
So far…  
• Signals to sequences 
• Convolution 𝑦(𝑛) between sequences 𝑎(𝑛) and 𝑏(𝑛) is defined as 

𝑦 𝑛 =  𝑎 𝑘

∞

𝑘=−∞

 𝑏 𝑛 − 𝑘  

or 
𝑦 𝑛 = 𝑎 𝑛 ⋆ 𝑏 𝑛  

• Correlation 𝑟𝑥,𝑦 𝑙  between two sequences 𝑥(𝑛) and 𝑦(𝑛) 
𝑟𝑥,𝑦 𝑙 = 𝑥(𝑙) ⋆ 𝑦(−𝑙) 

• Impulse response of a system ℎ(𝑛) 
– Where ℎ 𝑛  is the unit sample or impulse response of the LTI system 
– System is stable if  

 ℎ(𝑛) < ∞

+∞

−∞

 

– In general, the response sequence 𝑦(𝑛) to the input sequence 𝑥(𝑛) can be re-
written as 

𝑦 𝑛 =  𝑥 𝑘

∞

𝑘=−∞

 ℎ 𝑛 − 𝑘 = 𝑥 𝑛 ⋆ ℎ 𝑛  
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So far…  
• Differential to difference equations 

𝑦 𝑡 =
𝑑𝑥(𝑡)

𝑑𝑡
        →         𝑦(𝑛) = 𝑥(𝑛) − 𝑥(𝑛 − 1) 

 
– General form of a difference equation 

 

 𝑎𝑘  𝑦 𝑛 − 𝑘 =  𝑏𝑚𝑥 𝑛 −𝑚

𝑀

𝑚=0

𝑁

𝑘=0

 

 

– MATLAB’s filter command to numerically solve difference 

equations: 
>> y = filter(b, a, x) 

 

– In particular the impulse response ℎ(𝑛) of a system can be found 
>> h = filter(b, a, delta) 
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Digital Signal Processing 2 

• In the analog domain, the Laplace transform L 

– Relates time-functions to frequency-dependent 
functions 

• For the digital domain, the Z transform 

– Relates time-sequences to (a different, but related 
type of) frequency-dependent function 
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The Z Transform 
• This discrete-time equivalent of the Laplace transform 

is defined as 

𝑋 𝑧 = Z 𝑥 𝑛 =  𝑥 𝑛  𝑧−𝑛
∞

𝑛=−∞

 

𝑥 𝑛 = Z−1 𝑋 𝑧 =
1

2𝜋𝑗
 𝑋 𝑧  𝑧𝑛−1𝑑𝑧 

 where 𝑧 = 𝑧 𝑒𝑗𝜔 is the complex frequency. 

• The values of 𝑧 for which the sum converges define a 
region in the 𝑧-plane referred to as the region of 
convergence (ROC). 
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Region of convergence (ROC) 

The set of z values for which 𝑋 𝑧  exists is called 
the region of convergence (ROC) 

 
𝑅𝑥− < 𝑧 < 𝑅𝑥+ 

𝑅𝑥+ 

𝑅𝑥− 

Im 𝑧  

Re 𝑧  

ROC 
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The Z Transform 

This transformation is useful in 

1. Solving constant coefficient difference 
equations 

2. Evaluating the response of an LTI system to a 
given input, and 

3. Designing linear filters 
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Example 
Let 𝑥 𝑛 = 1  for 𝑛 = 0,1,2… .  
Find its Z transform and its ROC. 

𝑋 𝑧 =  𝑥 𝑛  𝑧−𝑛
∞

𝑛=0

=  𝑧−𝑛
∞

𝑛=0

= 1 + 𝑧−1 + 𝑧−2 +⋯

=
1

1 − 𝑧−1
       

 
if 𝑧−1 < 1 or 𝑧 > 1 
 
 
 

𝑋 𝑧 =
𝑧

𝑧 − 1
 𝑧 = 1 

Im 𝑧  

Re 𝑧  
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ROC 

Geometric series: 

 ∝𝑛
∞

𝑛=0

=
1

1 −∝
 if ∝ < 1 

Transfer function: 
zero at the origin, 
pole at 1 



Example 
Let 𝑥 𝑛 = 2𝑛  for 𝑛 = 0,1,2… Find its Z transform and its 
ROC. 

𝑋 𝑧 =  𝑥 𝑛  𝑧−𝑛
∞

𝑛=0

=  2𝑛 𝑧−𝑛
∞

𝑛=0

= 1 + 2 𝑧−1 + 4 𝑧−2 +⋯

=
1

1 − 2 𝑧−1
       

 

if 2 𝑧−1 < 1 or 𝑧 > 2 

 

 

 

𝑋 𝑧 =
𝑧

𝑧 − 2
 𝑧 = 2 

Im 𝑧  

Re 𝑧  
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ROC 

Transfer function: 
zero at the origin, 
pole at 2 



Example 
Let 𝑥1 𝑛 = 𝑎

𝑛 𝑢 𝑛 , 0 < 𝑎 < ∞. Find its Z 
transform and its ROC. 

𝑋1 𝑧 = 𝑎
𝑛 𝑧−𝑛 = 

𝑎

𝑧

𝑛
∞

0

∞

0

=
1

1 − 𝑎𝑧−1
  

if 
𝑎

𝑧
< 1 

 

 

𝑋1 𝑧 =
𝑧

𝑧 − 𝑎
 

𝑎 

Im 𝑧  

Re 𝑧  
× 

o 

Pole at 𝑧 = 𝑎 
Zero at origin 
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In general  
Many of the signals in DSP have Z transforms that 
are rational (ratio of two polynomials) functions of 
𝑧−1: 

𝑋 𝑧 =
𝑏0 + 𝑏1𝑧

−1 +⋯+ 𝑏𝑀𝑧
−𝑀

𝑎0 + 𝑎1𝑧
−1 +⋯+ 𝑎𝑁𝑧

−𝑁

= 𝐶
 𝑧 − 𝑧𝑙
𝑁
𝑙=1

 𝑧 − 𝑝𝑘
𝑁
𝑘=1

 

 

where 𝑝𝑘 is the k-th pole and 𝑧𝑙  is the l-th zero of 
𝑋 𝑧 . Each pole is indicated by an ”x” and each zero 
by an “o” in the 𝑧-plane. 
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Special properties of 
the Z Transform  

• Convolution 
– Given two sequences 𝑥1 𝑛  and 𝑥2 𝑛 , their 

time-domain convolution becomes a 
multiplication process in the frequency domain 

 

Z 𝑥1 𝑛 ∗ 𝑥2 𝑛 = 𝑋1 𝑧 ∙ 𝑋2 𝑧  

 

• Sample shifting 

 
Z 𝑥 𝑛 − 𝑛0 = 𝑧−𝑛0𝑋 𝑧  
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(Some) Z Transform pairs 

𝒙 𝒏  𝑿(𝒛) ROC 

𝛿 𝑛  1 Any z 

𝑢 𝑛  
1

1 − 𝑧−1
 𝑧 > 1 

𝑎𝑛 𝑢 𝑛  
1

1 − 𝑎 𝑧−1
 

𝑧 > 𝑎  
 

𝑛 𝑎𝑛 𝑢 𝑛  
𝑎 𝑧−1

1 − 𝑎 𝑧−1 2
 𝑧 > 𝑎  

LIGO-G1100863 Matone: An Overview of Control Theory and Digital Signal Processing (4) 12 



And back to sequences:  
The Inverse Z Transform  

• Just like in the Laplace domain 

• Use the partial fraction method to reduce a 
complex 𝑋(𝑧) to simpler parts. 

• Use the table of transform pairs to determine the 
sequence. 

• In general 

𝑋 𝑧 =
𝑏0 + 𝑏1𝑧

−1 +⋯+ 𝑏𝑀𝑧
−𝑀

𝑎0 + 𝑎1𝑧
−1 +⋯+ 𝑎𝑁𝑧

−𝑁

=  
𝑅𝑘

1 − 𝑝𝑘𝑧
−1

𝑁

𝑘=1

+  𝐶𝑘 𝑧
−𝑘

𝑀−𝑁

𝑘=0
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Example 
Compute the inverse Z-transform of 

𝑋 𝑧 =
𝑧

3 𝑧2 − 4 𝑧 + 1
, 𝑧 > 1 

Sol: 
Re-write 𝑋 𝑧  in terms of powers of 𝑧−1. 

𝑋 𝑧 =
𝑧−1

3 − 4 𝑧−1 + 𝑧−2
 

At the MATLAB prompt 
>> b=[0 1];a=[3 -4 1]; 

>> [R,p,C]=residuez(b,a) 

R = 

    0.5000 

   -0.5000 

p = 

    1.0000 

    0.3333 

C = 

     [] 
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𝑋 𝑧 =
1/2

1 − 𝑧−1
−
1/2

1 −
1
3
𝑧−1

 

𝑥 𝑛 =
1

2
 𝑢 𝑛 −

1

2

1

3

𝑛

𝑢(𝑛) 

Using the table of 
transform pairs  



Example 
Compute the inverse Z-transform of 

𝑋 𝑧 =
1

1 − 0.9 𝑧−1 2 1 + 0.9 𝑧−1
, 𝑧 > 0.9 

Sol: 

Using MATLAB to do the partial fraction 
>> b = 1; a = poly([0.9, 0.9, -0.9]) 

a = 

    1.0000   -0.9000   -0.8100    0.7290 

 

𝑋 𝑧 =
1

1 + 0.9 𝑧−1 − 0.81 𝑧−2 + 0.729 𝑧−3
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Example 
>> [R,p,C]=residuez(b,a) 

R = 

   0.2500           

   0.2500 + 0.0000i 

   0.5000 - 0.0000i 

p = 

  -0.9000           

   0.9000 + 0.0000i 

   0.9000 - 0.0000i 

C = 

     [] 
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Example 

𝑋 𝑧 =
0.25

1 − 0.9 𝑧−1
+

0.5

1 − 0.9 𝑧−1 2
+
0.25

1 + 0.9 𝑧−1

=
0.25

1 − 0.9 𝑧−1
+
0.5

0.9
𝑧
0.9 𝑧−1

1 − 0.9 𝑧−1 2
+
0.25

1 + 0.9 𝑧−1
 

 

Using the Z Transform pair table 

 
𝑥 𝑛 = 0.25 ∙ 0.9𝑛 ∙ 𝑢 𝑛 + 

0.5

0.9
∙ 𝑛 + 1 ∙ 0.9 𝑛+1 ∙ 𝑢 𝑛 + 1 + 

0.25 ∙ −0.9 𝑛 ∙ 𝑢 𝑛  

Sample shifting 
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Exercise 

Determine the Z-transform of the impulse 
response  

ℎ 𝑛 = 2 𝛿 𝑛 − 2 + 3 𝑢(𝑛 − 3)  
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Exercise 
Determine the Z-transform of the impulse 
response  

ℎ 𝑛 = 2 𝛿 𝑛 − 2 + 3 𝑢(𝑛 − 3)  

Sol: 
Z ℎ(𝑛) = 2Z 𝛿 𝑛 − 2 + 3Z 𝑢(𝑛 − 3)  

Using the sample shift property 
Z ℎ(𝑛) = 2 𝑧−2Z 𝛿 𝑛 + 3 𝑧−3Z 𝑢(𝑛)  

𝐻 𝑧 = 2 𝑧−2 + 3 𝑧−3
1

1 − 𝑧−1
 

𝐻 𝑧 =
2 𝑧−2 − 2 𝑧−3 + 3𝑧−3

1 − 𝑧−1
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System function 𝐻(𝑧) 

The system function 𝐻(𝑧) is simply the Z 
transform of the impulse response of the system 

𝐻 𝑧 = Z ℎ(𝑛) = ℎ 𝑛 𝑧−𝑛
+∞

−∞

 

This means that, given input X 𝑧  the output Y 𝑧  
is 

𝑌 𝑧 = 𝐻 𝑧 𝑋(𝑧) 
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System function 𝐻(𝑧) from a 
difference equation 

When an LTI system is represented by the 
difference equation 

𝑦 𝑛 + 𝑎𝑘 𝑦 𝑛 − 𝑘 = 𝑏𝑙 𝑥 𝑛 − 𝑙

𝑀

𝑙=0

𝑁

𝑘=1

 

it can be shown that 

𝐻 𝑧 =
 𝑏𝑙
𝑀
𝑙=0  𝑧

−𝑙

1 +  𝑎𝑘
𝑁
𝑘=1  𝑧

−𝑘
 

where 𝑎0 = 1 
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System function 𝐻(𝑧) and 
MATLAB implementation 

The MATLAB implementation, given 

 

𝐻 𝑧 =
 𝑏𝑙
𝑀
𝑙=0  𝑧

−𝑙

1 +  𝑎𝑘
𝑁
𝑘=1  𝑧

−𝑘
 

 

The impulse response ℎ(𝑛) is simply 

>> h = filter(b, a, delta) 

While the response 𝑦(𝑛) to input 𝑥(𝑛) is 

>> y = filter(b, a, x) 
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For example 
Given the LTI system represented by the 
difference equation, the determine the impulse 
response ℎ(𝑛). 

 
𝑦 𝑛 = 0.9 𝑦 𝑛 − 1 + 𝑥 𝑛  

 

Sol: let’s find the system function 𝐻(𝑧) first.  
𝑦 𝑛 − 0.9 𝑦 𝑛 − 1 = 𝑥(𝑛) 

Taking the Z transform 
Z 𝑦(𝑛) − 0.9Z 𝑦 𝑛 − 1 = Z 𝑥(𝑛)  
𝑌 𝑧 − 0.9 𝑧−1 𝑌 𝑧 = 𝑋(𝑧) 
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𝐻 𝑧 =
𝑌(𝑧)

𝑋(𝑧)
=

1

1 − 0.9 𝑧−1
 

Taking the inverse transform 

ℎ 𝑛 = Z−1 𝐻(𝑧) = 0.9𝑛 𝑢(𝑛) 
Let’s verify with MATLAB 
>> b = [1]; a = [1 -0.9]; 

>> h = filter(b,a,delta); 

and lets plot the two responses. 
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ex4
1

1
.m

 



To recap 

The Z transform is the digital equivalent of the 
Laplace transform: 

1. It facilitates the solving of constant 
coefficient difference equations 

2. It allows to easily evaluate the system’s 
response  

3. It is critical in designing linear filters 

MATLAB commands used 
– filter,  residuez 
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A different transform: DTFT F 

• A very different but very useful representation of 
a sequence or system is the Discrete-time Fourier 
Transform (DTFT) 

• Setting 𝑧 = 1 in the Z-transform 

𝑋 𝑧 = Z 𝑥 𝑛 =  𝑥 𝑛  𝑧−𝑛
∞

𝑛=−∞

 

𝑥 𝑛 = Z−1 𝑋 𝑧 =
1

2𝜋𝑗
 𝑋 𝑧  𝑧𝑛−1𝑑𝑧 

 where 𝑧 = 𝑧 𝑒𝑗𝜔 is the complex frequency. 
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A different transform: DTFT F 

• The DTFT of sequence 𝑥(𝑛) is defined as 

𝑋 𝑒𝑗𝜔 = F 𝑥 𝑛 =  𝑥 𝑛  𝑒−𝑗𝜔𝑛
∞

𝑛=−∞

 

𝑥 𝑛 = F−1 𝑋 𝑒𝑗𝜔 =
1

2𝜋
 𝑋 𝑒𝑗𝜔
+𝜋

−𝜋

𝑒𝑗𝜔𝑛𝑑𝜔 

where 

– 𝑋 𝑒𝑗𝜔  is a complex valued function 

– 𝜔 is a digital frequency ranging from −𝜋 to +𝜋 
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Special property of the DTFT 

Just like the Z transform 

Convolution 

– Given two sequences 𝑥1 𝑛  and 𝑥2 𝑛 , their 
convolution is a multiplication process in the 
frequency domain 

 

F 𝑥1 𝑛 ∗ 𝑥2 𝑛 = F 𝑥1 𝑛  ∙F 𝑥2 𝑛
= 𝑋1 𝑒

𝑗𝜔 ∙ 𝑋2 𝑒
𝑗𝜔  
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Frequency domain 
representation of LTI systems 

The DTFT of the unit sample response is called 
the Frequency Response or Transfer Function of 
an LTI system 

 

𝐻 𝑒𝑗𝜔 =  ℎ 𝑛  𝑒−𝑗𝜔𝑛
∞

𝑛=−∞
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Frequency response from 
difference equations 

When an LTI system is represented by the 
difference equation 

𝑦 𝑛 + 𝑎𝑙  𝑦 𝑛 − 𝑙 =  𝑏𝑚 𝑥 𝑛 − 𝑚

𝑀

𝑚=0

𝑁

𝑙=1

 

Then 

𝐻 𝑒𝑗𝜔 =
 𝑏𝑚𝑒

−𝑗𝜔𝑚𝑀
𝑚=0

1 +  𝑎𝑙𝑒
−𝑗𝜔𝑙𝑁

𝑙=1
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Example 

Given difference equation 

 
𝑦 𝑛 = 0.8 𝑦 𝑛 − 1 + 𝑥 𝑛  

 

determine transfer function 𝐻 𝑒𝑗𝜔  and plot its 

magnitude and phase 
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Example 

𝑦 𝑛 = 0.8 𝑦 𝑛 − 1 + 𝑥 𝑛  

 

 
𝑎0 = 1, 𝑎1 = −0.8, 𝑏0 = 1 

 

 

𝐻 𝑒𝑗𝜔 =
1

1 − 0.8𝑒−𝑗𝜔
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d
tft_exam

p
le3

.m
 

>> w=linspace(-2*pi,2*pi,800); 

>> H=1./(1-0.8*exp(-1i*w) ); 

>> plot(w/pi, abs(H)) 

>> plot(w/pi,phase(H)) 
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Example 3.16 

A 3rd order low pass filter is described by the 
difference equation 
𝑦 𝑛 = 0.0181 𝑥 𝑛 + 0.0543 𝑥 𝑛 − 1
+ 0.0543 𝑥 𝑛 − 2 + 0.0181 𝑥 𝑛 − 3
+ 1.76 𝑦 𝑛 − 1 − 1.1829 𝑦 𝑛 − 2
+ 0.2781 𝑦 𝑛 − 3  

Plot the magnitude and the phase response of 
this filter and verify that it is a low pass filter. 
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d
tft_exam

p
le3

1
6

.m
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>> b=[0.0181, 0.0543, 0.0543, 0.0181]; 

>> a=[1.0, -1.76, 1.1829, -0.2781]; 

>> w=linspace(-2*pi, 2*pi, 1000); 

>> num=b * exp(-1i*m'*w); 

>> den=a * exp(-1i*l'*w); 

>> H=num ./ den; 

>> plot(w/pi, abs(H)) 

>> plot(w/pi,phase(H)) 



Example 4.13 

An LTI system is described by the following 
difference equation 
𝑦 𝑛 = 0.81 𝑦 𝑛 − 2 + 𝑥 𝑛 − 𝑥(𝑛 − 2) 

Plot the magnitude and the phase response of 
this filter. 
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>> a = [1 0 -0.81]; 

>> b = [1 0 -1]; 

>> [H,w]=freqz(b,a,500); 
>> plot(w/pi, abs(H)) 

>> plot(w/pi, phase(H)) 

 

d
tft_exam

p
le4

1
3

.m
 



Another transform: The Discrete 
Fourier Transform (DFT) 

• The FFT falls into this category 

• Why more transforms? What is the problem? 
– The DTFT and the Z transform are not numerically 

computable transforms 
• They have infinite sums at uncountably infinite frequencies 

• The Discrete Fourier Transform (DFT) 
– Obtained by sampling the Discrete-Time Fourier 

Transform (DTFT) in the frequency domain 

– “the DFT is just equally-spaced samples of the DTFT” 

– Time-consuming numerical computation 

• Fast-Fourier Transform 
– Algorithm for the efficient computation of DFTs 
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Example: highlighting the 
difference between the 

DTFT and DFT 
Let 

𝑥 𝑛 = 1 for 0 ≤ 𝑛 ≤ 8 

 

The corresponding DTFT is 

 

𝑋 𝑒𝑗𝜔 =
sin 𝜔𝑀 2 

sin 𝜔 2 
 𝑒−𝑗𝜔 𝑀−1 /2 
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𝑋 𝑒𝑗𝜔 =
sin 𝜔𝑀 2 

sin 𝜔 2 
 𝑒−𝑗𝜔 𝑀−1 /2 with M=8 

d
tft_exam

p
le.m
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𝑋 𝑒𝑗𝜔 =
sin 𝜔𝑀 2 

sin 𝜔 2 
 𝑒−𝑗𝜔 𝑀−1 /2 with M=8 

>> P=10; 

>> wk=(0:P-1) * (2*pi/P); 

>> Xfft =fft(x, P); 

>> plot(wk/pi, mag(Xfft),’rs’) 

d
tft_exam

p
le.m
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𝑋 𝑒𝑗𝜔 =
sin 𝜔𝑀 2 

sin 𝜔 2 
 𝑒−𝑗𝜔 𝑀−1 /2 with M=8 

>> P=50; 

>> wk=(0:P-1) * (2*pi/P); 

>> Xfft =fft(x, P); 

>> plot(wk/pi, mag(Xfft),’rs’) 

d
tft_exam

p
le.m
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The DFT is just the 
DTFT at discrete 
frequency intervals 



Lines at 50 Hz and 120 Hz, 
contaminated by noise. 

d
tft_exam

p
le.m
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Advantage of the FFT signal representation: 
the lines at 50 Hz and 120 Hz are not visible in 
the time domain representation, but are clear 
in the FFT representation. 



Power Spectral Density 
• A graphical 

representation to easily 
determine the power of a 
signal over a particular 
frequency band. 

• Uses the fft algorithm 

• Unfortunately there are 
many conventions for the 
normalization, can be 
confusing… 

• Let’s use the example of a 
cosine at 200 Hz 

sp
e

ctrald
en

sity_exam
p

le.m
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Power Spectral Density (PSD) 
• In this example, power is 

computed using 
– w=hamming(length(x)) 

– [Pxx,f]=periodogram(x,
wi,'onesided',NFFT,Fs) 

• Data windowing 
– In the fft process, power in one 

frequency bin “leaks” to nearby 
bins. 

– Filter (with a window filter) the 
input data stream 

• The RMS of a sinusiod: 1/ 2 
• The (running) RMS computed 

using the PSD (and shown in red) 

𝑅𝑀𝑆 =  𝑃𝑥𝑥 ∙ ∆𝑓 

• The computed RMS agrees with 
the theoretical 1/ 2 

sp
e

ctrald
en

sity_exam
p

le.m
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Amplitude Spectral Density (ASD) 

• Plotting the amplitude:  

– simply the square root 
of the power spectral 

density 𝑃𝑥𝑥 

 

sp
e

ctrald
en

sity_exam
p

le.m
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Finally – the question on sampling 

The Discrete-time Fourier Transform (DTFT) was 
defined as 

𝑋 𝑒𝑗𝜔 =  𝑥 𝑛  𝑒−𝑗𝜔𝑛
∞

𝑛=−∞

 

where digital frequency 𝜔 
𝜔 = 𝑠 𝑇𝑠 = 2𝜋𝑓 ∙ 𝑇𝑠 

and sampling frequency 𝐹𝑠 

𝐹𝑠 =
1

𝑇𝑠
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Finally – the question 
about sampling 

The Discrete-time Fourier 
Transform (DTFT) is defined 
as 

𝑋 𝑒𝑗𝜔

=  𝑥 𝑛  𝑒−𝑗𝜔𝑛
∞

𝑛=−∞

 

where 𝜔 is the digital 
frequency. 

 

If you inspect previous 
plots of DTFTs, you notice a 
periodicity of 2𝜋. 

 
LIGO-G1100863 Matone: An Overview of Control Theory and Digital Signal Processing (4) 49 



Finally – the question about sampling 

The 𝑥(𝑛) sequence 
represents a continuous-
time signal 𝑥𝑎(𝑡) sampled 
every 𝑇𝑠 seconds: 
 
𝑥 𝑛 = 𝑥𝑎(𝑛𝑇𝑠) 

 
where the digital frequency 
𝜔 is 

𝜔 = 2𝜋 𝑓 𝑇𝑠 
  

and 𝑓 is frequency in 𝐻𝑧. 
 

Defining the sampling 
frequency 𝐹𝑠 = 1/𝑇𝑠, the 
periodicity is 
 
𝜔 = 2𝜋 𝑓 𝑇𝑠 = 2𝜋 
→ 𝑓 = 𝐹𝑠 

 
The signal repeats every 𝐹𝑠 
Hz. 
 
𝑭𝒔/𝟐 is defined as the 
Nyquist frequency. 
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𝑭𝟎 = 𝟎 Hz ≪
𝑭𝒔
𝟐  𝑭𝟎 = 𝟏 Hz <

𝑭𝒔
𝟐  

𝑭𝟎 = 𝟑 Hz

<
𝑭𝒔
𝟐  

𝑭𝟎 = 𝟏𝟓 Hz >
𝑭𝒔
𝟐  
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Sampling Principle 
A band-limited signal 𝑥𝑎 𝑡  with bandwidth 𝐹0 
can be reconstructed from its sample values 
𝑥 𝑛 = 𝑥𝑎 𝑛 𝑇𝑠  if the bandwidth 𝐹0 is less than 
the Nyquist frequency 𝐹𝑛 = 𝐹𝑠/2 

 
𝐹0 < 𝐹𝑛 

 

Otherwise aliasing (or distortion) would result in 
the reconstruction of 𝑥𝑎 𝑡 . 
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Effect of sampling 
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𝑥𝑎(𝑡) 

𝑡(𝑠) 

Ω 

𝑋𝑎(𝑗Ω) Continuous-time Fourier Transform (CTFT) 

𝑥(𝑛) 

𝑛 

Sample 

Discrete-time Fourier Transform (DTFT) 

𝜔 

𝑋(𝑒𝑗𝜔) 

−𝜋 𝜋 −2𝜋 2𝜋 

𝑇𝑠 

Bandwidth 
𝐹0 

𝐹0 < 𝐹𝑛 =
𝐹𝑠
2

 

Bandwidth 



Effect of sampling 
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𝑥𝑎(𝑡) 

𝑡(𝑠) 

Ω 

𝑋𝑎(𝑗Ω) Continuous-time Fourier Transform (CTFT) 

𝑥(𝑛) 

𝑛 

Sample 

Discrete-time Fourier Transform (DTFT) 
𝑇𝑠 

Bandwidth 
𝐹0 

𝐹0 > 𝐹𝑛=
𝐹𝑠
2

 

𝑋(𝑒𝑗𝜔) 

𝜔 
−𝜋 𝜋 −2𝜋 2𝜋 

Bandwidth 



Let’s simulate aliasing 

Suppose having an analog signal of the form 

 

𝑥𝑎 𝑡 = 𝑒
−1000 𝑡  

 

Its Fourier transform is 

 

𝑋𝑎 𝑓 =  𝑥𝑎

+∞

−∞

𝑡 𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡 =
0.002

1 +
2𝜋𝑓
1000

2 
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Aliasing 

• Plot of 𝑥𝑎(𝑡) vs. time 

• For 𝑡 > 5𝑚𝑠 and 
𝑡 < −5𝑚𝑠 

– No significant energy 
left 

– Let’s set 𝑥𝑎 = 0 

aliasing_example.m 
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Aliasing 
• Plot of 𝑋𝑎(𝑓) vs. frequency 

• For f > 2 kHz 
– No significant energy left 

– Set 𝑋𝑎 = 0 

– Reasonable to set the signal’s 
bandwidth to 

𝐹0 = 2 kHz 

• To avoid aliasing the 
sampling frequency 𝐹𝑠 must 
satisfy 

𝐹0 <
𝐹𝑠
2

 

 
𝐹𝑠 > 2 𝐹0 = 4 kHz 

aliasing_example.m 
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Aliasing 

• Plot of 𝑥𝑎 vs. time along 
with a sampled 
sequence (𝐹𝑠 = 5 kHz)  

• According to the 
sampling principle 

 
𝐹𝑠 = 5 𝑘𝐻𝑧 > 2 𝐹0
= 4 kHz 

 

Should not have aliasing… 

aliasing_example.m 
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• Plot of 𝑋𝑎(𝑓) vs. frequency 𝑓  

• Plot of DFT 

• No aliasing is visible 

 

aliasing_example.m 
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Aliasing 

• Plot of 𝑥𝑎 vs. time 
along with a sampled 
sequence (𝐹𝑠 = 1 kHz)  

• According to the 
sampling principle 

 
𝐹𝑠 = 1 𝑘𝐻𝑧 ≯ 2 𝐹0
= 4 kHz 

 

• Should have aliasing… 

 

aliasing_example.m 
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• Plot of 𝑋𝑎 vs. frequency 𝑓 along 
with the computed DFT 

• Aliasing is visible 

 

aliasing_example.m 
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Recap 
• The Discrete-time Fourier Transform (DTFT) 

– A very different but very useful representation of a 
sequence or system 

– Mapping into frequency space 
– 𝑧 = 𝑒𝑗𝜔 in the Z transform 

• The Discrete Fourier Transform (DFT) 
– Obtained by sampling the DTFT in the frequency domain 
– FFT: Fast Fourier Transform 

• Algorithm for the efficient computation of DFTs 

• Power Spectral Density 
– power of a signal over a particular frequency band. 

• Sampling principle 
– The signal’s bandwidth 𝐹0 must be less than the Nyquist 

frequency 𝐹𝑛 = 𝐹𝑠/2 in order to avoid aliasing 

• Modeling Aliasing 
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