So far... @
* Signals to sequences

* Convolution y(n) between sequences a(n) and b(n) is defined as

ym) = > atk) b(n - k)

k=—o0
or
y(n) = a(n) » b(n)
* Correlation 7y, (1) between two sequences x(n) and y(n)
Ty (D) = x() x y(=D)
* Impulse response of a system h(n)
— Where h(n) is the unit sample or impulse response of the LTI system

— System is stable if
+ 00
D @] < oo

— In general, the response sequence y(n) to the input sequence x(n) can be re-
written as

co

ym) = Y x(k) h(n— k) = x(n) * h(n)

k=—c0



So far...

» Differential to difference equations
dx(t)
y) =— -y =x(n)—x(n-1)

— General form of a difference equation

N

2 a,y(n—k) = i b, x(n —m)
m=0

k=0

— MATLAB’s filter command to numerically solve difference

equations:
>> y = filter (b, a, x)

— In particular the impulse response h(n) of a system can be found
>> h = filter (b, a, delta)



LSC)
Digital Signal Processing 2 @

* |n the analog domain, the Laplace transform £

— Relates time-functions to frequency-dependent
functions

* For the digital domain, the Z transform

— Relates time-sequences to (a different, but related
type of) frequency-dependent function



LSC,
m The Z Transform @

* This discrete-time equivalent of the Laplace transform
is defined as

0.0)

X(2) = Z[x(n)] = z x(n) z~™

n=-—oo

x(n) = Z 'X(2)] = i f X(2) z" ldz
2TT]

where z = |z|e/? is the complex frequency.

* The values of z for which the sum converges define a
region in the z-plane referred to as the region of

convergence (ROC).



The set of z values for which X (z) exists is called
the region of convergence (ROC)

R,._ <|z| < R,4

ROC Im(z)
\ /Rx+
>R
Re_| “




C,
- The Z Transform @

This transformation is useful in

1. Solving constant coefficient difference
equations

2. Evaluating the response of an LTI system to a
given input, and

3. Designing linear filters



Exa m p | e Geometric series: @E

letx(n) =1 forn=0,1,2 .... x™ = 1 if || < 1
=0

Find its Z transform and its ROC. & 1 -«

X@ =Y x(mz ™=y 2" =14z 4272+

n=0 1 n=0
= 1 _ Z—1 Im(Z)
A

if|z71] < 1or|z| > 1 ROC

Transfer function:
zero at the origin,
pole at 1 — > Re(z)

X(Z)z z |Z|=1
z—1




Let x(n) = 2™ forn = 0,1,2 ... Find its Z transform and its
ROC.

X@ =y 2z =y 2z =1+22 44z 4
n=0 n=0
_ 1
T 1-221 1741(2)

if|2z71 <1or]|z| > 2 ROC

Transfer function:
zero at the origin,
pole at 2 Z// > j{e(z)

Z —
X(2) = |z| =
zZ— 2




" Example @

Let x;(n) = a™ u(n),0 < |a| < oo. Findits £
transform and its ROC.

X1(2) = Z z T 1—azL
. 0
if ‘_‘ <1 Poleatz =a Infk(z)

Zero at origin

§

X1(z) = [ > Re(@)

Z— d

LIGO-G1100863 Matone: An Overview of Control Theory and Digital'Signal Processing (4)



LSC)
In general @E

Many of the signals in DSP have Z transforms that
are rational (ratio of two polynomials) functions of

bo T b1Z_1 + -+ bMZ_M

X —
(Z) Ao T a1Z_1 + .-+ aNZ_N
§V=1(Z — 71)
k=1(Z — Px)

where p;. is the k-th pole and z; is the /-th zero of
X(2). Each pole is indicated by an ”x” and each zero
by an “0” in the z-plane.



Special properties of
the Z Transform

e | Convolution

— Given two sequences x;(n) and x,(n), their
time-domain convolution becomes a
multiplication process in the frequency domain

Zlx1(n) * x,(n)] = X1(2) - X2(2)

 Sample shifting

Zlx(n —ne)| = z7"0X(2)



LSC

(Some) £ Transform pairs

d(n) 1 Any z
u(n) - 1z| > 1
1—2z"1

1
o ul) 2| > |al
1—az1
az 1
na*uln) |1z| > |a

(1—az1)2

LIGO-G1100863 Matone: An Overview of Control Theory and Digital Signal Processing (4) 12



And back to sequences: @E

The Inverse Z Transform
* Just like in the Laplace domain

e Use the partial fraction method to reduce a
complex X (z) to simpler parts.

* Use the table of transform pairs to determine the
sequence. fM >N
* |[n general

bo T blz_l + -+ bMZ_M




™ Example @E

Compute the inverse Z-transform of

X(z) = 1
@ =3 r1014>
Sol:
Re-write X(z) in terms of powers of z~1
~1
A
X —
2 3—4z7 14272
At the MATLAB prompt 1/2 1/2
>> b=[0 1];a=[3 -4 17; X(Z) —
>> [R,p,C]l=residuez (b, a) 1 —_ Z_l 1 1
R = 1 - §Z
0.5000 Using the table of
-0.5000 :
o - transform pairs
= n
1.0000 1 1/1
0.3333 x(n) == u(n) —=|=| un)

c = 2\3
[

LIGO-G1100863 Matone: An Overview of Control Theory and Digital Signal Processing (4) 14



Example @

Compute the inverse Z-transform of
1

X(z) = ,1z] > 0.9
(2) (1-09z71H)2(14+09z71) 121
Sol:
Using MATLAB to do the partial fraction
>> b =1; a = poly([0.9, 0.9, -0.9])
a et
1.0000 -0.9000 -0.8100 0.7290

1

Y(7) =
(2) = 13007708122 70729 23




Example

>> [R,p,Cl=residuez (b, a)

R =
0.2500
0.2500 + 0.00001
0.5000 - 0.00001
D =

-0.9000
0.9000 + 0.00001
0.9000 - 0.00001

[ ]



Example @E
Sample shifting

X(z) = 0.25 0.5 0.25
2T 120921 (1—09/ 2 110071
0.25 0.5 (0.9z71) 0.25

_I_
1-09z1 0.9@(1 09z 2] [1+09z ¢

Using the £ Transform pair table

x(n) =[0.25-0.9" - u(n) H

0.5
— (n+ 109D . y(n+1) *

0.9
0.25:-(—0.9)™ - u(n)

LIGO-G1100863 Matone: An Overview of Control Theory and Digital Signal Processing (4) 17



LSC),

Exercise

Determine the Z-transform of the impulse
response

h(in)=26(n—2) +3u(n—3)



C) Exercise

Determine the Z-transform of the impulse
response

h(in)=26(n—2)+3u(n—3)

Sol:
Zlh(n)] = 2Z[6(n — 2)] + 3Z[u(n — 3)]

Using the sample shift property
ZIh()] =22z7%2Z[6§(n)] + 3 z73 Z[u(n)]

1
Hz)=2z"%+3z3
2772 —-2z7z34+3z73

H(z) =




LSC,
= System function H(z) @

The system function H(z) is simply the £
transform of the impulse response of the system

H(z) = Z[h(n)] = 2 h(n)z™™

This means that, given input X(z) the output Y(2)
IS
Y(z) = H(2z2)X(2)



LSC)

System function H(z) from a

difference equation

When an LTI system is represented by the

difference equation
N

M
y(m) + ) ay(n—k) =) bx(n-D)
k=1 [=0

it can be shown that

M —1
=0 b1 Z

H(z) =
( ) 1 +21,¥=1ak Z_k

where ap = 1



LSC,

=2 System function H(z) and

MATLAB implementation
The MATLAB implementation, given

Yitob z7!

H(z) =
( ) 1 +21,¥=1ak Z_k

The impulse response h(n) is simply
>> h = filter (b, a, delta)

While the response y(n) to input x(n) is
>> vy = filter (b, a, x)




S For example @E

Given the LTI system represented by the
difference equation, the determine the impulse

response h(n).

y(n) =09y(n—1) + x(n)

Sol: let’s find the system function H(z) first.
y(n) —09yn—1) = x(n)
Taking the £ transform
Zlym)] = 0.9Z[y(n — 1)] = Z[x(n)]
Y(z) —09z71Y(2) = X(2)



Y(z) 1
X(z) 1-09z1
Taking the inverse transform

h(n) = Z '[H(2)] = 0.9" u(n)

Let’s verify with MATLAB
>> b = [1]; a = [1 -0.9];

>> h = filter (b,a,delta);

and lets plot the two responses.




Impulse response of system

Amplitude
— o o
n o =

o
N

Q
w

+  Using the filter command
o 9"

W TTHXd




LSC), To recap @

The Z transform is the digital equivalent of the
Laplace transform:

1. It facilitates the solving of constant
coefficient difference equations

2. It allows to easily evaluate the system’s
response

3. Itis critical in designing linear filters
MATLAB commands used

—filter, residuez



=P A different transform: DTFT F @

* A very different but very useful representation of
a sequence or system is the Discrete-time Fourier
Transform (DTFT)

* Setting |z| = 1 in the Z-transform

00

X(z) =Zx(n)] = Z x(n)z™"

n=-—oo

x(n) = Z '[X(2)] = if X(z) z"tdz
2T

where z = |z|e’® is the complex frequency.



mae? A different transform: DTFT F @

* The DTFT of sequence x(n) is defined as

X(ej“’) = Fx(n)]| = Z x(n) e Jon

e = F ()] = 5 [ K(e) elond

where

— X(ej“)) is a complex valued function

— w is a digital frequency ranging from —m to +n



LSC)

Special property of the DTFT

Just like the Z transform

Convolution

— Given two sequences x;(n) and x,(n), their
convolution is a multiplication process in the
frequency domain

Flx1(n) * x; (n)] = ﬂx1 (n)] - Flx,(n)]
= Xl(ef‘“) -Xz(ef“))



C) Frequency domain @E

representation of LTl systems

The DTFT of the unit sample response is called
the Frequency Response or Transfer Function of
an LTI system

H(e/®) = Z h(n) e Jon

n=-—oo



e Frequency response from
difference equations

When an LTI system is represented by the

difference equation
N M

y) + ) @ y(n—10)= ) by x(n—m)

=1 m=0
Then

M —jwom
m=0bme ™’

jo)
H(e’*) 1+ XY, ae ot




LSC),
- Example @

Given difference equation
y(n) =08y(n—1) + x(n)

determine transfer function H(ej“’) and plot its
magnitude and phase



Example

y(n) =08y(n—1) +x(n)

$

Ao = 1, a, = _08, bo =1

v,

H(e™) = Tgge 7

LIGO-G1100863 Matone: An Overview of Control Theory and Digital Signal Processing (4) 33



Phase H [rad]

-0.5

H=1/(1-0.8"exp(-i*w) )

Digital frequency o[x]

w=linspace( 2*p1 Z*pl 800)

-1.5 -1 -0.5 0 0.5 1

HL1 /(1 o 8* %

Digital frequency o[x]

w-gajdwexa 11p



LSC)

Example 3.16

A 3 order low pass filter is described by the
difference equation

y(n) = 0.0181 x(n) + 0.0543 x(n— 1)
+ 0.0543 x(n — 2) + 0.0181 x(n — 3)
+1.76 y(n—1) — 1.1829 y(n — 2)
+ 0.2781 y(n — 3)
Plot the magnitude and the phase response of
this filter and verify that it is a low pass filter.

¢4




HI

Phase H [x]

Example 3.16
>> b=[0.0181, 0.0543, 0.,0543, 0.0181];

0.8 é _________________ é ___________________ . >> a=[1.0, -1.76, 1.1829, -0.27811;

>>§w=lidspacé(—2*pi, 2*pi, 1000) ;

0B .................. ......... >>num=b ..... s exp(—ll*m'*w), .............. ................. _
0 | ; ~ >> den=a * exp(-1li*1l'*w); |
' | é ~ >> H=num ./ den; | |

0ol e T ~.>> plot (w/pi, abs(H)) . . . . N |

loth/pi@phasekH))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Digital frequency o[x]

wgrsealdwexa 1ip

0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Digital frequency o[x]



LSC)

Example 4.13

An LTI system is described by the following
difference equation

y(n) =081ly(n—2)+x(n) —x(n—2)

Plot the magnitude and the phase response of
this filter.




H|

Phase H [x]

1.5

0.5

0.5

<

Example 4.13

>>@a = [1 0 -0.81];
>>Pp = [10 -1]; ;
>>€{H7W}%freqz(bra?5@0”; .................. g |
>> plot (w/pi, abs (H)) f i

>>§plot(W/pi,§phasé(H))é

i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Digital frequency w[r]

!
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Digital frequency w[r]

weTya|dwexa 1ip



P Another transform: The Discrete @

Fourier Transform (DFT)
The FFT falls into this category

* Why more transforms? What is the problem?

— The DTFT and the £ transform are not numerically
computable transforms

* They have infinite sums at uncountably infinite frequencies

* The Discrete Fourier Transform (DFT)

— Obtained by sampling the Discrete-Time Fourier
Transform (DTFT) in the frequency domain

— “the DFT is just equally-spaced samples of the DTFT”
— Time-consuming numerical computation

e Fast-Fourier Transform
— Algorithm for the efficient computation of DFTs




®¥»  Example: highlighting the
difference between the
DTFT and DFT

Let

x(n)=1for0<n <8

The corresponding DTFT is

Sm(wM/Z) p—Jw(M—1)/2

sm(‘“/z)

X(ej“’) =



| X(w)|

DTFT

St
Y
Q0]

.
g
N—r
H

Magnitude
I
l

Sin(®M/2) ,—joM-1)/2 yith M=

sin(®/,)

-1.5

-1

-0.5 0 0.5
Digital frequency o [r]

1.5

wajdwexa 11p



X(@)

8 I T T T
© 10point FFT >> P=10;
| 2 >> wk=(0:P-1) * (2*pi/B);
. >> Xfft =fft(x, P);
] sin a)M/2 . _ . ’ ’
X(e]w) T Sii(w/ )) e~ JOM=1)/2 \yith M=8 >> plot (wk/pi, mag (Xffg)|,’rs’)
2
6L _|
o
5L _
&
] L]
g )
Z 4r 4 3
g ©
= >
3
3L _
2 1] I
iy 7]
Fa )
11 _|
7] iy
0 | -
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Digital frequency o [x]
Matone: An Overview of Control Theory and Digital Signal Processing (4)
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X(@)

8 I I I I
DTFT Y>> p=50; 0
0o 10-point FFT .
21l ©  50-point FFT >> wk=(0:P-1) * (2*pi/P)
. sin(@M/ . _ . o >> Xfft =fft(x, P); 0
x(e)) sirE(w/zi) e JOM=D/Z with M=8 | >> plot (wk/pi, mag(Xfft)
6| i
(1 ([
51 - i
The DFT is just the
S DTFT at discrete
T 41 _ .
g frequency intervals ! I
3 i
21 0 PN ~ O
0.“ "l.t!
1L OIS a8 o oG |
(o O D Y 3 W H O (I
; | y th'u “” TP ql" qiﬂ Fh
-2 1.5 -1 05 0 0.5 1 15

Digital frequency o [x]

w-ajdwexa 11p



[Y (DI

Signal Corrupted with Zero-Mean Random Noise (Fs=1000Hz)

10

-10

1.5

0.5

Lmes at 50 Hz and 120 Hz
contammated by n0|se '

50 100 150

200 250 300 350 400 450 200

time (milliseconds)

Single-Sided Amplitude Spectrum of y(t)

Ablvantaée of thé FFT sigénal reprgesentatéion°
the lines at 50 Hz and 120 Hz are not VISIb|e in_|

the time domam representatlon but are cIear
|n the FFT representatlon :

200 250 300 350 400 450
Frequency (Hz)

w-ajdwexa 11p



LSC),

Power Spectral Density

al

* A graphical
representation to easily
determine the powerofa A A N\ ]
signal over a particular y | |
frequency band.

Time series of cos at 200 Hz
1 T

Amplitude [V]

* Unfortunately thereare "= | : : : :

normalization, can be oo | | | |
confusing... S e R M

t [ms]

w-a|dwexa Ajsuap|esydads

e Let’s use the example of a
cosine at 200 Hz



2 bower Spectral Density (PSD) @,

¢ I n th IS eXam plel powe r IS 0 Power spectral density of cosine at 200 Hz
computed using - . I—peo |
wil, 'onesided',NFFT, Fs)

. Data windowing e
— Inthe fft process, powerinone % ... b
frequency bin “leaks” to nearby, - ‘
— Filter (with a window filter) the ‘ S S I S
input data stream 105
« The RMS of a sinusiod: 1/+/2 ol
using the PSD (and showninred)w. .. . { }f | V

RMS = E Px X A f % 50 100 150 200 250 300 350 400 450 500

f[Hz]

B

w-a|dwexa Ajsuap|esydads

* The computed RMS agrees with
the theoretical 1/v/2



’))

Amplitude Spectral Density (ASd@

LSC

e Plotting the amplitude:

Amplitude spectral density of cosine at 200 Hz

)

— simply the square root
of the power spectral

density /Py,

VirHz

w-a|dwexa Ajsuap|esydads

I I \ i i I I I i
0 50 100 150 200 250 300 350 400 450 500
f[Hz]



7

Finally — the question on samplin

The Discrete-time Fourier Transform (DTFT) was
defined as

00

X(ef“)) = Z x(n) e Jon

n=-—oo

where digital frequency w
w=sT, =2nf T

and sampling frequency F;

F_l
S_TS




LSC),

Finally — the question
about sampling

The Discrete-time Fourier 6 H= 17108 exptds))
Transform (DTFT) is defined .,

X(e/®)

HI

4
3
2l
1
0

z , | i | i i ‘
- —Jwn -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
— x (n) e '] Digital frequency m[x]

n=-0 T T T T
frequency.

Phase H [rad]

-0.5

If you inspect previous R [1055 o
. igital frequency o[x

plots of DTFTs, you notice a

periodicity of 2.



7

Finally — the question about samplin;

The x(n) sequence
represents a continuous-
time signal x,(t) sampled
every T, seconds:

x(n) = xq(nTs)
where the digital frequency
W 1S

w=2mf T

and f is frequency in Hz.

Defining the sampling
frequency F, = 1/T;, the
periodicity is

w=2nfT, =2m
>f=F

The signal repeats every F;
Hz.

F/2 is defined as the
Nyquist frequency.



Fo=0Hz, Fs=16Hz

sl Fo=0Hz«L"%/5

y [AU]

05k — — S _— |

0

0
Fo=3Hz t[s]

< Fs/ Fo = 3Hz, Fs = 16Hz
o ' 2

0.2 0.4 0.6 0.8 1

y [AU]

0 0.2 0.4 0.6 0.8 1
t[s]
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F0= 1Hz, Fs = 16Hz

y [AU]

0 02 04 06 08 1
t [s]

Fo = 15Hz, Fs = 16Hz

y [AU]
8
“—




LSCy Sampllng PrinCiple @

A band-limited signal x,(t) with bandwidth F,
can be reconstructed from its sample values
x(n) = x,(nT,) if the bandwidth F is less than
the Nyquist frequency F,, = F, /2

F, < E,

Otherwise aliasing (or distortion) would result in
the reconstruction of x,(t).



Effect of sampling @E

s Xg (1) Continuous-time Fourier Transform (CTFT) 2 X, (G
/\ / \ {)
- —
t(s) Bandwidth
Fo

Sample

F, <E, =

F
2

L+ x(n) T, Discrete-time Fourier Transform (DTFT) X(ejw)

_27-[ —
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Effect of sampling

s Xg (1) Continuous-time Fourier Transform (CTFT) 2 X, (G

Banollwidth

Sample

Discrete-time Fourier Transform (DTFT
L x() T, OTFT)

<

—2|T[ —ITL' TL/\ 21T

Bandwidth
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<) E
Let’s simulate aliasing @

Suppose having an analog signal of the form
xa(t) — 1000 |t|
Its Fourier transform is

0.002

14 (12(;T()f0)2

Xo(f) = f+°°xa (t)e 2Mtdt =




Aliasing @

* Plot of x,(t) vs. time

. ) === . rort> 5msand
| — | _— t < —5ms
— No significant energy
left

— Let’'ssetx, =0

aliasing _example.m



Aliasing @

* Plot of X,(f) vs. frequency
| DiscretetimefotIJriertransTormX | ¢ For f > 2 kHZ

: X=2e'3’“*(‘“j”e‘3)2) — No significant energy left

| | — SetX, =0

— Reasonable to set the signal’s
bandwidth to

FO — 2 kHZ
e To avoid aliasing the
sampling frequency F; must
satisfy

X *1000

Fs

Fr <
0=

0 | i | | I T T ;
0 200 400 600 800 1000 1200 1400 1600 1800 2000
f[Hz]

——

F, > 2F, = 4 kHz

L%B%'%%Qxamplam Matone: An Overview of Control Theory and Digital Signal Processing (4) 57



Aliasing @

* Plot of x, vs. time along
.0 With @ sampled
| sequence (F, = 5 kHz)

Analog and digital signal
& T

1* According to the
| sampling principle

F;:SkHZ>2FO
= 4 kHz

s ‘Should not have aliasing...

aliasing _example.m



Fourier transform X -- analog vs digital
25 : | | |
5 : : analog

digital (Fs=5000Hz)

o T P_I_oté.of_Xa_(f).zv.s ..... freq_uén_c.y_f .............. ]
~* Plotof DFT
» No aliasing is visible

15 % ________________________________________________________________________________________________________________ ___________________________________ -

X *1000

0.5

0

0 500 1000 1500 2000 2500

aliasing _example.m



Analog and digital signal
| < |

Aliasing

T
analog
| © sampled at 1000Hz

aliasing _example.m

¢4

Plot of x, vs. time
along with a sampled
sequence (F; = 1 kHz)
According to the
sampling principle

E.=1kHz * 2 F,
= 4 kHz

Should have aliasing...



2.5

1.5

X *1000

0.5

0

aliasing _example.m

Fourier transform X -- analog vs digital

. éPIot of Xa VS. frequéncyf along

gwit

R ________________ """*é.;’;-.; ....... ............................... hth eco i p utedDFT ________________ |

analog (DTFT)

+  digital (DFT, Fs=1000Hz)

. Aliasing is visible

*,
*,
*,
s‘

0

a0

|
100

150

i
200

|
250

f [Hz]

i
300

|
350

i
400 450 500



Recap @

* The Discrete-time Fourier Transform (DTFT)

— A very different but very useful representation of a
seguence or system

— Mapping into frequency space
— z = e/ in the L transform
The Discrete Fourier Transform (DFT)

— Obtained by sampling the DTFT in the frequency domain

— FFT: Fast Fourier Transform
* Algorithm for the efficient computation of DFTs

 Power Spectral Density
— power of a signal over a particular frequency band.
* Sampling principle

— The signal’s bandwidth F; must be less than the Nyquist
frequency F,, = F; /2 in order to avoid aliasing

 Modeling Aliasing




