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Abstract

The dynamics of ligh tin Fabry-Perot ca vitieswith varying length and input laser
frequency are analyzed. At high frequencies, the response to length variations is very
di�erent from the response to laser frequency variations. Implications for kilometer-
scale Fabry-Perot cavities such as those utilized in gravitational-wave detectors are
discussed.
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1 Introduction

F abry-Perot cavities, optical resonators, are commonly utilized for high-precision
frequency and distance measurements [1]. Currently , kilometer-scale F abry-
P erotca vities withsuspended mirrors are being employ ed in e�orts to detect
cosmic gravitational waves [2,3]. This application has stimulated renewed in-
terest in cavities with moving mirrors [4{7] and motivated e�orts to model
the dynamics of such ca vitieson the computer [8{12]. Recently ,several stud-
ies addressed the process of lock acquisition in which the cavity mirrors mov e
through the resonance positions [4,13]. In this process,the Doppler e�ect due
to the mirror motions impedes constructive interference of light in the cavity
giving rise to complex �eld dynamics [14]. In contrast, F abry-Perot cavities
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Fig. 1. Mirror positions and �elds in a Fabry-Perot cavity.

held on resonance have usually been treated as essentially static. In this paper,
we show that cavities maintained on resonance in the presence of length and
laser frequency variations also have complex �eld dynamics. We derive the
exact condition for maintaining this state of dynamic resonance. Our analysis
is developed for the very long Fabry-Perot cavities of gravitational wave detec-
tors, but the results are general and apply to any cavities, especially when the
frequencies of interest are close to integer multiples of the cavity free spectral
range.

2 Field Equations

We consider a Fabry-Perot cavity with a laser �eld incident from one side
as shown in Fig. 1. Variations in the cavity length are due to the mirror
displacements xa(t) and xb(t) which are measured with respect to reference
planes a and b. The nominal light transit time and the free spectral range
(FSR) of the cavity are de�ned by

T = L=c; !fsr = �=T: (1)

The �eld incident upon the cavity and the �eld circulating in the cavity are
described by plane waves with nominal frequency ! and wavenumber k (k =
!=c). Variations in the laser frequency are denoted by Æ!(t). We assume that
the mirror displacements are much less than the nominal cavity length and
that the deviations of the laser frequency are much less than the nominal
frequency.

At any given place the electric �eld E in the cavity oscillates at a very high
frequency: E(t) / ei!t. For simplicity, we suppress the fast-oscillating factor
and de�ne the slowly-varying �eld as

E(t) = E(t) e�i!t: (2)
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To properly account for the phases of the propagating �elds, their complex
amplitudes must be de�ned at �xed locations, reference planes a1 and a2, as
shown in Fig. 1. (The small o�set � is introduced for clarity and will be set to
zero at the end of calculations.)

The equations for �elds in the cavity can be obtained by tracing a wavefront
during its complete round-trip in the cavity. The �rst propagation delay, �1,
corresponds to the light transit time from the reference plane a2 to the end
mirror and back to a2. The second propagation delay, �2, corresponds to the
light transit time from the reference plane a2 to the front mirror and back to
a2. They are given by

c �1=L� �+ xb(t� �1); (3)

c �2= �� xa(t� �2): (4)

Then the �elds in the cavity satisfy the equations:

E 0(t)=�rbE(t� 2�1) e
�2i!�1 ; (5)

E(t)=�raE 0(t� 2�2) e
�2i!�2 +

taEin(t� 2�=c); (6)

where ra and rb are the mirror re
ectivities, and ta is the transmissivity of the
front mirror.

Because the �eld amplitudes E and E 0 do not change signi�cantly over times of
order xa;b=c, the small variations in these amplitudes caused by the changes in
propagation times due to mirror displacements can be neglected. Furthermore,
the o�set � can be set to zero, and Eqs. (5)-(6) can be combined yielding one
equation for the cavity �eld

E(t) = taEin(t) + rarb e
�2ik[L+ÆL(t)] E(t� 2T ): (7)

Here ÆL(t) is the variation in the cavity length \seen" by the light circulating
in the cavity,

ÆL(t) = xb(t� T )� xa(t): (8)

Note that the time delay appears in the coordinate of the end mirror, but not
the front mirror. This is simply a consequence of our placement of the laser
source; the light that enters the cavity re
ects from the end mirror �rst and
then the front mirror.

There is still an arbitrariness in the position of the reference planes a and
b. These reference plane can be chosen so that the nominal length of the
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Fabry-Perot cavity becomes an integer multiple of the laser wavelength, mak-
ing e�2ikL = 1. Then the equation for �eld dynamics in Fabry-Perot cavity
becomes

E(t) = taEin(t) + rarb e
�2ikÆL(t) E(t� 2T ): (9)

For ÆL = 0, Laplace transformation of both sides of Eq. (9) yields the basic
cavity response function

H(s) �
~E(s)
~Ein(s)

=
ta

1� rarb e�2sT
; (10)

where tildes denote Laplace transforms.

3 Condition for Resonance

The static solution of Eq. (9) is found by considering a cavity with �xed length
(ÆL = const) and an input laser �eld with �xed amplitude and frequency
(A; Æ! = const). In this case the input laser �eld and the cavity �eld are given
by

Ein(t)=A eiÆ!t; (11)

E(t)=E0 e
iÆ!t; (12)

where E0 is the amplitude of the cavity �eld,

E0 =
taA

1� rarb exp[�2i(T Æ! + k ÆL)]
: (13)

The cavity �eld is maximized when the length and the laser frequency are
adjusted so that

Æ!

!
= �ÆL

L
: (14)

This is the well-known static resonance condition. The maximum amplitude
of the cavity �eld is given by

�E =
taA

1� rarb
: (15)
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Light can also resonate in a Fabry-Perot cavity when its length and the laser
frequency are changing. For a �xed amplitude and variable phase, the input
laser �eld can be written as

Ein(t) = A ei�(t); (16)

where �(t) is the phase due to frequency variations,

�(t) =

tZ
0

Æ!(t0) dt0: (17)

Then the steady-state solution of Eq. (9) is

E(t) = �E ei�(t); (18)

where the amplitude �E is given by Eq. (15) and the phase satis�es the condi-
tion

�(t)� �(t� 2T ) = �2k ÆL(t): (19)

Thus resonance occurs when the phase of the input laser �eld is corrected to
compensate for the changes in the cavity length due to the mirror motions.
The associated laser frequency correction is equal to the Doppler shift caused
by re
ection from the moving mirrors

Æ!(t)� Æ!(t� 2T ) = �2v(t)
c

!; (20)

where v(t) is the relative mirror velocity (v = dÆL= dt). The equivalent for-
mula in the Laplace domain is

C(s)
Æ~!(s)

!
= �Æ ~L(s)

L
; (21)

where C(s) is the normalized frequency-to-length transfer function which is
given by

C(s) =
1� e�2sT

2sT
: (22)

Eq. (21) is the condition for dynamic resonance. It must be satis�ed in order for
light to resonate in the cavity when the cavity length and the laser frequency
are changing [15].
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Fig. 2. Magnitude of C(s = i
). (The dashed line shows the decay of the maximum
value of C(i
) within each FSR, as a function of frequency.)

The transfer function C(s) has zeros at multiples of the cavity free spectral
range,

zn = i!fsrn; (23)

where n is integer, and therefore can be written as the in�nite product,

C(s) = e�sT
1Y
n=1

 
1� s2

z2n

!
; (24)

which is useful for control system design 1 . The magnitude of this transfer
function,

jC(s = i
)j = sin
T


T
; (25)

for imaginary values of s-variable (Fourier domain) is shown in Fig. 2. Its
phase is a linear function of frequency: argfC(i
)g = �
T .

To maintain resonance, changes in the cavity length must be compensated by
changes in the laser frequency according to Eq. (21). If the frequency of such

1 This formula is derived using the in�nite-product representation for sine: sinx =
x
Q
1

n=1

�
1� x2=�2n2

�
.
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changes is much less than the cavity free spectral range, C(s) � 1 and Eq. (21)
reduces to the quasi-static approximation,

Æ~!(s)

!
� �Æ ~L(s)

L
: (26)

At frequencies above the cavity free spectral range, C(s) / 1=s and in-
creasingly larger laser frequency changes are required to compensate for cav-
ity length variations. Moreover, at multiples of the FSR, C(s) = 0 and no
frequency-to-length compensation is possible.

4 Frequency Response

In practice, Fabry-Perot cavities tend to deviate from resonance, and a negative-
feedback control system is employed to reduce the deviations. For small devi-
ations from resonance, the cavity �eld can be described as

E(t) = [ �E + ÆE(t)] ei�(t); (27)

where �E is the maximum �eld given by Eq. (15), and ÆE is a small pertur-
bation (jÆEj � j �Ej). Substituting this equation into Eq. (9), we see that the
perturbation evolves in time according to

ÆE(t)� rarbÆE(t� 2T ) = (28)

�irarb �E [�(t)� �(t� 2T ) + 2k ÆL(t)] :

This equation is easily solved in the Laplace domain, yielding

Æ ~E(s) = �irarb �E
�
1� e�2sT

�
~�(s) + 2k Æ ~L(s)

1� rarb e�2sT
: (29)

Deviations of the cavity �eld from its maximum value can be measured by the
Pound-Drever-Hall (PDH) error signal which is widely utilized for feedback
control of Fabry-Perot cavities [16]. The PDH signal is obtained by coherent
detection of phase-modulated light re
ected by the cavity. With the appropri-
ate choice of the demodulation phase, the PDH signal is proportional to the
imaginary part of the cavity �eld, ÆE, and therefore can be written as

Æ ~V (s) / H(s)

"
Æ ~L(s)

L
+ C(s)

Æ~!(s)

!

#
; (30)
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Fig. 3. Bode plot of HL(i
) for the LIGO 4-km Fabry-Perot cavities. The peaks
occur at multiples of the FSR (37:5 kHz) and their half-widths (91 Hz) is equal to
the inverse of the cavity storage time.

where H(s) is given by Eq. (10). In the presence of length and frequency
variations, feedback control will drive the error signal toward the null point,
Æ ~V = 0, thus maintaining dynamic resonance according to Eq. (21).

The response of the PDH signal to either length or laser frequency deviations
can be found from Eq. (30). The normalized length-to-signal transfer function
is given by

HL(s) =
H(s)

H(0)
=

1� rarb
1� rarb e�2sT

: (31)

A Bode plot (magnitude and phase) of HL is shown in Fig. 3 for the LIGO [2]
Fabry-Perot cavities with L = 4 km, ra = 0:985, and rb = 1. The magnitude
of the transfer function,

jHL(i
)j = 1p
1 + F sin2
T

; (32)

is the square-root of the well-known Airy function with the coeÆcient of �nesse
F = 4rarb=(1 � rarb)

2. (In optics, the Airy function describes the intensity
pro�le of a Fabry-Perot cavity [17].)
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Fig. 4. Bode plot of H!(i
) for the LIGO 4-km Fabry-Perot cavities. The sharp
features are due to the zero-pole pairs at multiples of the FSR.

The transfer function HL has an in�nite number of poles:

pn = �1

�
+ i!fsrn; (33)

where n is integer, and � is the storage time of the cavity,

� =
2T

j ln(rarb)j : (34)

Therefore, HL can be written as the in�nite product,

HL(s) = esT
1Y

n=�1

pn
pn � s

; (35)

which can be truncated to a �nite number of terms for use in control system
design.

The response of a Fabry-Perot cavity to laser frequency variations is very
di�erent from its response to length variations. Equation (30) shows that the
normalized frequency-to-signal transfer function is given by

H!(s) = C(s) HL(s); (36)
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Fig. 5. Bode plot of H!(i
) in the vicinity of the �rst FSR for the LIGO 4-km
Fabry-Perot cavities.

or, more explicitly as

H!(s) =

 
1� e�2sT

2sT

! �
1� rarb

1� rarb e�2sT

�
: (37)

A Bode plot of H!, calculated for the same parameters as for HL, is shown
in Fig. 4. The transfer function H! has zeros given by Eq. (23) with n 6= 0,
and poles given by Eq. (33). The poles and zeros come in pairs except for the
lowest order pole, p0, which does not have a matching zero. Therefore, H! can
be written as the in�nite product,

H!(s) =
p0

p0 � s

1Y
n=�1

0
 
1� s=zn
1� s=pn

!
; (38)

where the prime indicates that n = 0 term is omitted from the product.

The zeros in the transfer function indicate that the cavity does not respond
(ÆE = 0) to laser frequency deviations if these deviations occur at multiples of
the cavity FSR. In this case, the amplitude of the circulating �eld is constant
while the phase of the circulating �eld is changing with the phase of the input
laser �eld.

The cusps in the magnitude ofH! at frequencies equal to multiples of the FSR,
such as the one shown in Fig. 5, can be utilized for accurate measurements
of the cavity length. This technique is being used to measure the length of
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the 4km LIGO Fabry-Perot arm cavities. The preliminary results con�rm the
functional form and sharpness of the cusp predicted by our calculations [18].
Measuring the length in this way can be performed while the cavity is in
lock. Alternative methods utilizing linear ramps of the laser frequency across
several FSR inevitably disrupt the lock and therefore cannot be used for in-situ
measurements.

5 Summary

We have derived the exact condition for resonance in a Fabry-Perot cavity
when the laser frequency and the cavity length are changing. In contrast to the
quasi-static resonance approximation where they appear equally (Eq. (26)), in
dynamic resonance changes in the laser frequency and changes in the cavity
length play very di�erent roles (Eq. (21)). Maintenance of dynamic resonance
requires that the frequency-to-length transfer function, C(s), be taken into
account when compensating for length variations by frequency changes and
vice versa. Compensation for length variations by frequency changes becomes
increasingly more diÆcult at frequencies above the FSR, and impossible at
multiples of the FSR where the cavity �eld does not respond to laser frequency
changes.

Cusps in the response of the cavity locking signal to laser frequency variations
at these discrete frequencies can be utilized to characterize long resonators.
For example, they can be utilized for making measurements of the length of
km-scale Fabry-Perot resonators with high precision. Such measurements are
presently underway using the 4-km-long arms of the interferometer at the
LIGO Hanford Observatory.

As can be seen in Fig. 4, the response of the PDH error signal to laser fre-
quency variations decreases as 1=
 for 
 � ��1 and becomes zero at fre-
quencies equal to multiples of the cavity FSR. In contrast, the response to
length variations is a periodic function of frequency as shown in Fig. 3. For

� ��1, it also decreases as 1=
 but only to the level of (1+F )�

1

2 returning
to its maximum value at multiples of the cavity FSR. Thus, at these selec-
tive frequencies the sensitivity to length variations is maximum whereas the
sensitivity to frequency variations is minimum.

These characteristics suggest searches for gravitational waves at frequencies
near multiples of the FSR. However, because gravitational waves interact with
the light as well as the mirrors, the response of an optimally-oriented inter-
ferometer is equivalent to H!(s) and not to HL(s) [5]. Thus, an optimally-
oriented interferometer does not respond to gravitational wave at multiples of
the FSR. However, for other orientations gravitational waves can be detected
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with enhanced sensitivity at multiples of the cavity FSR [19].
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