A Homodyne Optical Readout for Laser Interferometric Gravitational Wave Detectors

Tobin Fricke PhD defense October 14, 2011

LIGO-G1101153

Gravitational waves
LIGO & GW detectors
RF readout
DC readout
The output mode cleaner
Results

Gravitational waves

- predicted by general relativity
- generated by accelerating mass
- propagate at the speed of light
- not yet detected directly
- appear as a strain of spacetime

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad h_{\mu\nu}(x^{\lambda}) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cos(k_{\lambda}x^{\lambda})$$

Gravitational wave sources

	modeled	unmodeled
long-term	"pulsars"	stochastic background
transient	binary inspirals	supernova & other bursts

Gravitational wave detectors

Network of detectors

An interferometer of interferometers

Sensitivity (noise floor)

Enhanced LIGO

- Try out Advanced LIGO technologies
- Bet that increased sensitivity outweighs the downtime

```
exposure = time * (range)^3
```

Increase the laser power Output mode cleaner DC readout New Laser New input optics New Thermal Compensation New Alignment Control 10

Michelson

Fabry-Perot Michelson

Power-Recycled Fabry-Perot Michelson

Interferometer

A suitably polarized GW produces differential phase modulation in the two arms, which interferes constructively at the beam splitter and exits at the output port. How to detect it?

Shot noise

HETERODYNE (RF)

HOMODYNE (DC)

Heterodyne shot noise

The in-phase demoulation selectively samples the noisiest parts of the time series!

DC Readout vs balanced homodyne

The Coupled Cavity

DC Readout

DC Readout promises

- fundamental improvement in SNR
- technical improvement in SNR
- perfect overlap of local oscillator and signal beams
- junk light removal by OMC
- improved laser and oscillator noise couplings
 - exploit the amazing filtering ability of the interferometer
- Easier platform for squeezed light injection
- Easier to handle higher power

Junk Light

Hermite-Gauss modes

 \star wikipedia

Laguerre-Gauss modes

 \star wikipedia

DC Readout with OMC

monolithic, suspended, in-vacuum

Sam Waldman et al 25

OMC Length Control

Cavity length dithered at $\sim 10 \text{ kHz}$ via PZT actuator

PZT offloaded onto slow, long-range thermal actuator

OMC Alignment Control

The mode cleaner will clean the modes if you can identify what mode you want to keep.

Initial idea: maximize transmission through the OMC

Junk light confuses simple servo

The eLIGO interferometer

Commissioning

Noise Couplings

- Oscillator amplitude
- Oscillator phase
- Laser intensity
- Laser frequency

Ref: J. Camp, et al., J. Opt. Soc. Am. A/ Vol. 17, No. 1/January 2000

Oscillator Amplitude noise

Oscillator Phase noise

Anatomy of intensity noise coupling

Anatomy of intensity noise coupling II

Laser intensity noise

Laser frequency noise

Shot noise

$$x_{\text{shot}}(f) = \frac{1}{4} \sqrt{\frac{\lambda hc}{2\epsilon P_{IN}}} \frac{1}{g_{cr}\mathcal{F}} \left| 1 + i\frac{4\mathcal{F}L}{c}f \right|$$

parameter	symbol	H1	L1
input power	P_{IN}	$20.27~\mathrm{W}$	$11.65 {\rm W}$
arm cavity pole	f_c	$83.7 \ \mathrm{Hz}$	$85.6~\mathrm{Hz}$
finesse	$\mathcal{F}_{\mathrm{arm}}$	224	219
power recycling gain	g_{cr}^2	59	41
carrier fraction after phase modulation	$J_0(\Gamma)^2$	0.94	0.95
input optics		0.82	0.75
interferometer mode-matching		0.92	0.92
output faraday isolator transmission		0.94	0.98
DC readout pickoff fraction		0.953	0.972
OMC mode-matching		0.70	0.95
OMC transmission and PD quantum efficiency		0.95	0.95
net power efficiency	ϵ	0.42	0.56

Shot noise II

Summary

- Installed OMC and set up DC readout
- Commissioned control systems for OMC and DC readout
- Measured and modeled noise couplings
- Modeled and verified shot-noise performance
- paper: http://arxiv.org/abs/1110.2815

Thanks for listening!

Special thanks to Gaby González, Valera Frolov, Rana Adhikari, Adrian Melissinos, and everyone who worked on Enhanced LIGO.

TO SAUC

R

BRAND

DC Readout: phasor view

How do we choose the DARM offset?

- Must be much greater than residual DARM displacement
- Must overcome contrast defect and electronics noise
- But not excessively detrimental to power recycling

In practice: turn the knob to get the best sensitivity