
To recap 

• A system’s TF is a complex function 

– Represented in terms of its magnitude and phase 

• Bode plots 

– plot of magnitude and phase 

• Bode plots of complex TFs can be expressed in 
terms of simpler terms 

• Stability criteria: 

– The feedback control system is stable if and only if all 
the poles of the closed loop transfer function 𝐺𝐶𝐿 have 
a negative real part. Otherwise the system is unstable. 
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To recap 
• Stability in terms of the open loop gain 

– A closed loop system is stable if the unity gain 
frequency is lower than the −1800 crossing. 

– Rule of thumb: the system is (almost always) 

stable if 𝐺𝑂𝐿 ∝
1

𝑓
 at the unity gain frequency 

• How close to instability is a system?  
– Gain and phase margin 

• Typical compensators 
– Phase-lag 

– Phase-lead 

– “Boost” 
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SIMULINK 

• Simulating systems in the time-domain  

• Let’s refer back to the cruise control example 

• Parameters used previously 
• 𝐻 = 1000𝑁 𝑚 𝑠   

• 𝐺 =
1 𝑚 

𝑠+𝑏/𝑚
 

• 𝑚 = 1000 𝑘𝑔 

• 𝑏 = 50 𝑘𝑔/𝑠 
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𝐺𝑂𝐿 𝑠 =
1

𝑠 + 2𝜋 ∙ 8 mHz
 

𝑒 =
1

1 + 𝐺 ∙ 𝐻
𝑣𝑟 +

𝐾 ∙ 𝐺

1 + 𝐺 ∙ 𝐻
𝜃 



OL TF bode plot 

𝐺𝑂𝐿 𝑠 =
1

𝑠 + 2𝜋 ∙ 8 mHz
 

8 mHz 
UGF @160 mHz 

cru
ise_freq

d
o

m
ain

.m
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Building the model 

First we need to model the response of the car 𝑣 
to an input force 𝑓. 

• This was previously described by transfer 
function 𝐺 

• 𝐺 was derived from 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑓 − 𝑏𝑣 

• SIMULINK simulates this differential equation 
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Building the model 
• Type simulink at the 

MATLAB prompt 
>> simulink 

• The “Simulink Library 
Browser” window 
opens. 

• File → New → Model 

• The model window 
opens 
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Building the model 
• The relationship 

between 𝑣 and 𝑑𝑣 𝑑𝑡  
is simply 𝑣 =  

𝑑𝑣

𝑑𝑡
𝑑𝑡. 

Add the Integrator 
block by selecting it and 
dragging it to the 
model window. The 
integrator block is in 
the simulink library 
browser under the 
continuous section. 

• Extend the signal in and 
signal out lines, double 
click on top of each line 
and label them as 𝑣 and 
𝑑𝑣 𝑑𝑡  
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Building the model 
• Re-arranging terms 

𝑑𝑣

𝑑𝑡
=

1

𝑚
𝑓 − 𝑏𝑣 : the 

change in velocity is 1/𝑚 
times 𝑓 − 𝑏𝑣 . In the 
library browser, under the 
math operations section, 
select and drag the Gain 
block. 

• Connect its output to the 
integrator’s input. 

• Double-click on the gain 
block, set the gain value to 
1/𝑚, and click ok. 

• Double-click right under 
the gain block and label it 
as 1/𝑚. 
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Building the model 
• Under the math 

operations section, 
select and drag the Add 
block. 

• Connect the add block 
with the gain block 

• Double-click the add 
block and change the 
sign as shown in figure 
𝑓 − 𝑏𝑣 . 

• One input to the add 
block will be the engine 
force 𝑓 while the other 
will be the friction force 
− 𝑏𝑣  
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Building the model 
• Add another Gain block, 

and change its orientation 
by selecting it, clicking on 
Format → Flip block 

• Double-click on it, set the 
gain to 𝑏 and click ok. 

• Double-click right under 
the block and re-name it 
as 𝑏. 

• Connect the output of the 
integrator to the input 
gain block 𝑏. 

• Connect the output of 
gain block 𝑏 with the 
negative input of the add 
block. 
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Building the model 
• In the library browser, 

under the sources section, 
select and drag the Step 
block. 

• Connect the step block to 
the add block. 

• Double-click on the step 
block and set the final 
value to 500 (the same 
value we had used before) 

• In the Sinks section, select 
Scope and drag it to the 
window. Connect it to the 
output of the step block. 

• Select and drag a second 
scope and connect it to the 
integrator’s output 

• We are ready for the 
simulation 
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𝑑𝑣

𝑑𝑡
=
1

𝑚
𝑓 − 𝑏𝑣  



Results 
• At the MATLAB prompt set 

the parameters 
>> 

f=500;b=50;m=1000; 

• Under the Simulations tab, 
click Configuration 
parameters, set the end 
time to 100 and click ok. 

• Under the Simulations tab, 
click  Start. 

• Once the simulation is 
finished, double-click on 
each scope, and graphing 
windows appear (you 
probably need to 
autoscale) 

• The time evolution is 
identical to the one we 
had obtained before.  
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Results 
• SIMULINK is a time-domain simulation 

and handles linear and non-linear 
systems. The frequency-domain 
analysis presented so far can only 
handle linear models. To produce bode 
plots we need to linearize the model. 

• Erase the two scopes and the step 
block. 

• In the Sources section, add an In block 
and connect it to the add block. 

• In the Sinks section, add an Out block 
and connect it to the output of the 
integrator. 

• Save the model as “SubsystemG.mdl” 

• At the MATLAB prompt type the 
commands on the right which 
reproduce the 𝐺 transfer function we 
were using before 
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>> [A,B,C,D]=linmod('subsystemG'); 

>> [num,den]=ss2tf(A,B,C,D); 

>> H=tf(num,den) 

 Transfer function: 

 0.001 

-------- 

s + 0.05 
Note: A, B, C, D is a state space 
representation of the system 



Implementing feedback 

• Create a new model calling it 
“cruise_control.mdl” 

• Select and drag from the library the Ports & 
Subsystems → Subsystem block. 

• Double-click on the subsystem block, erase 
the contents 

• Double-click on the subsystemG.mdl model, 
select all and copy. Paste in the subsystem 
block. 
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Implementing feedback 
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Let’s setup a SIMULINK model of 
the accelerometer shown before 

Position y is with respect of the case, the case’s 
position is x. What is the transfer function between 
the input acceleration 𝐴 (𝑎 = 𝑑2𝑥 𝑑𝑡2 ) and the 
output y?  
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M 

y 

k 

B 

x 

−𝐵
𝑑𝑦

𝑑𝑡
− 𝑘𝑦

= 𝑀 
𝑑2

𝑑𝑡2
𝑦 − 𝑥  



Rule of thumb 

• For a system represented by an nth order 
input/output ordinary differential equation it 
is necessary to integrate the highest derivative 
n times to obtain the output. 

• Rearranging terms 
𝑑2𝑦

𝑑𝑡2
=
1

𝑀
−𝐵

𝑑𝑦

𝑑𝑡
− 𝑘𝑦 +𝑀𝑎  
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The model 
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Results 
>> m=1;k=1;B=1; 

>> [A,B,C,D]=linmod('acc'); 

>> [num,den]=ss2tf(A,B,C,D); 

>> H=tf(num,den) 

  

Transfer function: 

     1 

----------- 

s^2 + s + 1 

 

Which confirms our previous finding. 
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Model the following LRC circuit 
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𝑉1(𝑡) 𝑉2(𝑡) 

𝐿 𝑅 

𝐶 

𝑉1 𝑡 = 𝐿
𝑑

𝑑𝑡
𝑖 𝑡 + 𝑅 𝑖 𝑡 + 𝑉2 𝑡  

𝑖 𝑡 = 𝐶 
𝑑𝑉2(𝑡)

𝑑𝑡
 



Model the following LRC circuit 
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𝑉1(𝑡) 𝑉2(𝑡) 

𝐿 𝑅 

𝐶 

𝑉1 𝑡 = 𝐿
𝑑

𝑑𝑡
𝑖(𝑡) + 𝑅 𝑖(𝑡)  + 𝑉2(𝑡) 

𝑖 𝑡 = 𝐶 
𝑑𝑉2(𝑡)

𝑑𝑡
 

 
𝑉 2 𝑡 =

1

𝐿𝐶
𝑉1 − 𝑅𝐶 𝑉 2 − 𝑉2  



Digital Signal Processing 1 

• Moving to the digital world 

• Two classes of signals 

– Analog 

– Discrete 

• Analog signal 

– Denoted with 𝑥(𝑡) 

– 𝑡 represents time in seconds 

• Discrete signal 

– Number sequence 𝑥(𝑛) 

– 𝑛 is an integer, represents 
discrete instances in time 

digsig.m 
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Types of sequences 
Unit sample sequence 

𝛿 𝑛 − 𝑛0 =  
1, 𝑛 = 𝑛0
0, 𝑛 ≠ 𝑛0

 

seq
u

e
n

ces.m
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Types of sequences 
Unit step sequence 

𝑢 𝑛 − 𝑛0 =  
1, 𝑛 ≥ 𝑛0
0, 𝑛 < 𝑛0

 

seq
u

e
n

ces.m
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Discrete systems 

• Linear time-invariant (LTI) system L 

 𝑦 𝑛 = L 𝑥 𝑛  

– Satisfies the principle of superposition 

L 𝑎1𝑥1 𝑛 + 𝑎2𝑥2(𝑛) =
= 𝑎1L 𝑥1 𝑛 + 𝑎2L 𝑥2 𝑛  

– The input-output pair, 𝑥(𝑛) and 𝑦(𝑛), is invariant 
to a shift 𝑘 

𝑦 𝑛 − 𝑘 = L 𝑥 𝑛 − 𝑘  
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Discrete systems 
Any sequence 𝑥 𝑛  can be written in terms of 
scaled and delayed unit sample sequences 

𝑥 𝑛 =  𝑥 𝑘  𝛿 𝑛 − 𝑘

∞

𝑘=−∞

 

The response of an (LTI) system can then be re-
written as 

𝑦 𝑛 = L 𝑥 𝑛 = L  𝑥 𝑘  𝛿 𝑛 − 𝑘

∞

𝑘=−∞

=  𝑥 𝑘

∞

𝑘=−∞

L 𝛿 𝑛 − 𝑘  
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Discrete systems 

𝑦 𝑛 =  𝑥 𝑘

∞

𝑘=−∞

L 𝛿 𝑛 − 𝑘

=  𝑥 𝑘

∞

𝑘=−∞

 𝑕 𝑛 − 𝑘  

• 𝑕 𝑛  is the unit sample or impulse response of 
LTI system 

• Convolution 

𝑦 𝑛 = 𝑥 𝑛 ⋆ 𝑕 𝑛 =  𝑥 𝑘

∞

𝑘=−∞

 𝑕 𝑛 − 𝑘  
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Let’s compute the convolution 
between two sequences 

Let’s define 𝑥 𝑛 = 1,2,3  and 
𝑦 𝑛 = 3,2,1  and let’s 
determine 𝑧 𝑛 = 𝑥(𝑛) ⋆ 𝑦(𝑛) 

 

For 𝑛 = 0 

𝑧 0 =  𝑥 𝑘 𝑦(−𝑘)

+∞

𝑘=−∞

 

                = 3 
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-4 
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-2 

-1 
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3 
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5 

x(k) 

- 

- 

- 

- 

1 

2 

3 

- 

- 

- 

y(k) 

- 

- 

- 

- 

3 

2 

1 

- 

- 

- 

y(-k) 

- 

- 

1 

2 

3 

- 

- 

- 

- 

- 

-k 

4 

3 

2 

1 

0 

-1 

-2 

-3 

-4 

-5 

x(k)y(-k) 

- 

- 

- 

- 

3 

- 

- 

- 

- 

- 

3 



Let’s compute the convolution 
between two sequences 

Let’s define 𝑥 𝑛 = 1,2,3  
and 𝑦 𝑛 = 3,2,1  and let’s 
determine 𝑧 𝑛 = 𝑥(𝑛) ⋆
𝑦(𝑛) 

 

For 𝑛 = 1 

𝑧 1 =  𝑥 𝑘 𝑦(1 − 𝑘)

+∞

𝑘=−∞

 

            = 8 
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k 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

5 

x(k) 

- 

- 

- 

- 

1 

2 

3 

- 

- 

- 

y(k) 

- 

- 

- 

- 

3 

2 

1 

- 

- 

- 

y(1-k) 

- 

- 

- 

1 

2 

3 

- 

- 

- 

- 

1-k 

5 

4 

3 

2 

1 

0 

-1 

-2 

-3 

-4 

x(k)y(1-k) 

- 

- 

- 

- 

2 

6 

- 

- 

- 

- 

8 



Let’s compute the convolution 
between two sequences 

Let’s define 𝑥 𝑛 = 1,2,3  and 𝑦 𝑛 =
3,2,1  and let’s determine 𝑧 𝑛 = 𝑥(𝑛) ⋆
𝑦(𝑛) 

 

Using MATLAB to confirm results 

 
>> conv([3 2 1],[1 2 3]) 

ans = 

     3     8    14     8     3 

LIGO-G1100863 Matone: An Overview of Control Theory and Digital Signal Processing (3) 30 

n 𝒛 𝒏 = 𝒙(𝒏) ⋆ 𝒚(𝒏) 

0 3 

1 8 

2 14 

3 8 

4 3 



Stability 

An LTI system L is stable if and only if its impulse 
response is absolutely summable 

 

 𝑕(𝑛) < ∞

+∞

−∞

 

LIGO-G1100863 Matone: An Overview of Control Theory and Digital Signal Processing (3) 31 



Correlation of sequences 

The correlation between two sequences 𝑥(𝑛) 
and 𝑦(𝑛) is defined as 

𝑟𝑥,𝑦 𝑙 =  𝑥 𝑛 𝑦(𝑛 − 𝑙)

∞

𝑛=−∞

= 𝑥(𝑙) ⋆ 𝑦(−𝑙) 

where  

– 𝑟 is the correlation (degree to which the two 
signals are similar) and  

– 𝑙 is the lag.  
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Example 

Generating two identical random sequences, 
one of them shifted by 50 samples. 
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co
n

v_exam
p

le2
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Example 

Taking the correlation between them using 
MATLAB’s xcorr command we find highest 

correlation at lag 50. 

LIGO-G1100863 Matone: An Overview of Control Theory and Digital Signal Processing (3) 34 

co
n

v_exam
p

le2
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Example 
Using MATLAB’s xcorr or conv command. 
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co
n

v_exam
p

le2
.m

 

>> [r,lags]=xcorr(x,y); 

>> plot(lags,r,'bo') 

 

 

or 
>> r2=conv(x,fliplr(y),'same'); 



Exercise 
In a certain concert hall, echoes of the original audio 
signal 𝑥(𝑛) are generated due to reflections at the walls 
and ceiling. The audio signal experienced by the listener 
𝑦(𝑛) is a combination of 𝑥(𝑛) and its echoes. Let 

𝑦 𝑛 = 𝑥 𝑛 +∝ 𝑥(𝑛 − 𝑘) 
where k is the amount of delay in samples and ∝ is its 
relative strength.  
 
Estimate the delay 𝑘 assuming the original signal is a 
Sine-Gaussian 

𝑥 𝑛 = sin 0.05 𝜋 𝑛 𝑒
−
𝑛−𝑛0

2

𝜏2  
 
with 𝑛0 = 200, 𝜏 = 50 and ∝= 50%. 
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ex2
8

.m
 



Signal Energy 

The energy of a sequence 𝑥(𝑛) is given by 

ℰ𝑥 = 𝑥(𝑛) 2

∞

−∞
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Differential to difference equations 

In the analog world: 

𝑦 𝑡 =
𝑑𝑥(𝑡)

𝑑𝑡
 

𝑑
𝑑𝑡  

x(t) y(t) 
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Differential to difference equations 

In the digital world: 

𝑦 𝑡 =
𝑑𝑥(𝑡)

𝑑𝑡
= lim∆𝑡→0

𝑥 𝑡 − 𝑥 𝑡 − ∆𝑡

∆𝑡
 

 
≅
𝑥 𝑡 − 𝑥(𝑡 − ∆𝑡)

∆𝑡
 

𝑦 𝑛 = 𝑥 𝑛 − 𝑥 𝑛 − 1              (∆𝑡 = 1) 

The original differential equation is 
approximated by a difference equation 

In
 t

h
e 

lim
it

 𝐹
𝑠
→
∞
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𝑦 𝑛 = 𝑥 𝑛 − 𝑥 𝑛 − 1  𝑦 𝑡 =
𝑑𝑥(𝑡)

𝑑𝑡
 

𝑥 𝑛 = cos (𝑛) 

y 𝑛 = −sin (𝑛) 

d
ifferen

ce.m
 

In
 t

h
e 

lim
it

 𝐹
𝑠
→
∞

 
>> diff(x) 
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𝑦 𝑛 = 𝑥 𝑛 − 𝑥 𝑛 − 1  𝑦 𝑡 =
𝑑𝑥(𝑡)

𝑑𝑡
 

𝑥 𝑛 = cos (𝑛) d
ifferen

ce.m
 

y 𝑛 = −sin (𝑛) 

In
 t

h
e 

lim
it

 𝐹
𝑠
→
∞

 
>> diff(x) 

LIGO-G1100863 Matone: An Overview of Control Theory and Digital Signal Processing (3) 42 



Difference equations 
• In general, a difference equation is of the form 

 𝑎𝑘 𝑦 𝑛 − 𝑘 =  𝑏𝑚𝑥 𝑛 −𝑚

𝑀

𝑚=0

𝑁

𝑘=0

 

– where 𝑥(𝑛) is the input sequence 

– 𝑦(𝑛) is the output sequence and 

– 𝑎𝑘 and 𝑏𝑚 are the coefficients of 𝑦(𝑛) and 𝑥(𝑛) 
respectively. 

• The MATLAB filter command solves the 
difference equations numerically – filtering input 
sequence 𝑥(𝑛)  

>> y = filter(b, a, x) 
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Impulse response 𝑕(𝑛) 

To generate the impulse response of an LTI 
system described by the difference equation 

 𝑎𝑘 𝑦 𝑛 − 𝑘 =  𝑏𝑚𝑥 𝑛 −𝑚

𝑀

𝑚=0

𝑁

𝑘=0

 

use the filter command: 

>> h = filter(b, a, delta) 

By plotting 𝑕 you can visualize if the system is 
stable 
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Example 

An LTI system is described by the following 
difference equation 

𝑦 𝑛 − 𝑦 𝑛 − 1 + 0.9 𝑦 𝑛 − 2 = 𝑥(𝑛) 

Plot the impulse response 𝑕 for 0 ≤ 𝑛 ≤ 100 
and determine if system is stable. 
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Example 
An LTI system is described by the 
following difference equation 

 
𝑦 𝑛 − 𝑦 𝑛 − 1 + 0.9 𝑦 𝑛 − 2

= 𝑥(𝑛) 

 

Plot the impulse response 𝑕 for 
0 ≤ 𝑛 ≤ 100 and determine if 
system is stable. 

 

Generating the delta function 
with MATLAB 
>> x = zeros(1,100); 

>> x(1) = 1; 

>> plot(x,'bo-') 
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ex29.m 



Example 
An LTI system is described by the 
following difference equation 
𝑦 𝑛 − 𝑦 𝑛 − 1 + 0.9 𝑦 𝑛 − 2

= 𝑥(𝑛) 

Plot the impulse response 𝑕 for 
0 ≤ 𝑛 ≤ 100 and determine if 
system is stable. 

 

Generating the response 

>> b=1; 

>> a=[1 -1 0.9]; 

>> h=filter(b,a,x); 

>> plot(h,'bo-') 

System is stable 
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Exercise 

An LTI system is described by the difference 
equation 

𝑦 𝑛 − 0.5 𝑦 𝑛 − 1 + 0.25 𝑦 𝑛 − 2
= 𝑥 𝑛 + 2 𝑥 𝑛 − 1 + 𝑥(𝑛 − 3) 

Plot its impulse response 𝑕 and determine the 
stability of the system. 
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Generating the response 
>> b=[1 2 0 1]; 

>> a=[1 -0.5 0.25]; 

>> h=filter(b,a,𝛿); 
>> plot(h,'b-') 

ex2
1

6
.m

 



Cruise control case 

• Physical system described 
by the following equation 
of motion 

 𝑓

𝑟𝑜𝑎𝑑

= 𝑓 − 𝑓𝑓𝑟 = 𝑚𝑎 

• Simplifying and assuming 
friction force is 
proportional to speed 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑓 − 𝑏𝑣  

Direction 
of motion 

Force from 
engine (f) 

Normal 
force (n) 

Weight 
(mg) 

Friction 
force (ffr) 
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In the digital world 

𝑚
𝑑𝑦(𝑡)

𝑑𝑡
= 𝑥 𝑡 − 𝑏𝑦 𝑡  

 

 

 

 
1050 𝑦 𝑛 − 1000 𝑦 𝑛 − 1 = 𝑥 𝑛      (∆𝑡 = 1) 
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Numerical solution 
d

ifferen
ce2

.m
 

In
 t

h
e 

lim
it

 𝐹
𝑠
→
∞
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Summary 
• SIMULINK – time domain simulation, can handle non-linear systems. 

– Tutorial 
– A suggestion for re-writing the differential equation is given in order to facilitates 

designing the model 

• Analog to digital 
– Signals to sequences 
– Impulse response of a system 𝑕 

𝑦 𝑛 =  𝑥 𝑘

∞

𝑘=−∞

L 𝛿 𝑛 − 𝑘 =  𝑥 𝑘

∞

𝑘=−∞

 𝑕 𝑛 − 𝑘  

– Convolution and correlation 
𝑧 𝑛 = 𝑥(𝑛) ⋆ 𝑦(𝑛) 
𝑟𝑥,𝑦 𝑙 = 𝑥(𝑙) ⋆ 𝑦(−𝑙) 

– Condition of stability 

 𝑕(𝑛) < ∞

+∞

−∞

 

– Differential to difference equations 
– General form of a difference equation 
– MATLAB’s filter to numerically solve difference equations 

– Impulse response can be determined by using the filter command and setting 
the input to a delta sequence. 
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