
NEW CONTROL AND DATA ACQUISITION SYSTEM IN THE
ADVANCED LIGO PROJECT*

R.Bork, M. Aronsson, D. Barker, J.Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, K. Thorne, LIGO

Project, California Institute of Technology, Pasadena, CA, USA.

Abstract
A new control and data acquisition system architecture is being implemented as part of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) project. This system employs a number of multi-core processor-based computers to perform real-time control, with connection to PCI Express Input/Output devices via fiber optic links. Requirements on the real-time control algorithms include servo loop rates of up to 65KHz and synchronous, deterministic operation to within a few microseconds. To attain this real-time performance, a patch has been developed to the Linu

Abstract
A new control and data acquisition system architecture is being implemented as part of the

Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) project. This system
employs a number of multi-core processor-based computers to perform real-time control, with
connection to PCI Express Input/Output devices via fiber optic links. Requirements on the real-
time control algorithms include servo loop rates of up to 65KHz and synchronous, deterministic
operation to within a few microseconds. To attain this real-time performance, a patch has been
developed to the Linux operating system that allows detachment of a processor core from the
Linux scheduler for the exclusive use of an assigned real-time task. An overview of the real-time
software design, which takes advantage of this "core locking", and the particulars of the Linux
patch are described in this paper.

PCIe I/O replaces VME
 LIGO custom chassis
 Commercial 17 slot PCIe backplane.
 Commercial fiber optic PCIe uplink to the real-time
control computer that is remotely located up to 300m
away.
 LIGO custom-designed timing module that provides
accurate ADC/DAC triggering at 65536Hz. This unit
derives its time from the new timing distribution
system that is locked to Global Positioning System
(GPS) time.
 Custom timing and interface backplane.
 Commercial PCIe ADC, DAC and Digital I/O Cards

Rack mount servers
replace VME processors
 2U, rack mount, server class machines with up to 2
CPUs with 6 cores each (12 core ea. w/hyperthreading)
PCIe interfaces to:

IOC, via PCIe fiber link
IRIG-B time code receiver for accurate time
stamping.
PCIe real-time network (to 300m)
Reflected memory real-time network (long
distance ie 4km)

Two GigE network interfaces
Control LAN
Data AcQuisition (DAQ) network

* LIGO was constructed by the California Institute of Technology and Massachusetts
Institute of Technology with funding from the National Science Foundation and operates
under cooperative agreement PHY-0107417.

Real-time Code Generator
Allows system scientists and engineers to develop
real-time control applications via familiar tool
Matlab® Simulink® Graphical User Interface (GUI)
 RCG library of supported components

 I/O Parts Library
 Digital Filters

 IIR
 Polyphase FIR

 EPICS Record communication
 Math functions
 Inter-Process Communications (IPC)

RCG Compilation
• RCG Perl scripts parse the model file, developing a
parts and code sequence list.
•Perl script produces the real-time C code source file.
•Compiler is invoked to produce the real-time
executable. This includes the user-defined application,
with standard RCG wrapper software. The latter
provides for proper code timing and sequencing,
standard set of diagnostics, connections to the data
acquisition system and I/O drivers. The result is a
Linux kernel object.
•An EPICS sequencer and database are built to support
communications to/from the RCG real-time process
and EPICS channel access. This allows the use of
various EPICS extension software to provide operator
interfaces via Ethernet.
•Various files are produced to describe all of the code
data channels available to the data acquisition system
and diagnostic test point information.
•Produces a basic set of EPICS display screens for use
as operator interfaces.

RCG Main Menu

Example Control Model

RCG Compilation Flow

Operating System
 Operating system for control computers is GPL
Linux, with LIGO custom patch. This patch was
developed to isolate a given CPU core from the Linux
system for the exclusive use of the real-time control
program.
The Linux kernel comes with a built-in mechanism to
isolate a CPU core from the rest of the Linux system,
both Linux kernel and user space. This mechanism is
called CPU hot-plug. This interface provides a function
in the user space to off-line or shutdown CPU cores.

This interface does not, however, provide a
mechanism to load user specified software
onto the core when it is set offline, as it loads
a CPU idle function.

Rather than having the core load an idle function as it
goes offline, the patch software loads the desired
control application process as an independent kernel
object.

The primary advantage of this method is
that it provides total core isolation for the
control process. It is now independent of the
Linux scheduler and no other tasks and/or
interrupt routines will be assigned to this
core.

Real-time Execution
 Executes on multi-CPU, multi-core computer systems
 CPU core 0 reserved for GPL Linux OS and non-real-
time critical applications.
 CPU core 1 reserved for I/O Processor (IOP)

 Initializes and controls ADC/DAC I/O
 Synchronously triggered by ADC trigger,
which is triggered by LIGO timing system at
65536 Hz.
 Synchronously triggers remaining user
control applications.

 CPU core 2 to n
 One control application per core
Applications operate at 2K to 64K
samples/sec
Applications may communicate in real-time
via:

 Shared Memory
 PCIe network (1µsec latency)
 Long range reflected memory (15
µsec latency over 4km range)

Built in Data Acquisition up to 4MByte/sec
per application via dedicated network.

Now that the core and software have been isolated, a
code scheduling mechanism must be provided.

This is accomplished by a special RCG
model known as the I/O Processor (IOP).

If the control process needs to be removed, for
example if new code is to be loaded, it is necessary to
unload the control process and reinstate the core as a
resource to the Linux operating system.

The control program is issued a stop flag
from user space.
The code now exists and returns.
The “cpu idle” routine is called, then the
CPU core is brought back on line using the
standard Linux kernel mechanism.

Real-time Software Execution Model

Additional Tools
A number of software tools were developed and/or
adapted to support this system, some of which are listed
below.
Each real-time application is provided with a number of
interfaces for monitoring, data acquisition and diagnostics

EPICS, via shared memory, allows use of EPICS
Channel Access to communicate via EPICS
standard tools.
Arbitrary Waveform Generator / Test Point
Manager (awgtpman) for diagnostic software
signal injection and transmission.
Dedicated DAQ network connection.

DAQ System
Archive data to disk

Individual channel rates from 1 to 64K
samples/sec.
Aggregate rates tested to 48MByte/sec
continuous with over 100,000 channels.

Serves data via a Network Data Server (NDS)
Real-time data feed or from archive
Client software developed for various
software packages.

Dataviewer
NDS client for plotting data,
real-time or from archive using
xmgrace.

Diagnostic Test Tool (DTT)
On line data analysis package
with GUI interface
Design and inject test signals
via awgtpman
Receive data via NDS.

IIR Filter EPICS MEDM Display

Foton IIR Filter Design Tool

	New Control and data acquisition system in the advanced ligo project*� R.Bork, M. Aronsson, D. Barker, J.Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, K. Thorne, LIGO Project, California Institute of Technology, Pasadena, CA, USA.
	Slide Number 2
	Slide Number 3
	Slide Number 4

