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Motivation
17 

 

Figure 2 | Composite Light Curve.  Broadband light curve of GRB 080319B, including 
radio, NIR, optical, UV, X-ray and !-ray flux densities.  The UV/optical/NIR data are normalized 
to the UVOT v-band in the interval between T0+500 s and T0+500 ks.  The Swift-BAT data are 
extrapolated down into the XRT bandpass (0.3-10 keV) for direct comparison with the XRT data.  
The combined X-ray and BAT data are scaled up by a factor of 45, and the Konus-Wind data 
are scaled up by a factor of 104 for comparison with the optical flux densities.  This figure 
includes our own data, plus one VLA radio data point50, and optical data from KAIT, Nickel, and 
Gemini-S22.  The deviations in the NIR points from T0+100 - 600 s are due to strong colour 
evolution in the SEDs at this time; these points were not included in our overall light curve fits 
(Supplementary Figure 6). 

Image from Racusin et al., “Broadband observations of the naked-eye -ray burst
GRB 080319B,” Nature 455 183–188 (2008),
http://www.nature.com/nature/journal/v455/n7210/pdf/nature07270.pdf.
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Detectability before merger

In advanced ligo,
inspiral signals are in
principal detectable
tens or hundreds of
seconds before the
gw from the merger
have reached the
earth.
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Advanced LIGO challenges

4� lower low-frequency cutoff ⇒ 40� longer waveforms

2� wider bandwidth ⇒ 10� more search templates
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Conventional inspiral searches: matched filter banks
General relativity predicts the gw signal due to the inspiral of a system
with known intrinsic source parameters (mass, eccentricity, spin).

plate starts in frequency, sets the length of the templates
and therefore directly influences the metric components,
the parameter space, and the number of templates Nb. In
[12], we showed how the size of the template bank changes
with fL. We also investigated the loss of match due to the
choice of fL. We generally set fL so that the loss of match
is of the order of a percent.

We briefly remind the reader how the proposed square
template bank works. First, templates are placed along the
m1 ! m2 or ! ! 0:25 line starting from the minimum to
the maximum mass. Then, additional templates are placed
so as to cover the remaining part of the parameter space, in
rows, starting at ! ! 0:25 along lines of constant "3 until a
template lies outside the parameter space. The spacing
between lines is set adequately. Distances between tem-
plates are based on a square lattice. An example of such a
placement is shown in Fig. 2. One of the limitations of the
placement is that templates are not placed along the eigen-
vectors of the metric but along the standard basis vectors
that describe the "0, "3 space. This approximation make the
ellipses slightly more overlapping than requested and may
also create holes when the orientation of the ellipses varies
significantly (i.e., at high mass regime). The square place-
ment is also overefficient as compared to a hexagonal
placement (see Fig. 3).

C. Bank efficiencies

Independently of the template bank placement, the tem-
plate bank must be validated to check whether it fulfills the
requirements [e.g., from Eq. (2.4)]. First, we perform
Monte Carlo simulations so as to compute the efficiency
vector, E, given by

 E "#s;#h# ! fmax
j

"ŝ"#s
i #; ĥ"#h

j ##gi!1;...;Ns;j!1;...;Nb
(2.9)

where Nb is the number of templates in the bank, Ns the
number of injections.

The vectors #s and #h correspond to the parameters of
the simulated signals and the templates, #s and #h are the
models used in the generation of the signal and template,
respectively. In all the simulations, we set #s !
fm1; m2; ’C; tCg. Furthermore, we can analytically max-
imize over the unknown orbital phase ’C and, therefore,
#h ! fm1; m2g.

The efficiency vector E and the signal parameter vector
#s are useful to derive several figures of merit. The cumu-
lative distribution of E (Fig. 3, bottom panel) indicates how
quickly matches drop as the minimal match is reached.
Nevertheless, the cumulative distribution function of E
hides the dependency of the matches upon masses.
Therefore, we also need to look at the distribution of E
versus total mass M (e.g., Fig. 3, top panel), or versus !, or
chirp mass, M (see appendix for an exact definition).
Usually, we look at EM only. Indeed, in most cases, the
dynamical range of ! is small [from 0.1875 to 0.25 in the

(BNS) case]. Finally, we can quantify the efficiency of a
template bank with a unique value, that is the safeness, S,
given by

 S R"#s;#h# ! minE"#s;#h#: (2.10)

1.1 1.15 1.2 1.25 1.3 1.35 1.4
0.25

0.3

0.35

0.4

0.45

0.5

0.55

τ
0
 (seconds)

τ 3 (
se

co
nd

s)

1.1 1.15 1.2 1.25 1.3 1.35 1.4
0.25

0.3

0.35

0.4

0.45

0.5

0.55

τ
0
 (seconds)

τ 3 (
se

co
nd

s)

FIG. 2 (color online). Two instances of template bank place-
ments. In the two plots, we focus on a small area of the
parameter space presented in Fig. 1. We used a square (top
panel) and hexagonal (bottom panel) placement. For conve-
nience, we rescale the metric components so that, g00 $ g11.
Each template position is represented by a small circle. Around
each template position, we plot an ellipse that represents an
isomatch contour of MM ! 0:95%. Each ellipse contains an
inscribed square or hexagon which emphasizes how ellipses
overlap each other. We can see that squares (top) slightly overlap
each other. This is because templates are laid along the "3 equal
constant line and not along the eigenvector directions, which
change over the parameter space. In the hexagonal placement,
we take care of this problem shortcoming, and therefore hex-
agons are perfectly adjacent to each other: the placement is
optimal.

T. COKELAER PHYSICAL REVIEW D 76, 102004 (2007)

102004-4

To detect any signal that nature
may provide, we can build banks of
filters each of which has optimal
signal to noise for a given source.

These matched filters tile the
parameter space discretely, for
example in a hexagonal grid.

Image from Cokelar, T, Phys. Rev. D 76, 102004 (2007).
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Time domain method: fir filter

The most straightforward way to build a matched filter bank is using
fir filters. fir filters can be understood as sliding dot products or
cross-correlation with one function time-reversed.

y [k ] =
N−1∑
n=0

b[n]x [k − n]

Pros:

Easy to implement

Zero latency

Cons:

Expensive if templates
contain many samples
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Frequency domain method: overlap-save
An alternative to the time domain
method is frequency domain
convolution via the fft.
Pros:

Computationally efficient even
for very long templates

Highly tuned ffts available
for most cpu architectures

Cons:

Input must be zero-padded,
output must be clipped

High latency: typically
comparable to length of
templates

Image courtesy of Douglas Jones, “Fast
Convolution,” Connexions, June 21, 2004,

http://cnx.org/content/m12022/1.5/.
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Novel methods can exploit properties of cbc signals

Coalescence�
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Inspiral signals are chirps: “slowly” evolving in frequency

Templates in inspiral filter banks are by design highly correlated
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Novel method: lloid
Low Latency Online Inspiral Detection

We exploit the chirp-like nature of inspiral signals by

Partitioning and downsampling the template coefficients
reducing number of filter coefficients by a factor of ∼ 102

Decimating the detector data in several stages
reducing sample rate by a factor of ∼ 102

Decomposing templates further using the singular value
decomposition (svd) reducing the number of filters by a factor of ∼ 101–102

resulting in an overall speedup by a factor of ∼ 105–106 over the
conventional td method.

N Fotopoulos (LIGO Caltech) LIGO-G1100864-v3 December 12, 2011 9 / 16



First trick: time slices

Inspiral signals are chirps ⇒ truncating the waveform at some time t
before merger results in a bandlimited signal.

Using known time-frequency relationship, e.g. f (t) = 1
�M

�
5

256
M

t

�3=8
,

split templates into orthogonal “time slices”: hi [k] =
S−1∑
s=0

{
hs

i [k] if ts 6 k
f 0 < ts+1

0 otherwise.

Can downsample time slices w/o aliasing:

hs
i [k] �

{
hi
�
k f

f s

�
if ts 6 k=f s < ts+1

0 otherwise.
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Second trick: singular value decomposition2

zero-mean, unit-variance, Gaussian random process, so

〈ni〉 = 0 , (2a)

〈ninj〉 = δij , (2b)

where 〈 〉 denotes the ensemble average. When the tem-

plate waveforms are normalized such that #"hα · #"hα =

$"hα · $"hα = 1, (2) yields

〈"h∗
α · "n〉 = 0 , (3a)

〈(#"hα · "n)2〉 = 〈($"hα · "n)2〉 = 1 . (3b)

When (3) is true, ρα is called the SNR and indicates how
likely it is that a signal is present in the data at that
point in time [9].

As explained in Sec. I, "hα · "hα′ > 0.95 for adjacent
templates. For those templates, ρα and ρα′ differ by at
most 5%. This suggests the existence of an approxima-
tion scheme that would allow the SNRs to be computed
to reasonable accuracy without explicitly evaluating all
the template inner products. Next, we will look at how
the truncated SVD can be used to replace the template
bank with an approximate, lower-rank, orthogonal basis
from which the SNRs can be reconstructed.

B. Reducing the number of filters with truncated
singular value decomposition

The waveforms are parameterized by their component
masses and we denote the αth template waveform of the
M templates required to search a given parameter space

as "hα = {h(m1, m2, ti)}. Rather than filter the data with
N = 2M real-valued filters (M complex-valued filters),
we linearly combine the output of a basis set of fewer,
real-valued, filters, "uµ, to reproduce ρα to the desired
accuracy, ρ′α. The goal is to have

ρ′α =
N ′∑

µ=1

Aαµ("uµ · "s) , (4)

where A is the complex-valued reconstruction matrix we
wish to find and the number of inner products is reduced
from N to N ′. In order to find the basis vectors, "uµ, we
use the SVD of the real-valued template matrix, H

H = {Hµj}
= {#"h1,$"h1,#"h2,$"h2, ...,#"hM ,$"hM} , (5)

where µ identifies rows of H and indexes the filter num-
ber, and j identifies the columns of H and indexes sample

points. In this definition, the row vectors "H(2α−1) and
"H(2α) are, respectively, the real and imaginary parts of

the αth complex waveform, "hα. An illustrative template
matrix can be seen in Fig. 1.

FIG. 1. An example template matrix, H. Top: An illus-
tration of how the input template time series is packed into
the template matrix. Bottom: The matrix of the template
time series where the y-axis indicates the template waveform
and the x-axis indicates the time samples. It should be noted
that these waveforms have been shortened and have not been
whitened for illustrative purposes.

The SVD factors a matrix such that [10, Sec. 14.4]

Hµj =
N∑

ν=1

vµνσνuνj , (6)

where v is an orthonormal matrix of reconstruction co-
efficients whose columns, vµν , satisfy

∑

µ

vµνvµλ = δνλ , (7)

"σ is a vector of singular values ranked in order of im-

⇓ 3

FIG. 2. An example basis matrix, u. Top: An illustration of
the resulting orthonormal basis vectors ordered from most to
least important (bottom to top) in reconstructing H. Bottom:
The matrix of basis waveforms produced by the SVD. The y-
axis indexes the basis waveforms and the x-axis indicates time
samples. It should be noted that these basis vectors have been
computed from shortened, non-whitened template waveforms
as mentioned in Fig. 1 purely for illustrative purposes.

portance in reconstructing the H, and u is a matrix of
orthonormal bases (e.g. an illustration can be found in
Fig. 2) whose rows are basis vectors, !uµ, satisfying

∑

j

uµjuνj = δµν . (8)

However, since a search for CBC signals only needs
waveform accuracies of a few percent to be successful, it

is possible to make an approximate reconstruction of H

Hµj ≈ H ′
µj :=

N ′∑

ν=1

vµνσνuνj , (9)

where N ′ < N . This reduces the number of rows of u
used in the reconstruction. We create a new basis matrix
u = {uνj} = {!u1, !u2, ...!uN ′}, where ν indexes the filter
number, j indexes sample points, and we have discarded
the basis vectors that look least like the template wave-
forms (i.e. with the lowest singular values). We can write
(4) as

ρ′α =
(
!H ′

(2α−1) − i !H ′
(2α)

)
· !s

=

N ′∑

ν=1

(
v(2α−1)νσν − iv(2α)νσν

)
(!uν · !s) , (10)

where we have made use of the packing of H (5) and (9).

C. Reconstruction accuracy

As we are not reconstructing the original template
waveforms exactly, there will be some inherent mismatch

between !H ′
µ and !Hµ. We want to know the expected

fractional SNR we will lose because of this difference.

As stated previously, the inner product of a (normal-

ized) template waveform, !Hµ, with itself is

!Hµ · !Hµ = 1 =
N∑

ν=1

v2
µνσ

2
ν , (11)

where, in the second line, we have made use of the or-
thogonality of basis vectors (8). A similar relation can
be found for the inner product of the reconstructed wave-

form, !H ′
µ, with itself

!H ′
µ · !H ′

µ =

N ′∑

ν=1

v2
µνσ

2
ν = 1 −

N∑

ν=N ′+1

v2
µνσ

2
ν . (12)

Because of the orthogonality of the basis vectors (8), the

inner product between a template waveform, !Hµ, with a

reconstructed waveform, !H ′
ν , is

!Hµ · !H ′
ν = !H ′

µ · !Hν = !H ′
µ · !H ′

ν . (13)

In addition, the two phases of the templates, which are
packed adjacently in H (5), are orthogonal

!H(2µ−1) · !H(2µ) =
N∑

ν=1

v(2µ−1)νv(2µ)νσ
2
ν = 0 . (14)

Time slices represent orthogonal
subspaces, but within one time slice the
templates are still highly correlated.

We decompose the time-sliced templates
further using the singular value
decomposition,

hs
i [k ] =

M−1∑
l=0

v s
il�

s
l u

s
l [k ] �

Ls−1∑
l=0

v s
il�

s
l u

s
l [k ]:

This gives us orthonormal basis templates
us
l [k ], related to the original templates

through a reconstruction matrix v s
il�

s
l .

Images from Phys. Rev. D 82, 044025 (2010).
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�
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Ns−1∑
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Table: Cost and latency of the td method, the fd method, and lloid.

flop/s flop/s number of
method (sub-bank) latency (s) (NS–NS) machines
time domain 4:9� 1013 0 3:8� 1015 ∼3:8� 105

frequency domain 5:2� 108 2� 103 5:9� 1010 ∼5:9
lloid (theory) 6:6� 108 0 1:1� 1011 ∼11
lloid (prototype) (0.9 cores) 0:5 ———— &10
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Related efforts

“Reduced basis catalogs” arXiv:1101.3765

“Summed parallel infinite impulse response” arXiv:1101.3765

Porting of algorithms to GPUs
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Conclusion

We have demonstrated a computationally feasible filtering
algorithm for the rapid or possibly even early-warning detection of
gws emitted during the coalescence of neutron stars and
stellar-mass black holes.

The lloid algorithm employs downsampled time-slices and
rank-reduced basis templates given by the svd.

arXiv:1107.2665
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