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Abstract
The conversion of the read-out from the anti-symmetric port of the LIGO
interferometers into gravitational strain has thus far been performed in the
frequency domain. Here we describe a conversion in the time domain which
is based on the method developed by GEO. We illustrate the method using the
Hanford 4 km interferometer during the second LIGO science run (S2).

PACS numbers: 04.80.Nn, 95.55.Ym, 95.75.Wx

1. Introduction

The LIGO interferometers [1–3] are part of a world-wide network of gravitational wave
detectors constructed to detect waves from astrophysical sources such as spinning neutron
stars, coalescing binary black holes and neutron stars and supernovae.

Each of the two arms of the LIGO interferometers forms a resonant Fabry–Perot cavity.
This increases the effective arm-length and thus the sensitivity of the instruments. Gravitational
waves (along with seismic and other noise) change the relative length of the optical cavities
and produce an external strain

h(t) = Lx(t) − Ly(t)

L0
(1)

that is incident on the interferometer. Here, Lx(t) and Ly(t) are the effective lengths of the
x- and y-arms, respectively and L0 the effective length of the cavities in the absence of an
external strain.

The output of the interferometers, however, is not h(t). Rather, the output is derived
from light that escapes the anti-symmetric (‘dark’) port and provides the gravitational wave
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read-out. It is often called the error signal or ‘gravitational wave channel’. Here we will refer
to it as q(t).

The re-construction of the gravitational wave strain h(t) from the error signal q(t) is an
essential part of the data analysis. Since the LIGO instruments are linear the gravitational
wave strain incident on the interferometer is a linear functional of q(t), namely,

h(t) =
∫

R(t − t ′)q(t ′) dt ′, (2)

where R(t) is a suitable convolution kernel. Convolution in the time domain is simple
multiplication in the frequency domain so that

h(f ) = R(f )q(f ), (3)

where x(f ) denotes the Fourier transform of x(t). The ratio of the gravitational wave strain
to the error signal is called the response function R(f ). Finding the response function, or
alternatively the kernel R(t), is the procedure referred to as the calibration.

So far LIGO has used a calibration implemented entirely in the frequency domain [4], i.e.
using equation (3). On the other hand, the British–German interferometric detector GEO600
[5] has always produced a real-time calibrated h(t) using time-domain filters [6]. Some
progress towards the production of h(t) for the LIGO interferometers has already taken place
[7]. In this work we adapt the GEO time-domain calibration method to the case of the LIGO
interferometers.

In section 2 we provide a simple description of the length sensing and control system of
the LIGO interferometers, review the frequency domain calibration procedure and formally
show how the strain can be reconstructed from the error signal of the interferometer in the time
domain. In section 3 we describe a method to track changes in the response using sinusoidal
excitations injected into the instrument. In section 4 we explain how the digital filters used to
reproduce and invert the responses of various parts of the length control system are created
and show their performance in the case of the Hanford 4 km interferometer during the second
science run (S2). We also describe our signal processing pipeline. We conclude in section 5.

2. Simple description of the LIGO length sensing and control system

At low frequencies the external strain h is dominated by seismic noise and a control strain, xc,
is subtracted from it (see figure 1) by physically moving the mirrors in the Fabry–Perot cavity
to compensate for the seismic noise. This ensures that the residual strain that enters the optical
cavity, xr , remains small at low frequencies and keeps the optical cavities in resonance.

The optical cavity of the feedback loop is represented by the so-called sensing function,
C = α(t)C0. It converts the residual strain xr into the digital error signal q, also called the
gravitational wave channel, which is sampled at 16 384 Hz and recorded by the data acquisition
system. The error signal is measured in arbitrary units called counts. Here, C0 is a reference
sensing function that is measured at some time and α(t) is an overall (real) gain that depends
on the light power stored in the Fabry–Perot cavity which changes with the alignment of the
mirrors. It is important to keep track of this gain and the method we use is explained in
section 3. The frequency dependence of the sensing function is determined primarily by the
Fabry–Perot cavity in each arm and corresponds to a real pole at around 90 Hz.

A digital feedback filter, D = β(t)D0, is applied to the error signal q which produces a
digital control signal d. The digital control signal, like the residual signal, is measured in units
of counts. It is recorded by the data acquisition system at 16 384 Hz. Here, D0 is the feedback
filter at some reference time and β(t) is a real overall gain. The gain β(t) is also recorded
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Figure 1. Simple model for the feedback loop of the LIGO length sensing and control system. The
three filters that make up the feedback loop are the sensing function C = α(t)C0, which converts
the residual strain xr into the error signal q, the feedback filter D = β(t)D0, which converts the
error signal into the digital control signal d, and the actuation A, which converts the digital control
signal into the control strain xc that is subtracted from the external strain h. The digital signals
q(t) and d(t) are recorded by the data acquisition system at 16 384 Hz.

by the data acquisition system and may vary in time. For the first and second science runs
(S1 and S2), however, it was kept fixed. The filter D0 consists of a double pole at DC
and various low-pass filters as well as additional filters that keep the optics aligned and the
Fabry–Perot cavity in resonance.

The control signal d is converted to strain and used to adjust the length of the cavities
via the actuation function A. This is achieved by converting the digital signal d into currents
that run through coils placed near magnets glued on the back of the mirrors in the Fabry–
Perot cavity. The frequency response of the actuation function is largely determined by
the pendulum suspension of the mirrors and thus consists of a pair of complex poles at the
pendulum frequency fp ≈ 0.75 Hz.

The re-construction of the external strain from the output of the interferometer feedback
loop is referred to as the calibration. Calibration of LIGO data has thus far been performed in
the frequency domain by constructing a response function R(f ) that acts on the error signal
q(f ) of the feedback loop, namely,

h(f ) = R(f )q(f ). (4)

The response function can be derived from the feedback loop equations

xr(f ) = h(f ) − xc(f ), (5)

q(f ) = α(t)C0(f )xr(f ), (6)

xc(f ) = A(f )d(f ), (7)

d(f ) = β(t)D0(f )q(f ). (8)

From these equations it is easy to show that R(f ) in equation (4) is given by

R(f ) = 1 + α(t)β(t)G0(f )

α(t)C0(f )
, (9)

where G0 = AC0D0 is the reference open loop gain. The optical gain α(t) typically varies on
a time-scale of seconds. The digital gain β(t) may also vary but was kept fixed during S1 and
S2. Hence equations (5–8) apply for frequencies above a few tens of Hz.

We would like to perform this procedure entirely in the time domain. To do this we
reconstruct the strain time-series h(t) from the residual and control strains xr(t) and xc(t) as
follows. The residual strain xr is given by

xr(t) = h(t) − xc(t), (10)
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so that

h(t) = xc(t) + xr(t). (11)

The low frequency part of the external strain is dominated by the control strain xc(t) and the
high frequency part is dominated by the residual strain xr(t).

The optical gain of the sensing function α(t) typically varies on much longer time-scales
than the decay time of the impulse response of the inverse of the sensing function. Thus, the
residual strain can be formally re-constructed according to

xr(t) ≈ 1

α(t)
TC−1

0
[q(t)], (12)

where TC−1
0

is a linear time-invariant filter operator for the inverse of the sensing function C0.
Similarly the control strain xc(t) can be constructed from d(t) by filtering it through the

actuation function

xc(t) = TA[d(t)]. (13)

Therefore we can write the time series for the external strain in terms of the error and digital
control signals, q(t) and d(t) respectively, as

h(t) ≈ 1

α(t)
TC−1

0
[q(t)] + TA[d(t)]. (14)

Although d(t) is an output of the interferometer servo loop recorded by the data acquisition
system it can be computed from the error signal q(t) again assuming that β(t) varies in time
much more slowly than the decay time of the impulse response function of the feedback filter4.
In particular,

d(t) ≈ β(t)TD0 [q(t)]. (15)

So in terms of just the error signal q(t) the external strain can also be written as

h(t) ≈ 1

α(t)
TC−1

0
[q(t)] + TA

[
β(t)TD0 [q(t)]

]
. (16)

Note that, because β(t) is constant we could have factored it out of the second term on the
right-hand side of equation (16).

Thus, in order to produce the time-series for the external strain we need (1) to track
changes in the optical gain of the cavity, and (2) construct time-domain digital filters for the
inverse of the sensing function, the actuation function and the feedback filter. These problems
are dealt with in the next two sections.

3. Tracking changes in the calibration

In order to track changes in the optical gain of the cavity, calibration lines are injected into the
instrument by adding sinusoidal excitations to the control signal. This is a standard technique
used in gravitational wave detectors. In the LIGO interferometers three calibration lines are
injected; one at around 1 kHz, another one around 150 Hz near the unity gain frequency of
the open loop transfer function and a third one at a few tens of Hz.

The excitations may be added directly to the digital control signal d. Alternatively they
may injected into one of the two arms, as shown in figure 2. During S2 they were injected

4 It should be noted that for the digital filter D0 as it is currently defined this condition is never satisfied: the double
pole at DC results in an ill-behaved digital filter that does not have a well-defined impulse response time. Later we
show how to construct a modified digital filter D′

0 which does satisfy this condition.
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Figure 2. Details of the actuation and calibration line injection point for the LIGO interferometers’
length sensing and control system. This is the content of the actuation function A in figure 1.

into the x-arm of the interferometers and for the purposes of the following calculation we will
assume this to be the case. Generalizations to injections into the y-arm or to the case where
they are directly added to the digital control signal d are trivial.

Figure 2 depicts a more detailed model of the actuation function A that shows the injection
point. The actuation function A is given by

A = KygyAy − KxgxAx, (17)

where gx and gy are analogue gains measured at DC that depend on the configuration of each
of the arms and Kx and Ky are digital gains that are mainly used to compensate for differences
in the analogue gains. The functions Ax and Ay are the same for both arms except for digital
notch filters that take out frequency components of the signal at the violin mode frequencies
of the mirror suspensions. Since the calibration lines are not injected at those frequencies, for
our purposes the functions Ax and Ay are identical along both arms and we can write

Ax = Ay ≡ A∗. (18)

The excitation l is added to the x-arm signal after the digital gain Kx is applied to the
digital control signal. Therefore rather than equation (7), the feedback equation for the control
signal at the frequency of a calibration line fc reads

xc(fc) = A(fc)d(fc) − gxA∗(fc)l(fc). (19)

Using equations (17) and (18) we can write this as

xc(fc) = A(fc)[d(fc) − µl(fc)] (20)

with µ = gx/(Kygy − Kxgx). Since the calibration line is injected with an amplitude that is
large compared to the external strain, the residual strain is dominated by the control signal at
the frequency of the calibration line. So to a good approximation we can write the feedback
equation for the control signal, equation (5), as

xr(fc) ≈ −xc(fc). (21)

Combining equations (20) and (21) with the feedback loop equations, (6) and (8), which
remain unchanged, we arrive at two independent expressions; one for the product of α(t) and
β(t)

α(t)β(t) ≈ 1

G0(fc)

rd(fc)

1 − rd(fc)
(22)

where rd = d/µl, and another for α(t),

α(t) ≈ 1

A(fc)C0(fc)

rq(fc)

1 − rd(fc)
(23)

where rq = q/µl.
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Thus, the sensing function gain α(t) as well as its product with the feedback filter β(t)

are given by expressions involving the complex functions A,C0 and G0 as well as complex
ratios of the error and digital control signals to the injected excitation.

The digital feedback filter gain β(t) is recorded by the data acquisition system and so
equations (22) and (23) should be regarded as two independent ways of calculating the optical
gain α(t).

The ratios of the error and digital control signals to the injected excitation are computed
as follows. We take a fixed amount of time for each of the three time-series q(t), d(t) and l(t),
and apply a Hann window. We then perform a complex heterodyne at the frequency of the
calibration line fc and finally integrate over time. This procedure yields complex q(fc), d(fc)

and l(fc) which are used to compute the ratios rd and rq .
Since the quantities in equations (22) and (23) are complex and the measurement contains

noise from the external strain the optical gain α(t) has a small imaginary part. This imaginary
part is small only to the degree to which equation (21) is a good approximation. It should
be noted however that equation (21) can be made arbitrarily accurate by either making the
amplitude of the injected line arbitrarily large or, since the external strain has no component
that is correlated with the calibration lines, by integrating for an arbitrarily long amount of
time.

The optical gain α(t) is typically calculated on time-scales of a few tens of seconds
which, given the typical injected amplitudes of the calibration lines, is sufficient to reduce
measurement noise errors to an acceptable few per cent.

4. Implementation

4.1. Digitization of filters and filter performance

The three filters of the feedback loop can be described in terms of analogue zero and pole
models. This is the starting point of the digitization procedure.

The sensing function C0, as we have already discussed, consists essentially of a cavity
pole at around 90 Hz so the inverse of this filter is a zero at around 90 Hz. Unfortunately,
digitization of a zero does not lead to a well behaved digital filter. In order to resolve this
problem we introduce a pole at high frequencies in the inverted sensing function C−1

0 prior to
digitization. To ensure the magnitude and phase response of the filter do not change in the
frequency range of interest5 the additional pole is placed at a sufficiently large value of the
frequency. We then digitize the analogue filter using a bi-linear transform at a sample rate
consistent with the presence of the additional pole.

The sensing function also contains a unity gain of eighth order anti-aliasing elliptic filter
at 7570 Hz. This filter introduces frequency dependent phase shifts in the data that need to be
accounted for. The anti-aliasing filter contains a series of zeros on the imaginary axis, which
in the inverted filter turn into poles. To ensure that we obtain a well-behaved inverse digital
filter the zeros need to be moved away from the imaginary axis prior to digitization.

For the Hanford 4 km interferometer in the S2 run we generated a modified digital filter
C ′

0 with a bi-linear transform at a sample rate 16 times greater than the sample rate of the
time series q(t), i.e. 262 144 Hz. The zeros of the elliptic filter were moved away from the
imaginary axis by approximately 160 Hz and a single real pole was added at 105 Hz.

5 We chose the range to be from 30 Hz to 3000 Hz. This range covers the frequency bands used in gravitational wave
data analyses performed by the LIGO Scientific Collaboration so far.
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Figure 3. The magnitude (top left) and phase response (bottom left) of the analogue sensing
function C0(f ) (solid curve) and the modified digitized sensing function C′

0(f ) (dotted curve).
Top right, the absolute value of the relative error between the two magnitude responses and bottom
right, the difference in degrees of the two phase responses.

In figure 3 we show the magnitude and phase responses and errors of the analogue sensing
function C0, as well as our modified digitized sensing function C ′

0. The errors between 30 Hz
and 3 kHz are less than about 1% in magnitude and 5◦ in phase.

The LIGO digital feedback filters D0 are constructed from bi-linear transformations at
16 384 Hz of a series of analogue filters. The main one of these is a double pole at DC which,
on its own outside a feedback loop, is inherently unstable. In order to stabilize it, the analogue
filter can be modified by shifting the double pole away from zero by a small amount prior to
digitization. It should be noted that this procedure changes the sign of the feedback filter at
DC and introduces errors in the response of the filter at low frequencies. The rest of the filters
in D0 can be used exactly as they are implemented in the instrument.

Figure 4 shows the magnitude and phase responses as well as the errors of the original
digital feedback filter D0 and the modified digital feedback filter D′

0 for the Hanford 4 km
interferometer during S2. As expected the errors are larger at low frequencies. However, the
errors between 30 Hz and 3 kHz are less than about 1% in magnitude and 6◦ in phase.

The frequency response of the actuation function A is primarily determined by the
pendulum suspension of the mirrors and thus consists of a pair of complex poles at the
pendulum frequency fp ≈ 0.75 Hz. Additionally, the actuation function contains an anti-
imaging 4th order elliptic filter at 7570 Hz, a snubber used to suppress resonances in the
electronics and a measured 140 µs time-delay modelled using a fourth order Pade filter. The
actuator also contains a series of digital notch filters that remove components of the digital
control signal at the violin mode frequencies of the mirror suspensions.
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Figure 4. The magnitude (top left) and phase response (bottom left) of the original feedback
filter D0 (solid curve) and the modified feedback filter D′

0 (dotted curve). Top right, the absolute
value of the relative error between the two magnitude responses and bottom right, the difference
in degrees of the two phase responses.

All the analogue parts of the actuator have been digitized using a bi-linear transform at
16 384 Hz. We have used the existing digital notch filters as they are implemented in the
instrument.

Figure 5 shows the result of this procedure. Plotted are the magnitude and phase response
of the original actuation function A and the digitized actuation function used in the calibration
procedure A′ as well as the errors for the Hanford 4 km interferometer during S2. The errors
in the magnitude and phase are less than about 1% and 5◦ respectively at frequencies up
to a few hundred Hz. At higher frequencies the errors in the phase become larger but this
is unimportant: the contribution to the external strain h(t) from the control signal xc(t) is
negligible above a few hundred Hz.

4.2. Signal processing pipeline

LIGO data are available in so-called ‘science segments’. At these times the cavities are in
resonance and the instrument is sufficiently stable to produce data of scientific quality. The
length of science segments depends mostly on the level of seismic activity at the location of
each of the sites and can last anywhere between a few tens of seconds to tens of thousands of
seconds.

Science runs typically consist of a few hundred science segments. This lends the
calculation of the external strain for an entire science run amenable to a cost-effective Beowulf
cluster, which is an ensemble of loosely coupled processors with a simple network architecture.
In our implementation each processor computes the external strain for a science segment. The
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Figure 5. The magnitude (top left) and phase response (bottom left) of the original actuation
function A (solid curve) and the modified actuation function A′ (dotted curve). Top right, the
absolute value of the relative error between the two magnitude responses and bottom right, the
difference in degrees of the two phase responses. The large errors in the phase beyond a few
hundred Hz are unimportant because the contribution to the external strain h(t) from the control
signal xc(t) is negligible at these frequencies.

few hundred processes required can be scheduled to run on the cluster with a batch system
such as Condor [8]. Indeed, the pipeline described below was used to compute the external
strain for the entire S2 run for all three LIGO interferometers using Condor on the 300-node
Medusa Cluster [9] at UWM.

The first step of our procedure is to compute a table of values for the optical gain α(t) and
the digital feedback filter gain β(t) for an entire science segment. As we have described in
section 3, obtaining reliable values of the optical gain requires an integration time of a few tens
of seconds, so each science segment will have anywhere from a few to a few thousand values
of α(t). For the Hanford 4 km interferometer during S2 we chose to compute the optical gain
every 60 s.

Science segments can be up to a few tens of thousands of seconds long. Therefore we
cannot keep all the data for a science segment in the memory of a single node. As a result,
in our signal processing pipeline, each science segment must be divided into a number of
shorter parts. In the current implementation of the pipeline the data are calibrated in 16 s
sub-segments.

Figure 6 shows the digital processing pipeline used in the computation of the external
strain h(t) from the error signal, i.e. our implementation of equation (16). The top and bottom
branches show the computations of the residual and control strains respectively.

To avoid problems involving the dynamic range of double precision floating point
numbers, we first high-pass filter 16 s of the error signal q(t). For the Hanford 4 km



S1732 X Siemens et al

High Pass

(C ’ )−1
0

β(t)
0D’

T T
A’

d(t)

High Pass

Low Pass

+

+

x16

q(t) h(t)

x (t)r

xc(t)

α−1(t) T x 1/16

Figure 6. Signal processing pipeline for time domain calibration. Boxes labelled ×16 and ×1/16
denote up-sampling and down-sampling respectively.

interferometer during S2 we implemented the high-pass filter using a tenth order Butterworth
filter at 40 Hz. This is a conservative choice and the specific frequency and order of the filter that
is necessary depend on the low frequency character of the data. Generally, we expect these
choices to depend on the specific science run and interferometer. For numerical stability
the high-pass filter is divided into second-order sections. Furthermore, to ensure the phase of
the signal is not adversely affected by the filtering procedure, the high-pass Butterworth filter
is applied to each segment of the data once forward and once in reverse. It should be noted
that this procedure is acausal but since we are not attempting to simulate a physical process
this is unimportant.

Since the data are being calibrated in segments, care must be taken at the boundaries
between consecutive segments. The finite impulse response time of the Butterworth filter
produces a discontinuity at the beginning and also at the end of each segment (because the
high-pass filter is applied forward as well as in reverse). To ensure continuity across contiguous
segments we must allow for extra time at the end of each segment. Figure 7 shows a schematic
of the procedure we have implemented in the case of three consecutive 16 s segments. We
use one extra second of data at the end of each segment which allows sufficient time for the
high-pass filter to settle. We then apply the first half of the extra second to the start of the next
segment of data. The shaded areas in figure 7 contain data for which the filters have not settled
and are replaced with data from the previous or next segment. It should be noted that this
procedure does not remove the few hundred milliseconds of initial ringing of the Butterworth
filter at the start of each science segment.

To compute the residual signal xr(t) we first multiply each sample of the high-pass filtered
q(t) by a suitably interpolated value of the inverse of the optical gain α−1(t). Interpolations
are necessary here because the filter gains are typically computed over a time-scale of tens of
seconds, and are not available for every sample of the error signal q(t). We use the table of
values of the optical gain created for the entire science segment described above to compute
an interpolated α−1(t) for each sample of q(t) using a cubic spline. In principle we could also
have used band-limited interpolation but in practice this makes little difference.

The inverse sensing function filter has been digitized at 262 144 Hz, and therefore the
signal must be up-sampled by a factor of 16. The up-sampling procedure is simple: 15 zeros
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Figure 7. Schematic of three consecutive 16 s segments of data. To avoid the discontinuities
produced by the finite impulse response of the Butterworth filters in the pipeline, we filter an extra
second of data at the end of each 16 s segment. We then use the first half of this second at the
start of the next segment. Shaded areas contain data for which the filters have not settled and are
replaced with data from the previous or next segment.

are added between samples and the resulting time-series is smoothed with a low-pass filter at a
frequency lower than the Nyquist frequency of the original time-series q(t). For the Hanford
4 km interferometer during S2 we have chosen a 12th order Butterworth filter at 6 kHz which
is applied to each data segment once forward and once in reverse in second-order sections. To
ensure continuity across contiguous segments we apply a procedure along the lines described
above and in figure 7 adding an extra second of data at the end of each 16 s segment.

We then filter the up-sampled signal through the inverse of the modified sensing function
T(C ′

0)
−1 . We keep the history of the digital filter across segments to ensure continuity. Finally,

to produce the residual signal xr(t) sampled at 16 384 Hz, we down sample by a factor of 16
by picking out one out of every 16 samples.

In our pipeline the digital control signal is computed by multiplying each sample of the
high-pass filtered time series q(t) with an interpolated value of the digital filter gain β(t) and
then filtering the result by the modified digital feedback filter TD′

0
. Up to differences between

the original and modified digital feedback filter this produces the digital control signal d(t).
Note that we could have skipped these steps and instead used the digital control signal that is
read out from the instrument.

The low frequency components of d(t) as read out from the instrument and that computed
by our pipeline are different. This is mostly due to the high-pass filtering done on q(t) prior
to filtering it through TD′

0
. In figure 8 we show a plot of the digital control signal as recorded

by the data acquisition system as well as the one computed in our pipeline versus time for
a segment of data taken by the Hanford 4 km interferometer during S2. To allow for easier
comparison in figure 8 both the digital control signal as recorded by the data acquisition
system and the one produced by our pipeline have been high-pass filtered by applying four
second-order Butterworth filters at 40 Hz consecutively. This removes the low-frequency
components and makes the agreement between the two signals manifest.

The digital control signal is then filtered through the modified actuation function TA′

which produces the control strain xc(t). The histories for both the digital feedback filter TD′
0

and the actuator TA′ are stored in memory to ensure continuity across 16 s segments.
The calibrated strain h(t) is then computed by summing the residual and control strains

xr(t) and xc(t).
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Figure 8. Plot of the digital control signal d(t) as recorded by the data acquisition system (circles
joined by a line) and the digital control signal produced by our pipeline (crosses) versus time
in seconds for a segment of data starting at GPS time 729 276 672 taken by the Hanford 4 km
interferometer during S2. Due to the high-pass filtering done on the error signal q(t) prior to
filtering it through the modified feedback filter TD′

0
the low frequency components of these two

signals are different. To allow for easier comparison both signals have been high-pass filtered
using four second-order Butterworth filters at 40 Hz.

5. Conclusions

We have described a method to compute the strain h(t) from the output of the LIGO
interferometers. This method has been implemented off-line for all three interferometers
for the S2 run and results have been presented here for the Hanford 4 km interferometer. The
codes that implement the pipeline as well as the digital filters are available under the LSC
Algorithm Library (LAL [10]) and the procedure is fully automated under Condor [8].

The pipeline introduces errors associated with the measurement noise involved in the
calculation of the optical gain α(t) as well as the digitization and modifications of the filters.
We expect these errors to be less than about 10% in amplitude and 10◦ in phase across the
detection band. We have tested the pipeline by comparing Fourier transforms of time-domain
calibrated data with data calibrated in the frequency domain and found the differences to be
well within our errors. We have also faithfully reproduced the digital control signal in the time
domain from the error signal using our modified servo filter TG′

0
(see figure 8).

At this time a third science run (S3) has taken place and a similar off-line procedure will
be applied to generate strain data for that run. The current plan is to place an on-line system
at the LIGO sites to generate h(t) in the near future.
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