolov,
Rana Adhikari, Adrian Melissinos, and
everyone who worked on Enhanced LIGO.
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DC Readout: phasor view

optical gain:

How do we choose the DARM offset?
• Must be much greater than residual DARM displacement
• Must overcome contrast defect and electronics noise
• But not excessively detrimental to power recycling

In practice: turn the knob to get the best sensitivity


