So far

- We have introduced the \mathcal{Z} transform
 - The digital equivalent of the Laplace transform
 - It facilitates the solving of difference equations
 - It allows to easily evaluate the system's response
 - It is critical in designing linear filters
- The Discrete-time Fourier Transform (DTFT)
 - $-z = e^{j\omega}$ in the \mathcal{Z} transform
 - Mapping into frequency space
- The Discrete Fourier Transform (DFT)
 - The sampling of the DTFT in the frequency domain
 - FFT: Fast Fourier Transform
 - Algorithm for the efficient computation of DFTs
- Sampling principle
 - The signal's bandwidth F_0 must be less than the Nyquist frequency $F_n = F_s/2$ in order to avoid *aliasing*

Digital Signal Processing 3

Digital Filters

- An LTI system to frequency select or discriminate
- Two classes
 - Finite-duration impulse response (FIR) Filters
 - Infinite-duration impulse response (IIR) Filters

FIR filter

- The filter's unit impulse response is of finite duration
 - Its response settles to zero in a finite time
 - There is no "feedback"
- Difference equation

$$y(n) = \sum_{m=0}^{M} b_m \ x(n-m)$$

• Also referred to as *recursive* or *moving average* filters.

IIR filter

- The filter's unit impulse response is of infinite duration
- Difference equation

$$\sum_{k=0}^{N} a_k \ y(n-k) = x(n)$$

 Output is recursively computed from previous computed values → infinite duration response

FIR filter example: Moving Average (MA)

In general

$$y(n) = \sum_{i=0}^{N} b_i x(n-i), \qquad b_i = \frac{1}{N+1}$$

For
$$N = 1$$

 $y(n) = \frac{1}{2} x(n) + \frac{1}{2} x(n-1)$

To the \mathcal{Z} domain

Recall: when an LTI system is represented by the difference equation

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{l=0}^{M} b_l x(n-l)$$

Then

$$H(z) = \frac{\sum_{l=0}^{M} b_l \ z^{-l}}{1 + \sum_{k=1}^{N} a_k \ z^{-k}}$$

System function H(z)

Coefficients *a* and *b* are

$$a_0 = 1, b_0 = b_1 = 1/2$$

$$H(z) = \frac{1}{2} (1 + z^{-1}) = \frac{1}{2} \left(\frac{z+1}{z} \right)$$

With a pole at the origin, and a zero at -1.

Pole and zero map of H(z)

Recall: difference equation and the filter command

• In general, a difference equation is of the form

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{l=0}^{M} b_l x(n-l)$$

- The MATLAB filter command solves the difference equations numerically
 - Given the input sequence x(n), the output sequence y(n) is computed using

Let's apply the filter to a data stream

• Step function imbedded in noise is shown to the right.

2-point moving average

MA_example.m

Matone: An Overview of Control Theory and Digital Signal Processing (5)

The impulse response function h

Matone: An Overview of Control Theory and Digital Signal Processing (5)

The impulse response function hFrom the filter command

$$h(0) = h(1) = \frac{1}{2}$$

1

The system's response

$$y(n) = \sum_{i=0}^{N} b_i x(n-i) = \sum_{i=0}^{N} b_i \delta(n-i)$$
 with $b_i = \frac{1}{N+1}$
 $h(n) = b_n$

Comparing the filter output with convolution

LIGO-G1100863

Increasing filter order

LIGO-G1100863

Increasing filter order

11-point moving average

Increasing filter order

Pole and zero map of H(z)

Matone: An Overview of Control Theory and Digital Signal Processing (5)

Frequency response of moving average filter

MA_exampleB.m

Suppression but with phase delay

Analog-to-digital filter transformation

- 1. First, we design an analog filter that satisfies the specifications.
- 2. Then we transform it into the digital domain.
- Many transformations are available
 - Impulse invariance
 - Designed to preserve the shape of the impulse response from analog to digital
 - Finite difference approximation
 - Specifically designed to convert a differential equation representation to a difference equation representation
 - Step invariance
 - Designed to preserve the shape of the step response

Bilinear transformation

- Most popular technique
- Preserves the system's function representation from analog to digital

LIGO-G1100863

Transformation example

Transform

$$H_a(s) = \frac{s+1}{s^2 + 5s + 6}$$

into a digital filter with sampling $T_s = 1 s$.

Sol. $H(z) = H_a\left(\frac{2}{0.1} \cdot \frac{1 - z^{-1}}{1 + z^{-1}}\right) = \frac{3 + 2z^{-1} - z^{-2}}{20 + 4z^{-1}}$

Transformation example

Matone: An Overview of Control Theory and Digital Signal Processing (5)

Transformation example 10th order butterworth filter wit cutoff at 100 Hz: analog and digital

Matone: An Overview of Control Theory and Digital Signal Processing (5)

Filter Design

- Filter specifications
 - Constraints on the suppression factor
 - Constraints on the phase response
 - Constraints on the impulse response
 - Constraints on the step response
 - FIR or IIR
 - Filter order
- Typical filters

- Low pass, High pass, Band pass and Band stop

FIR or IIR?

- Advantages of FIR filters over IIR
 - Can be designed to have a "linear phase". This would "delay" the input signal but would not distort it
 - Simple to implement
 - Always stable
- Disadvantages
 - IIR filters are better in approximating analog systems
 - For a given magnitude response specification, IIR filters often require much less computation than an equivalent FIR

Low pass (LP) filter specifications

- LP filter
 - low frequencies pass, high frequencies are attenuated.

Include

- target magnitude response
- phase response, and
- the allowable deviation for each
- Transition band
 - frequency range from the passband edge frequency to the stopband edge frequency

Ripples

 The filter passband and stopband can contain oscillations, referred to as ripples. Peak-to-peak value, usually expressed in dB.

High pass (HP) filter specifications

- HP filter
 - High frequencies pass, low frequencies are attenuated.

Band pass (BP) filter specifications

- BP filter
 - a certain band of
 frequencies pass while
 lower and higher
 frequencies are
 attenuated.

Band stop (BS) filter specifications

- BS filter
 - attenuates a certain band of frequencies and passes all frequencies not within the band.

A few types of IIR filters

- Butterworth
 - Designed to have as flat a frequency response as possible in the passband
- Chebyshev Type 1
 - Steeper roll-off but more pass band ripple
- Chebyshev Type 2
 - Steeper roll-off but more stop band ripple
- Elliptic
 - Fastest transition

Sampling frequency set to 16384 Hz

Comparison

Filter order set to 10, cutoff set at 1 kHz

Matone: An Overview of Control Theory and Digital Signal Processing (5)

filter_plots.m

- Chebyshev filter has a steeper roll-off with respect to the **Butterworth filter**
- The elliptical filter has • the fastest roll-off

 10°

- Elliptical's attenuation • <u></u> 10⁻² factor at high frequency is constant, unlike the others.
- Elliptical has the least • phase delay with respect to the others
- Notice: the • performance of a FIR window filter of 10th e(H) [deg] order is also shown. For it to achieve the same performance as the others, the filter order must be increased significantly

LIGO-G1100863

Comments

Low-pass filters, Fs=16384 Hz, cutoff at 1000 Hz, 10th order The Butterworth 1.1 filter has a flattest 1 response when 0.9 compared to the $^{\pm 0.8}$ 0.7 others. 0.6 0.5 10² 10⁰ 10^{1} 10^{3} There is a trade off filter plots.m The faster the roll-0 offs, the greater -20 -40 -60 the ripples **IIR Butterworth** IIR Chebychev Type 1 **IIR** Elliptical -80 FIR Window 10° 10¹ 10^{2} f [Hz]

MATLAB's fdatool

- Filter Design and Analysis Tool
- Allows you to design (visually) a digital filter
- Can export the filter into different formats
 - Filter coefficients
 - MATLAB's transfer function object

>> fdatool

M 1	Filter Design & Analysis Tool - [ur	titled.fda]		_ 🗆 ×
File	Edit Analysis Targets View Wi	ndow Help		
D I	Q Q Q 🔊 🗗 🖶 🗧	X 🗅 🖪 🖸 😡	# 🙁 🗅 🖵 🔀 😡 🛈 📐	. ⊡" \?
	Current Filter Information Structure: Direct-Form FIR Order: 50 Stable: Yes Source: Designed Store Filter Filter Manager	Filter Specifications	Apass ↑ Apass ↑ Apass Fpass Fstop	A _{stop} Fs/2 f (Hz)
🛐 🚭 🖼 🏋 🚺 🗱	Response Type Lowpass Highpass Bandpass Bandpass Differentiator Differentiator IIR Butterworth FIR Equiripple FIR Equiripple	Filter Order	Frequency Specifications Units: Hz Fs: 48000 Fpass 9600 Fstop 12000	Magnitude Specifications
K -	Design Filter			

MATLAB's fdatool

Exporting

- Coefficients a, b
- Transfer function object
- Second-order-sections

The system function H(z) can be factored into secondorder-sections. The system is then represented as a product of these sections.

Assuming input signal x, the output y:

```
y = filter(Hd,x)
y = filter(b,a,x)
y = sosfilt(sos,x)
```


- Transforms analog signal to digital sequence
- Main components of an A/D converter

- Transforms analog signal to digital sequence
- Main components of an A/D converter

- Transforms analog signal to digital sequence
- Main components of an A/D converter

- Anti-aliasing filter
 - Signals in physical systems will never be exactly bandlimited, aliasing can occur
 - (Analog) lowpass at the Nyquist frequency.
 - This minimizes signal energy above the Nyquist frequency, minimizing aliasing

$$x_a(t) \longrightarrow AA \xrightarrow{\tilde{x}_a(t)} C/D \xrightarrow{x(n)}$$

- Anti-aliasing filter
 - Signals in physical systems will never be exactly bandlimited, aliasing can occur
 - Analog lowpass filter that minimizes signal energy above the Nyquist frequency

And back: Digital-to-Analog conversion

Two steps involved

- Conversion to rectangular pulses
- Pulses cause multiple harmonics above the Nyquist frequency
- This excess noise is reduced with an (analog) low pass filter (or reconstruction filter)

$$\begin{array}{c|c} x(n) & \text{Convert to} & x_s(t) \\ \hline & \text{impulses} & \text{LP filter} & x_a(t) \end{array}$$

THANK YOU!