
Optical Torques in Suspended Fabry-Perot

Interferometers

John A. Sidles

University of Washington, School of Medicine, Box 356500, Seattle, Washington,
98195, USA

Daniel Sigg

LIGO Hanford Observatory, P.O. Box 159, Richland, WA 99352, USA

Abstract

High-power Fabry-Perot cavities with suspended mirrors are employed in gravita-
tional wave detection. The mirrors in such interferometers are subject to forces and
torques that are exerted by light pressure. This article derives a closed-form ex-
pression for the static torsional stiffness due to this effect. The torsional stiffness is
shown to scale as the fourth power of the beam spot size. In proposed designs for
next-generation interferometric gravitational wave detectors the torsional stiffness
is shown to be large enough to dominate the dynamics of the mirror suspensions.
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1 Introduction

The suspended mirrors in interferometric gravitational wave interferometers
form Fabry-Perot cavities in the Michelson arms, subject to high optical pow-
ers. Angular mirror motions cause the optical axis to wander off-center, such
that radiation pressure then exerts torque upon the mirrors. In this article we
calculate the torsional stiffness resulting from this effect.

Our analysis is based on virtual work principles and simple geometric con-
siderations. We consider only the quasi-static limit of the optical forces and
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torques, that is, we consider only mirror motions that are slow compared to
the ringdown time of the optical cavity. We show that in this limit the tor-
sional stiffness is determined entirely by the geometric figure of the cavity,
specifically via the g1 and g2 mirror parameters. We construct the stiffness
matrix for coupled translations and rotations of the two mirrors, and we show
that this matrix has a simple and physically illuminating analytic form.

The existence and importance of optically-generated torques was first recog-
nized in a 1991 article by Solimeno et al. [1]. Their analysis employed a so-
phisticated modal formalism. We will show that the modal and geometric
formalisms agree perfectly when they overlap.

However, the complexity of the modal formalism has obscured what a geomet-
ric analysis makes evident: in high-power interferometry the optically-induced
torsional stiffness can be large enough to overwhelm the stiffness of the mir-
ror suspension. Furthermore, we show that a suspended-mirror cavity always
has one torsional mode that is statically unstable. We show that the unstable
torsional stiffness can be minimized by choosing negative g-parameters for the
cavity mirrors. And finally, we show that increasing the beam diameter—in
order to minimize thermoelastic noise [2,3]—is necessarily accompanied by an
increase in the torsional coupling.

These findings illustrate that in high-power interferometry there are important
design challenges and dependencies between the optical cavity design, the
mirror suspension design and the sensing and control design.

2 Conventions

In describing mirror displacements, we assign to each mirror a right-handed
set of mirror-specific basis vectors {x̂, ŷ, ẑ}. These vectors have unit length,
and in accord with common usage they are defined to be:

ẑ ≡ normal to the reflecting surface, (1a)

ŷ ≡ vertical with respect to the floor, (1b)

x̂ ≡ ŷ × ẑ. (1c)

As shown in Fig. 1, it follows that

x̂1 = −x̂2 ŷ1 = ŷ2 ẑ1 = −ẑ2 . (2)

By convention a mirror’s yaw angle α describes right-handed rotation about
that mirror’s ŷ axis, with each mirror’s center of rotation coincident with the
center of that mirror’s reflecting surface.
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For the remainder of this article we confine our attention to the planar mo-
tions shown in Fig. 1, i.e., we omit translations along the ŷ axis (vertical
translations) and also rotations about the x̂ axis (pitch rotations). Then a
complete set of motional coordinates is {α1, α2, x1, x2, z1, z2}, where x = x1x̂
is the displacement of mirror 1 along the x̂ axis, etc.

By convention we assign a positive radius of curvature to concave mirrors. For
{R1, R2} the mirror radii, the well-known criterion for optical stability of a
Fabry-Perot cavity is [4,5]

0 < g1g2 < 1 (3)

where

g1 = 1− L/R1 , (4a)

g2 = 1− L/R2 . (4b)

It follows that g1 and g2 must have the same sign:

sign g1 = sign g2 ≡ sign g . (5)

The stability criterion (3) can also be shown to imply

if sign R1R2 = 1

R1 + R2 > L

else

R1 + R2 < L . (6)

These two inequalities allow us to express the one-way optical cavity length
L in terms of the mirror centers {c1, c2} as follows (see Fig. 1):

L = R1 + R2 − (sign R1R2)|c1 − c2| , (7)

without restriction on the signs of R1 and R2. Strictly speaking the above
expression has no meaning for flat mirrors, but our final results will also be
valid in the limit R →∞. The cavity length is then explicitly given in terms
of the displacements {α1, α2, x1, x2, z1, z2} by

L =R1 + R2 − sign(R1R2)

×
[
(z1 + z2 + R1 cos α1 + R2 cos α2 − L)2

+ (x1 + x2 + R1 sin α1 + R2 sin α2)
2

]1/2
. (8)
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(a) symmetric yaw

(b) antisymmetric yaw

Fig. 1. Motion of mirrors in a Fabry-Perot cavity, and the consequent displacement
of the mode axis. Due to light pressure, symmetric yaw motions (a) are statically
stable, while antisymmetic yaw (b) is statically unstable. Here the mirrors’ centers
of curvature are {c1, c2}, the mirror yaw angles are {α1, α2}, and the mirror-specific
basis vectors are {{x̂1, ẑ1}, {x̂2, ẑ2}}.

3 Virtual Work

For a non-degenerate cavity with reasonably high finesse F , and for adiabat-
ically slow mirror motions, we assume that the optical beam axis tracks the
geometric cavity axis as depicted in Fig. 1. For the present we make this ap-
proximation purely on physical grounds; later on (see (32)) we will draw upon
the modal analysis of Solimeno et al. to confirm that the corrections to the
stiffness matrix resulting from this approximation are small.

Then for P the optical power reflected from each mirror, a change δL in the
cavity length (8) is associated with mechanical work δW done on the cavity
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according to

δW =− 2P

c
δL light pressure

− Fstab(z1 + z2) stabilizing force (9)

where c is the speed of light. Here we have included the work done by an
externally-applied stabilizing force Fstab that holds the mirrors in position
against the pressure of the light; we will calculate the required magnitude of
Fstab shortly.

We allow the optical power to be an arbitrary function of the mirror coor-
dinates, P = P (α1, α2, x1, x2, z1, z2), but for compactness of notation we will
suppress the arguments of P . It will turn out that the explicit functional form
of P is not needed. The cavity length L too is a function of these same coor-
dinates, and we will need to know the functional form of L, which was given
in (8).

By convention, we have chosen the origin of our coordinate system such that
when the cavity is in mechanical equilibrium 0 = α1 = α2 = x1 = x2 = z1 = z2.
Introducing the sum and difference coordinates

x+ = x1 + x2 x− = x1 − x2 (10a)

z+ = z1 + z2 z− = z1 − z2 , (10b)

the expression (8) for L then implies that the following partial derivatives
vanish:

0 =
∂L

∂α1

=
∂L

∂α2

=
∂L

∂x+

=
∂L

∂x−
=

∂L

∂z−
. (11)

To first order in these five displacements δL = 0 and so δW = 0 is assured.
For the remaining displacement z+ we have ∂L/∂z+ = −1, and so δW = 0
requires

Fstab = 2P/c . (12)

Physically, Fstab is the force required to hold the mirrors stationary against
light pressure.

Later on in our analysis, the longitudinal optical spring constant k will appear:

k =
2

c

∂P

∂z+

=
2

c

∂P

∂z1

=
2

c

∂P

∂z2

. (13)

In contrast to all the other parameters of our analysis, the longitudinal spring
constant cannot be determined from purely geometric arguments. The light
pressure is a function of the finesse, and the state of resonance in the cavity.
Thus, a comprehensive analysis of Fabry-Perot optical resonances is required,
and in general k will turn out to depend on non-geometric parameters like the
cavity finesse and tuning, see for example [6].
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Fortunately, the torsional dynamics of the system—which are our main concern—
will turn out not to depend on k, and so we will not need to specify the
functional form of P .

4 The Stiffness Matrix

Given an arbitrary trajectory of the mirror coordinates, δW can be integrated
to obtain the net work W done on the cavity mirrors. The increment δW is said
to be conservative if W depends only on the end-point of the trajectories, such
that W = 0 for all closed-loop trajectories. In this case W may be regarded
as the effective potential energy of the mirror motion.

We now show that W is conservative for quasi-static mirror motions. Let q be
a vector of mirror displacements

q = [α1, α2, x+, x−, z+, z−].

Along an arbitrary trajectory q(s) parametrized by s ∈ (0, 1), we integrate
(9) to obtain the net work W done on the mirrors:

W =
∫

δW =− 2

c

∫ 1

0
ds P (q(s))

∂ L(q(s))

∂ s

− Fstab

∫ 1

0
ds

∂ z(s)

∂ s
. (14)

Here we have introduced the quasi-static assumption that the optical power
is determined solely by the mirror coordinates, i.e. P = P (q(s)).

We now expand W to second order in q. The first-order terms cancel by virtue
of the mechanical equilibrium condition (12), and the remaining second-order
terms are

W =
∑

i,j

−2

c

[
1

2
P

∂2L

∂qi∂qj

∫ 1

0
ds

∂

∂s
qi(s)qj(s)

+
∂ P

∂qi

∂ L

∂qj

∫ 1

0
ds qi(s)

∂

∂s
qj(s)

]
. (15)

The key step in proving that W is conservative is showing that the second
tensor in (15) is symmetric, i.e., for Tij defined by

Tij ≡ ∂ P

∂qi

∂ L

∂qj

, (16)

we have to show Tij = Tji.
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In proving symmetry, we have to accomodate nonzero values for the power
derivatives ∂P/∂qi. Physically, these derivatives describe the dependence of the
cavity power on mirror displacements. Such dependence can arise, e.g., from
mode mismatch created by mirror displacements. The virtual work analysis
must recognize and accommodate this dependence.

However, even allowing arbitrary partial derivatives of P , the proof of symme-
try is easy. From the equilibrium condition (11) and the definition of k (13),
T is trivially symmetric because its sole nonzero component is

∂ P

∂z+

∂ L

∂z+

= − ∂ P

∂z+

= −ck

2
, (17)

where k is the optical spring constant introduced in (13). All other derivatives
of L vanish by (11). This allows us to write W as:

W = −2

c

∑

i,j

[ (
1

2
P

∂2L

∂qi∂qj

+
1

2

∂ P

∂qi

∂ L

∂qj

)

×
∫ 1

0
ds

∂

∂s
qi(s)qj(s)

]
. (18)

The integral can be immediately evaluated to yield a net work W that explic-
itly depends only on the endpoint q(s = 1), and which is therefore conserva-
tive:

W = −1

c

∑

i,j

(
P

∂2L

∂qi∂qj

+
∂ P

∂qi

∂ L

∂qj

)
qi(s)qj(s)

∣∣∣
s=1

. (19)

Reverting to tensor notation this is

W =
1

2
q · κ · q +

1

2
k z2

+ . (20)

The stiffness matrix κ can be evaluated in a form suitable for engineering use
from (8), (13), and (19):

κ =
2P

c(R1 + R2 − L)

[
1 R1 R2

R1 R1(L−R2) R1R2

R2 R1R2 R2(L−R1)

]
. (21)

The factor (sign R1R2) in (8) turns out to enter only as (sign R1R2)
2 = 1,

and hence it does not appear explicitly. Here κ is coupled to the displacement
vector q

q =
[ x+

α1
α2

]
. (22)

Since W does not depend on x− or z−, these displacements are omitted from
κ in (21) and from q in (22).

Our sign conventions are such that positive eigenvalues of κ are associated
with statically stable displacement eigenvectors, and negative eigenvalues with
statically unstable displacement eigenvectors.
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From a physical point of view, the stiffness matrix (21) seems overly simple.
Why are important parameters like the cavity finesse and the cavity tuning
not present? Basically, the analysis is for small motions around a stationary
point on the optical axis and to first order the cavity length is not changed
by lateral or torsional displacements. So even though the cavity power can
depend in first order on lateral and/or torsional displacements (misaligned
case), this power-dependency is not coupled to a cavity length change, and
hence does no virtual work, and hence does not enter into the stiffness matrix.

It is important to recognize that this torsion stiffness is not local to each
suspension but rather a stiffness between two mirrors, which will couple them
together. Since the torsion stiffness is proportional to the light power in the
cavity, the two suspended mirrors will behave like independent pendula at low
light levels and like two strongly coupled oscillators at higher power.

5 The Long-Cavity Limit

Now we specialize our results to suspended cavities with length L À dM, where
dM is the mirror diameter. In long cavities the dynamics of the suspended
mirrors are dominated by the terms in κ that couple to the yaw angles α1 and
α2, while the terms that couple to the transverse mirror displacement x+ are
suppressed by one or more powers of dM/L.

This leads us to define a torsional stiffness matrix

κ̄ =
2P

c(R1 + R2 − L)



R1(L−R2) R1R2

R1R2 R2(L−R1)


 (23)

that has SI units of N ·m. By definition, κ̄ couples only to the yaw displace-
ments q = [ α1

α2 ], and thus describes the purely torsional stiffness of the mirrors.

In terms of g1 and g2, as defined in (4), κ̄ is particularly simple

κ̄ =
2PL

c(1− g1g2)



−g2 1

1 −g1


 . (24)

We see that the stiffness matrix is a smooth function of g1 and g2, and hence
a smooth function of 1/R1 and 1/R2, such that cavities in which one mirror
is flat or has negative curvature are accommodated by analytic continuation.
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The determinant of the stiffness matrix is

det
(

cκ̄

2PL

)
= −(1− g1g2)

−1 (25)

which is seen to be negative for all optically stable cavities. Recalling that the
determinant of a matrix is the product of its eigenvalues, we see that κ̄ always
has one positive and one negative eigenvalue, whose geometric mean satisfies
| det κ̄|1/2 ≥ 2PL/c.

It follows that whatever the design of the optical cavity, no suspended-mirror
Fabry-Perot cavity can be entirely free of torsional stiffness effects. In partic-
ular, a statically unstable torsional mode will always be present.

Seeking further insight, we recall that within a Fabry-Perot cavity formed
by spherical mirrors the beam intensity profile I(x, y) is a Gaussian function
whose width is conventionally described in terms of a spot size w:

I(x, y) =
2P

πw2
e−2(x2+y2)/w2

. (26)

The spot sizes w1 and w2 on the two cavity mirrors are related to the mirror
parameters g1 and g2 by [5]

w2
1 =

λL

π

[
g2

g1(1− g1g2)

]1/2

(27a)

w2
2 =

λL

π

[
g1

g2(1− g1g2)

]1/2

(27b)

which can be inverted to yield

g1 = ±w2

w1

[
1− w4

0

w2
1w

2
2

]1/2

(28a)

g2 = ±w1

w2

[
1− w4

0

w2
1w

2
2

]1/2

(28b)

where

w0 =
√

Lλ/π . (29)

The previous criterion for optical stability (3) can be shown to imply

w1w2 ≥ w2
0 . (30)

Thus w0 is the smallest possible geometric mean of the two spot diameters.

In order to accommodate larger optical power and in order to minimize thermal
noise terms[2,3] one will try to set the spot size on the mirrors as large as
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Fig. 2. Eigenvalues of the torsional stiffness matrix. The nondimensional matrix
cκ̄/(2LP ) is depicted, with (a) showing contours of constant positive eigenvalue
e+ and (b) showing contours of constant negative eigenvalue e−. By (24), these
satisfy e+e− = −(1−g1g2)−1. Negative eigenvalues are associated with the statically
unstable symmetric yaw depicted in Fig. (1)(b). Torsional instability is seen to be
least strong in the region g1 ∼ g2 ∼ −1.
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possible. Setting w = w1 = w2 and assuming w À w0 one can expand κ in
powers of w4

0/w
4. To leading order the eigenvalues are then given by

κmajor ' ∓LP

c

4w4

w4
0

, (31a)

κminor ' ± LP

c
. (31b)

where the negative solution for κmajor and the positive solution for κminor are
associated with positive g-parameters. The above approximation holds for a
range of beam sizes w À w0 as long as none of the higher order transverse
modes becomes resonant. We see that a large spot size is directly linked to
large torsional stiffness, such that the dominant eigenvalue is statically stable
if and only if sign g = −1.

Cavities with g1 ∼ g2 ∼ 1 are known as near-planar resonators, whereas
cavities with g1 ∼ g2 ∼ −1 are known as near-concentric resonators. Both
types of resonators are very sensitivity to misalignment. The difference is that
for a small rotation of one of the mirrors the axis of a near-planar resonator will
mainly shift with a small tilt, whereas the axis of a near-concentric resonator
will mainly tilt with a small shift. Recalling Fig. 1, we can easily see why
this makes the near-planar resonator far less stable than the near-concentric
resonator.

6 Comparison with Modal Analysis

In their modal analysis Solimeno et al. give a general expression [1, eq. 66]
for the optomechanical torque acting on a single mirror, and from this result
the diagonal element κ̄11 of the torsional stiffness matrix can be calculated.
We now carry through this calculation, and we show that the predicted tor-
sional stiffness agrees precisely with (24). Also, we calculate the corrections
due to finite cavity finesse and off-resonance tuning, and we show that these
corrections are small.

Adopting the notation of Solimeno et al., we define χ to be the two-way optical
phase of the cavity, such that χ = 0 mod 2π for on-resonance tuning. For F
the cavity finesse, we restrict our attention to near-resonance tunings, such
that χ ∼ O(F−1). Then starting from [1, eq. 66], and making successive use
of eqs. (67c, 68, 15, 67ff, 26, 2, and 13) of [1], then expanding to leading and
next-to-leading order in F−1 and χ, and expressing the results in terms of g1
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and g2 via (27ab), we arrive at the following modal prediction:

κ̄11 =
−2PLg2

c(1− g1g2)

×

1− π2

(1− g1g2)F2
− χ sign g

2
(
g1g2(1− g1g2)

)1/2


 . (32)

The leading term agrees exactly with our geometric result (24). The effects of
finite cavity finesse and off-resonance tuning are seen to be small, respectively
O(F−2) and O(χ), as was previously assumed on physical grounds.

In obtaining this result we modified the calculations of Solimeno et al. in one
respect. In accord with Milloni and Eberly [5], we altered the phase φ defined in
[1, eq. 13] to be φ = arccos(

√
g1g2 sign g) instead of φ = arccos(

√
g1g2). With-

out this modification the sign of the torsional spring for negative-g cavities is
wrong. Furthermore, by computing the diagonal terms only the importance of
the coupling between the two cavity mirrors has been missed. We will see in
the next section that this alteration has significant engineering implications.

7 Worked Examples and Discussion

As examples, we consider the current LIGO interferometer [7,8] as well as a
recent reference design for an next-generation high-power LIGO interferometer
[9]. LIGO cavities have a length L = 4 km. The light source in both cases
is a Nd:YAG laser that operates at λ = 1064 nm. The design specifies an
intracavity power of P = 15 kW for current LIGO and P = 830 kW for
advanced LIGO. In the current detector the two cavity mirrors have radii
of curvature R1 = 7.4 km and R2 = 14.6 km, respectively. For Advanced
LIGO a desirable beam spot size from the standpoint of thermal noise is

Table 1
Cavity parameters and stiffness values for current LIGO and the Advanced LIGO

design.

parameter LIGO advLIGO unit

P 15 830 kW

g1 0.460 ± 0.927 –

g2 0.726 ± 0.927 –

κpendulum ∼ 0.51 ∼ 6.0 N·m
κmajor -0.96 ∓301 N·m
κminor 0.25 ±11.5 N·m
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w1 = w2 = 6 cm, which by (4) and (28) implies R1 = R2 = 54.4 km for
positive-g mirrors, or R1 = R2 = 2.076 km for negative-g mirrors.

Table 1 summarizes these design parameters and gives the optical torsional
stiffness eigenvalues for both designs. For purposes of comparison an estimated
torsional pendulum stiffness of the suspended mirrors is listed as well. This
pendulum stiffness is estimated as follows. LIGO uses fused silica mirrors with
a diameter of dM = 25 cm and a thickness of t = 10 cm; this gives a weight
of M ∼ 10.8 kg. Advanced LIGO uses fused silica substrates with a diameter
of dM = 34 cm, a thickness of t = 20 cm and a weight of M ∼ 40 kg. The
suspension’s fundamental torsional frequency is f ∼ 0.5 Hz for LIGO and f ∼
0.6 Hz for advanced LIGO. This yields the approximate pendulum stiffnesses
given in Table 1. It should be kept in mind that giving a single number for the
pendulum stiffness in advanced LIGO paints a somewhat simplified picture
of the mirror suspension mechanisms, which actually have multiple torsional
modes.

The most striking feature of this table is the startlingly large major eigenvalue
of the torsional stiffness matrix for Advanced LIGO. On purely dimensional
grounds a much smaller eigenvalue might have been expected, of order LP/c ∼
11 N ·m (i.e., the same order as the minor eigenvalue). However, this natural
torque scale is multiplied by a dimensionless factor that scales as the fourth
power of the beam spot size: 4(w/w0)

4 ∼ 4(6/3.68)4 ∼ 28. For both designs,
when the detector operates at full power, the statically unstable mode of the
optical spring dominates the restoring torque of the mirror suspension.

For current LIGO the optical spring is weak enough that it can be compensated
by the auto-alignment system [10] without major changes to the feedback con-
trol system. For Advanced LIGO further analysis is needed, but by adopting
negative g-parameters for the mirrors, such that the dominant torsional stiff-
ness eigenvalue κmajor is positive, the dominant torsional mode might be made
statically stable—even strongly self-aligning—in pitch and yaw. The auto-
alignment system should then be made strong enough to compensate for the
unstable κminor. Since the auto-alignment system relies on the cavities to be
on-resonance, a reasonable strategy might be to lock at low power, engage the
auto-alignment system and then turn the input power up. This will require
the design of mirror suspension controllers that can adapt to the changing
dynamics of the mirrors during the power-up.

It should be kept in mind that our analysis is quasi-static. A more complete
analysis would include the time-lag as the cavity light responds to mirror
motion displacements, along the lines of the modal formalism of Solimeno et
al. [1]. One should also keep in mind that gravitational-wave detectors are
much more sophisticated than a simple cavity—usually consisting of multiple
coupled resonators built around a Michelson interferometer. These systems will
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require considerable further analysis to fully elucidate the trade-offs attendant
to the simultaneous interferometric goals of large optical power, large beam
diameter, and stable mirror suspension.

In summary, we have shown that high power Fabry-Perot cavities form an
optical torsion spring that couples the two cavity mirrors. In all cases, there
is one stable and one unstable torsional mode. In interferometric gravitational
wave detectors using high optical powers, the torsional stiffness of these op-
tical springs can be much larger than the torsional stiffness of the mirror
suspensions, and must be taken into account in the system design.
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