

To recap

- A system's TF is a complex function
 - Represented in terms of its magnitude and phase
- Bode plots
 - plot of magnitude and phase
- Bode plots of complex TFs can be expressed in terms of simpler terms
- Stability criteria:
 - The feedback control system is <u>stable</u> if and only if all the *poles of the closed loop transfer function* G_{CL} have a negative real part. Otherwise the system is unstable.

To recap

- Stability in terms of the open loop gain
 - A closed loop system is stable if the unity gain frequency is lower than the -180^{0} crossing.
 - Rule of thumb: the system is (almost always) stable if $|G_{OL}| \propto \frac{1}{f}$ at the unity gain frequency
- How close to instability is a system?
 - Gain and phase margin
- Typical compensators
 - Phase-lag
 - Phase-lead
 - "Boost"

SIMULINK

- Simulating systems in the time-domain
- Let's refer back to the cruise control example
- Parameters used previously

LIGO-G1100863

First we need to model the response of the car v to an input force f.

- This was previously described by transfer function *G*
- G was derived from

$$m\frac{dv}{dt} = f - bv$$

• SIMULINK simulates this differential equation

- Type simulink at the MATLAB prompt
 >> simulink
- The "Simulink Library Browser" window opens.
- File \rightarrow New \rightarrow Model
- The model window opens

	untit	led													- 🗆 🗙
File	Edit	View	Sim	ulatio	n	Format	Tools	Help							
D	2		5	Ж	Ē	B	(= =>	企	\Box	\subseteq	▶	10.0	Norma	əl	•
										_					
Read	ły			1 :		100%						ode	:45		///

 Extend the signal in and signal out lines, double click on top of each line and label them as v and dv/dt

- Re-arranging terms $\frac{dv}{dt} = \frac{1}{m}(f - bv): \text{ the } \\ \text{change in velocity is } 1/m \\ \text{times } (f - bv). \text{ In the } \\ \text{library browser, under the } \\ \text{math operations section, } \\ \text{select and drag the } Gain \\ \text{block.} \end{cases}$
- Connect its output to the integrator's input.
- Double-click on the gain block, set the gain value to 1/m, and click ok.
- Double-click right under the gain block and label it as 1/m.

LIGO-G1100863

8

- Under the math operations section, select and drag the Add block.
- Connect the add block with the gain block
- Double-click the add block and change the sign as shown in figure (f - bv).
- One input to the add
 block will be the engine
 force f while the other
 will be the friction force
 bv

- Add another *Gain* block, and change its orientation by selecting it, clicking on Format → Flip block
- Double-click on it, set the gain to b and click ok.
- Double-click right under the block and re-name it as b.
- Connect the output of the integrator to the input gain block b.
- Connect the output of gain block b with the negative input of the add block.

- In the library browser, under the sources section, select and drag the Step block.
- Connect the step block to the add block.
- Double-click on the step block and set the final value to 500 (the same value we had used before)
- In the Sinks section, select Scope and drag it to the window. Connect it to the output of the step block.
- Select and drag a second scope and connect it to the integrator's output
- We are ready for the simulation

 The time evolution is identical to the one we had obtained before.

LSC Results

- SIMULINK is a time-domain simulation and handles linear and non-linear systems. The frequency-domain analysis presented so far can only handle linear models. To produce bode plots we need to linearize the model.
- Erase the two scopes and the step block.
- In the Sources section, add an *In* block and connect it to the add block.
- In the Sinks section, add an Out block and connect it to the output of the integrator.
- Save the model as "SubsystemG.mdl"
- At the MATLAB prompt type the commands on the right which reproduce the *G* transfer function we were using before


```
>> [A,B,C,D]=linmod('subsystemG');
>> [num,den]=ss2tf(A,B,C,D);
>> H=tf(num,den)
Transfer function:
0.001
```

```
s + 0.05
```

Note: A, B, C, D is a state space representation of the system

Implementing feedback

- Create a new model calling it "cruise_control.mdl"
- Select and drag from the library the Ports & Subsystems → Subsystem block.
- Double-click on the subsystem block, erase the contents
- Double-click on the subsystemG.mdl model, select all and copy. Paste in the subsystem block.

Implementing feedback

15

Position y is with respect of the case, the case's position is x. What is the transfer function between the input acceleration $A(a = d^2x/dt^2)$ and the output y?

LIGO-G1100863

Rule of thumb

- For a system represented by an nth order input/output ordinary differential equation it is necessary to integrate the highest derivative n times to obtain the output.
- Rearranging terms

$$\frac{d^2y}{dt^2} = \frac{1}{M} \left(-B \frac{dy}{dt} - ky + Ma \right)$$

The model

acc.mdl

Results

- >> m=1;k=1;B=1;
- >> [A,B,C,D]=linmod('acc');
- >> [num,den]=ss2tf(A,B,C,D);
- >> H=tf(num,den)

Transfer function: 1

 $s^2 + s + 1$

Which confirms our previous finding.

$$V_1(t) = L \frac{d}{dt} i(t) + R i(t) + V_2(t)$$
$$i(t) = C \frac{dV_2(t)}{dt}$$

Digital Signal Processing 1

- Moving to the digital world
- Two classes of signals
 - Analog
 - Discrete
- Analog signal
 - Denoted with x(t)
 - t represents time in seconds
- Discrete signal
 - Number sequence x(n)
 - *n* is an integer, represents discrete instances in time

22

Digital sampling

Types of sequences

Unit sample sequence

Types of sequences

Unit step sequence

24

Discrete systems

- Linear time-invariant (LTI) system $\mathcal L$

$$y(n) = \mathcal{L}[x(n)]$$

Satisfies the principle of superposition

$$\mathcal{L}[a_1 x_1(n) + a_2 x_2(n)] = = a_1 \mathcal{L}[x_1(n)] + a_2 \mathcal{L}[x_2(n)]$$

– The input-output pair, x(n) and y(n), is invariant to a shift k

$$y(n-k) = \mathcal{L}[x(n-k)]$$

Discrete systems

Any sequence x(n) can be written in terms of scaled and delayed unit sample sequences

 \sim

$$x(n) = \sum_{k=-\infty}^{\infty} x(k) \,\delta(n-k)$$

The response of an (LTI) system can then be rewritten as

$$y(n) = \mathcal{L}[x(n)] = \mathcal{L}\left[\sum_{k=-\infty}^{\infty} x(k) \,\delta(n-k)\right]$$
$$= \sum_{k=-\infty}^{\infty} x(k) \,\mathcal{L}[\delta(n-k)]$$

Discrete systems

$$y(n) = \sum_{\substack{k=-\infty\\\infty}}^{\infty} x(k) \mathcal{L}[\delta(n-k)]$$
$$= \sum_{\substack{k=-\infty\\k=-\infty}}^{\infty} x(k) h(n-k)$$

- h(n) is the *unit sample* or *impulse* response of
 LTI system
- Convolution

$$y(n) = x(n) \star h(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$

Let's compute the convolution between two sequences

k	x(k)	y(k)	-k	y(-k)	x(k)y(-k)
-4	-	-	4	-	-
-3	-	-	3	-	-
-2	-	-	2	1	-
-1	-	-	1	2	-
0	1	3	0	3	3
1	2	2	-1	-	-
2	3	1	-2	-	-
3	-	-	-3	-	-
4	-	-	-4	-	-
5	-	-	-5	-	-
					3

Let's define $x(n) = \{1,2,3\}$ and $y(n) = \{3,2,1\}$ and let's determine $z(n) = x(n) \star y(n)$

For
$$n = 0$$

$$z(0) = \sum_{\substack{k=-\infty \\ = 3}}^{+\infty} x(k)y(-k)$$

Let's compute the convolution between two sequences

k	x(k)	y(k)	1-k	y(1-k)	x(k)y(1-k)	
-4	-	-	5	-	-	
-3	-	-	4	-	-	
-2	-	-	3	-	-	
-1	-	-	2	1	-	
0	1	3	1	2	2	
1	2	2	0	3	6	
2	3	1	-1	-	-	
3	-	-	-2	-	-	
4	-	-	-3	-	-	
5	-	-	-4	-	-	
					8	

Let's define $x(n) = \{1,2,3\}$ and $y(n) = \{3,2,1\}$ and let's determine $z(n) = x(n) \star$ y(n)

For
$$n = 1$$

$$z(1) = \sum_{\substack{k=-\infty \\ k = -\infty}}^{+\infty} x(k)y(1-k)$$

$$= 8$$

Let's compute the convolution between two sequences

n	$\boldsymbol{z}(\boldsymbol{n}) = \boldsymbol{x}(\boldsymbol{n}) \star \boldsymbol{y}(\boldsymbol{n})$
0	3
1	8
2	14
3	8
4	3

Let's define $x(n) = \{1,2,3\}$ and $y(n) = \{3,2,1\}$ and let's determine $z(n) = x(n) \star y(n)$

Using MATLAB to confirm results

>> conv([3 2 1],[1 2 3]) ans = 3 8 14 8

Stability

An LTI system \mathcal{L} is stable if and only if its impulse response is absolutely summable

Correlation of sequences

The correlation between two sequences x(n)and y(n) is defined as

$$r_{x,y}(l) = \sum_{n=-\infty}^{\infty} x(n)y(n-l) = x(l) \star y(-l)$$

where

- -r is the correlation (degree to which the two signals are similar) and
- -l is the lag.

Generating two identical random sequences, one of them shifted by 50 samples.

LIGO-G1100863

Taking the correlation between them using MATLAB's xcorr command we find highest

Using MATLAB's xcorr or conv command.

Exercise

In a certain concert hall, echoes of the original audio signal x(n) are generated due to reflections at the walls and ceiling. The audio signal experienced by the listener y(n) is a combination of x(n) and its echoes. Let

$$y(n) = x(n) + \propto x(n-k)$$

where k is the amount of delay in samples and \propto is its relative strength.

Estimate the delay k assuming the original signal is a Sine-Gaussian

$$x(n) = \sin(0.05 \pi n) e^{-\frac{(n-n_0)^2}{\tau^2}}$$

with $n_0 = 200$, $\tau = 50$ and $\propto = 50\%$.

ex28.m

Signal Energy

The energy of a sequence x(n) is given by $\mathcal{E}_x = \sum_{-\infty}^{\infty} |x(n)|^2$

In the analog world:

$$y(t) = \frac{dx(t)}{dt}$$

$$x(t)$$
 d/dt $y(t)$

LIGO-G1100863

⁸ In the digital world:

$$y(t) = \frac{dx(t)}{dt} = \lim_{\Delta t \to 0} \frac{x(t) - x(t - \Delta t)}{\Delta t}$$

$$\approx \frac{x(t) - x(t - \Delta t)}{\Delta t}$$

$$y(n) = x(n) - x(n - 1) \quad (\Delta t = 1)$$

The original *differential* equation is approximated by a *difference* equation

Difference equations

- In general, a difference equation is of the form $\sum_{k=1}^{N} a_{k} y(n-k) = \sum_{k=1}^{M} b_{k} y(n-m)$
 - $\sum_{k=0}^{\infty} a_k y(n-k) = \sum_{m=0}^{\infty} b_m x(n-m)$
 - where x(n) is the input sequence
 - -y(n) is the output sequence and
 - $-a_k$ and b_m are the coefficients of y(n) and x(n) respectively.
- The MATLAB filter command solves the difference equations numerically – *filtering* input sequence x(n)

>> y = filter(b, a, x)

Impulse response h(n)

To generate the impulse response of an LTI system described by the difference equation

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{m=0}^{M} b_m x(n-m)$$

use the filter command:

>> h = filter(b, a, delta)

By plotting h you can visualize if the system is stable

An LTI system is described by the following difference equation

$$y(n) - y(n-1) + 0.9 y(n-2) = x(n)$$

Plot the impulse response h for $0 \le n \le 100$ and determine if system is stable.

An LTI system is described by the following difference equation

$$y(n) - y(n-1) + 0.9 y(n-2)$$

= $x(n)$

Plot the impulse response h for $0 \le n \le 100$ and determine if system is stable.

Generating the delta function with MATLAB

>>
$$x(1) = 1;$$

ex29.m

An LTI system is described by the following difference equation y(n) - y(n - 1) + 0.9 y(n - 2)= x(n)

Plot the impulse response h for $0 \le n \le 100$ and determine if system is stable.

Generating the response
>> b=1;

- >> a=[1 -1 0.9];
- >> h=filter(b,a,x);
- >> plot(h, 'bo-')

System is stable

ex29.m

LIGO-G1100863

Exercise

An LTI system is described by the difference equation

$$y(n) - 0.5 y(n-1) + 0.25 y(n-2)$$

= x(n) + 2 x(n-1) + x(n-3)

Plot its impulse response h and determine the stability of the system.

Impulse response 1 0.8 0.6 δ(n) 0.4 0.2 0 25 5 10 15 20 30 35 40 0 2.5 Generating the response 2 >> b=[1 2 0 1]; 1.5 >> a=[1 -0.5 0.25]; >> h=filter(b,a, δ); L >> plot(h, 'b-') 0.5 0 -0.5 L 0 10 15 20 5 25 30 35 40 Sample n

LIGO-G1100863

Cruise control case

 Physical system described by the following equation of motion

$$\sum_{road} f = f - f_{fr} = ma$$

 Simplifying and assuming friction force is proportional to speed

$$m\frac{dv}{dt} = f - bv$$

In the digital world

$$m\frac{dy(t)}{dt} = x(t) - by(t)$$

$$1050 y(n) - 1000 y(n-1) = x(n) \quad (\Delta t = 1)$$

Numerical solution

Matone: An Overview of Control Theory and Digital Signal Processing (3)

Numerical solution

Matone: An Overview of Control Theory and Digital Signal Processing (3)

Summary

- SIMULINK time domain simulation, can handle non-linear systems.
 - Tutorial
 - A suggestion for re-writing the differential equation is given in order to facilitates designing the model
- Analog to digital
 - Signals to sequences
 - Impulse response of a system *h*

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) \mathcal{L}[\delta(n-k)] = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$

- Convolution and correlation

$$z(n) = x(n) \star y(n)$$

$$r_{x,y}(l) = x(l) \star y(-l)$$

Condition of stability

$$\sum_{-\infty}^{+\infty} |h(n)| < \infty$$

- Differential to difference equations
- General form of a difference equation
- MATLAB's filter to numerically solve difference equations
- Impulse response can be determined by using the filter command and setting the input to a delta sequence.