
To recap 
• Control theory builds on differential equations 

• The Laplace transform is a tool to facilitate 
solving for ODEs. 

• No need to do actually do the transform 
– Lookup tables 

• System G(s) is stable if 
– Its response is bounded and finite 

– poles must have negative real parts 

• Still, how does the cruise control example 
work? 

Getting there… 
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Recall 

What is the transfer function of a system whose 
input 𝑢 and output 𝑦 are related by the 
following differential equation? 

 
𝑑2𝑦

𝑑𝑡2
+ 3

𝑑𝑦

𝑑𝑡
+ 2𝑦 = 𝑢 +

𝑑𝑢

𝑑𝑡
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Recall 

Given the system’s transfer function 

 

𝑃 𝑠 =
2 𝑠+1

𝑠2+𝑠+1
  

 

determine the system’s differential equation to 
input 𝑢 𝑡 . 
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Recall 
Determine which of the following transfer functions 
represent stable systems and which represent unstable 
systems. Use MATLAB’s step to verify your answer. 

a) 𝑃 𝑠 =
𝑠−1

𝑠+2 𝑠2+4
 

b) 𝑃 𝑠 =
𝑠−1

𝑠+2 𝑠+4
 

c) 𝑃 𝑠 =
𝑠+2 𝑠−2

𝑠+1 𝑠−1 𝑠+4
 

d) 𝑃 𝑠 =
6

𝑠2+𝑠+1 𝑠+1 2 

e) 𝑃 𝑠 =
5 𝑠+10

𝑠2−𝑠+10 𝑠+5
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Another example 
A simple mechanical accelerometer 
is shown below. The position y is 
with respect of the case, the case’s 
position is x. What is the transfer 
function between the input 
acceleration 𝐴 (𝑎 = 𝑑2𝑥 𝑑𝑡2 ) and 
the output Y?  
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B 

x 

−𝐵
𝑑𝑦

𝑑𝑡
− 𝑘𝑦

= 𝑀 
𝑑2

𝑑𝑡2
𝑦 − 𝑥  
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Control Theory 2  

The response of a stable system G(s) is 
characterized by its 

 

  Amplitude and Phase shift 

 

to a sinusoidal excitation 
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Frequency response 

It can be shown that if 
𝑥 𝑡 = 𝑋 sin 𝜔𝑡  

then 

𝑦 𝑡 = 𝐺(𝑠) ∙ 𝑋 ∙ sin 𝜔𝑡 + 𝜑 𝑠  

where 

• 𝐺(𝑠)  is the amplitude response and 

• 𝜑 𝑠  is the phase shift 

𝐺(𝑠) 
X(𝑠) Y(𝑠) 
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Frequency response 

1. The dynamic behavior of a physical system 
can be determined by measuring its transfer 
function with a sinusoidal excitation 

2. Magnitude and phase response are a 
function of frequency (𝑠 = 𝑗𝜔) 

3. Frequency-response helps to understand the 
stability criteria 

Matone: An Overview of Control Theory and Digital Signal Processing (2) 8 LIGO-G1100863 



Graphical analysis tool: Bode Plot 

• Common graphical representation of transfer 
function 𝐺 𝑠  

• 𝐺 𝑠  is complex 

– plot of magnitude 𝐺 𝑗𝜔  and phase ∠𝐺 𝑗𝜔  

• Convention 

– Log-log scale for magnitude vs. frequency (Hz) 

– Semi-log scale for phase (deg) vs. frequency (Hz) 

• Other conventions 

– Magnitude in dB (𝑋 𝑑𝐵 = 20 log10𝑋) vs. angular 
frequency (rad/s) 
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Bode plot: 𝐺 𝑠 = 1
𝑠  

𝐺 𝑠 =
1

𝑠
 → 𝐺 𝑗𝜔 =

1

𝑗𝜔
= −𝑗

1

𝜔
 

𝐺 𝑗𝜔 = 𝐺𝐺∗ =
1

𝜔
 

∠𝐺 𝑗𝜔 = tan−1
Im 𝐺

Re 𝐺
= −

𝜋

2
 

𝐺 𝑗𝜔 =
1

𝜔
 ∠𝐺 𝑗𝜔 = −

𝜋

2
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Bode plot: 𝐺 𝑠 = 1
𝑠  

b
o

d
eexam

p
les.m

 

𝐺 𝑗𝜔

=
1

2𝜋𝑓
 

slope: −10 × decade  

= 1/𝑓 

∠𝐺 𝑗𝜔 = −
𝜋

2
 

−10 

1 decade 
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Bode plot: 𝐺 𝑠 = 1
𝑠2  

𝐺 𝑠 =
1

𝑠2
 → 𝐺 𝑗𝜔 =

1

𝑗𝜔 2
= −

1

𝜔2
 

𝐺 𝑗𝜔 = 𝐺𝐺∗ =
1

𝜔2
 

∠𝐺 𝑗𝜔 = tan−1
Im 𝐺

Re 𝐺
= −𝜋 

𝐺 𝑗𝜔 =
1

𝜔2
 ∠𝐺 𝑗𝜔 = −𝜋 
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Bode plot: 𝐺 𝑠 = 1
𝑠2  

b
o

d
eexam

p
les.m

 

slope: −100 × decade 

= 1/𝑓2 

𝐺 𝑗𝜔 = 1
2𝜋𝑓 2  

∠𝐺 𝑗𝜔 = −𝜋 

−100 

1 decade 
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Bode plot: 𝐺 𝑠 = 𝑠 

𝐺 𝑠 = 𝑠 → 𝐺 𝑗𝜔 = 𝑗𝜔 

𝐺 𝑗𝜔 = 𝐺𝐺∗ = 𝜔 

∠𝐺 𝑗𝜔 = tan−1
Im 𝐺

Re 𝐺
=
𝜋

2
 

𝐺 𝑗𝜔 = 𝜔 ∠𝐺 𝑗𝜔 =
𝜋

2
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Bode plot: 𝐺 𝑠 = 𝑠 
b

o
d

eexam
p

les.m
 

𝐺 𝑗𝜔 = 2𝜋𝑓 

slope: +10 × decade = 𝑓 

∠𝐺 𝑗𝜔 = +
𝜋

2
 

+10 

1 decade 
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Bode plot: 𝐺 𝑠 = 𝑠2 

𝐺 𝑠 = 𝑠2 → 𝐺 𝑗𝜔 = 𝑗𝜔 2 = −𝜔2 

𝐺 𝑗𝜔 = 𝐺𝐺∗ = 𝜔2 

∠𝐺 𝑗𝜔 = tan−1
Im 𝐺

Re 𝐺
= +𝜋 

𝐺 𝑗𝜔 = 𝜔2 ∠𝐺 𝑗𝜔 = +𝜋 
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Bode plot: 𝐺 𝑠 = 𝑠2 
b

o
d

eexam
p

les.m
 

𝐺 𝑗𝜔 = 2𝜋𝑓 2 

slope: +100 × decade = 𝑓2 

∠𝐺 𝑗𝜔 = +𝜋 

+100 

1 decade 
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Bode plot: 𝐺 𝑠 = 𝑎
(𝑠+𝑎)  

𝐺 𝑠

=
𝑎

𝑠 + 𝑎
 

𝐺 𝑗𝜔 =
𝑎

𝑗𝜔 + 𝑎
 

𝐺 𝑗𝜔 = 𝐺𝐺∗ =
𝑎

𝜔2 + 𝑎2
 

∠𝐺 𝑗𝜔 = tan−1
Im 𝐺

Re 𝐺
= − tan−1

𝜔

𝑎
 

𝐺 𝑗𝜔 =

=
𝑎

𝜔2 + 𝑎2
 

∠𝐺 𝑗𝜔 =

= − tan−1
𝜔

𝑎
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Bode plot: 𝐺 𝑠 = 𝑎
(𝑠 + 𝑎)  

b
o

d
eexam

p
les.m

 

𝜔 ≪ 𝑎 → 𝐺 𝑗𝜔 ≈ 1 

𝜔 ≪ 𝑎 → ∠𝐺 𝑗𝜔 ≈ 0 

𝑎
2𝜋 = 1 Hz 
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Bode plot: 𝐺 𝑠 = 𝑎
(𝑠 + 𝑎)  

b
o

d
eexam

p
les.m

 

𝜔 ≫ 𝑎 → ∠𝐺 𝑗𝜔 ≈ −𝜋
2  

𝜔 ≫ 𝑎 → 𝐺 𝑗𝜔 ≈ 𝑎
𝜔 ,  

slope: −10 × decade = 1/𝑓 

𝑎
2𝜋 = 1 Hz 
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Bode plot: 𝐺 𝑠 = 𝑎
(𝑠 + 𝑎)  

b
o

d
eexam

p
les.m

 

𝜔 = 𝑎 → ∠𝐺 𝑗𝜔 = −𝜋
4  

𝜔 = 𝑎 → 𝐺 𝑗𝜔 = 1
2

  

𝑎
2𝜋 = 1 Hz 
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Bode plot: SHO 

𝐺 𝑠 =
𝜔0

2

(𝑠2 + 2𝛿𝜔0 ∙ 𝑠 + 𝜔0
2)

 

𝐺 𝑗𝜔 =
𝜔0

2

𝜔0
2 − 𝜔2 2

+ 2𝛿𝜔0𝜔
2

 

∠𝐺 𝑗𝜔 = −tan−1
2𝛿𝜔0𝜔

𝜔0
2 −𝜔2
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Bode plot: 𝐺 𝑠 =
𝜔0

2

(𝑠2+2𝛿𝜔0∙𝑠+ 𝜔0
2)

 
b

o
d

eexam
p

les.m
 

𝜔 ≪ 𝜔0 → 𝐺 𝑗𝜔 ≈ 1 

𝜔 ≪ 𝜔0 → ∠𝐺 𝑗𝜔 ≈ 0 

𝜔0
2𝜋 = 1 Hz, δ = 0.1 
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Bode plot: 𝐺 𝑠 =
𝜔0

2

(𝑠2+2𝛿𝜔0∙𝑠+ 𝜔0
2)

 
b

o
d

eexam
p

les.m
 

𝜔 ≫ 𝜔0 → 𝐺 𝑗𝜔 ≈
𝜔0

2

𝜔2  

𝜔 ≫ 𝜔0 → ∠𝐺 𝑗𝜔 ≈ −𝜋 

𝜔0
2𝜋 = 1 Hz, δ = 0.1 
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Bode plot: 𝐺 𝑠 =
𝜔0

2

(𝑠2+2𝛿𝜔0∙𝑠+ 𝜔0
2)

 
b

o
d

eexam
p

les.m
 

𝜔 = 𝜔0 → 𝐺 𝑗𝜔 = 1
2𝛿  

𝜔 = 𝜔0 → ∠𝐺 𝑗𝜔 = −𝜋
2  

𝜔0
2𝜋 = 1 Hz, δ = 0.1 
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Bode plots for more complicated 
TFs? Break it into simpler parts 

In general a transfer function 𝐺 𝑠  can be re-written 
in terms of simpler ones (of 2nd order at most) 

𝐺 𝑠 = 𝐺1(𝑠) ∙ 𝐺2 (𝑠)⋯𝐺𝑛 (𝑠) 

 

then 

 
𝐺 𝑗𝜔 = 𝐺1(𝑗𝜔) ∙ 𝐺2(𝑗𝜔) ∙ ⋯ ∙ 𝐺𝑛(𝑗𝜔)  

 

∠𝐺 𝑗𝜔 = ∠𝐺1 𝑗𝜔 + ∠𝐺2 𝑗𝜔 +⋯+ ∠𝐺𝑛(𝑗𝜔) 
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Example 

Let’s draw the bode plot for 

 

𝐺 𝑠 = 𝑘
𝑠 + 𝜔0

𝑠 + 𝜔1 𝑠 + 𝜔2
 

where 
𝑘 = 500 

𝜔0 = 2𝜋 ∙ 0.1 Hz 
𝜔1 = 2𝜋 ∙ 1 Hz 
𝜔2 = 2𝜋 ∙ 10 Hz 
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Example 

𝐺 𝑠 = 𝑘
𝑠 + 𝜔0

𝑠 + 𝜔1 𝑠 + 𝜔2

= 𝑘 ∙ 𝐺0(𝑠) ∙ 𝐺1(𝑠) ∙ 𝐺2 𝑠   

𝐺0 𝑠 = s + 𝜔0 

𝐺1 𝑠 =
1

𝑠 + 𝜔1

𝐺2 𝑠 =
1

𝑠 + 𝜔2

 

𝐺 𝑗𝜔 = 𝐺0(𝑗𝜔) ∙ 𝐺1(𝑗𝜔) ∙ 𝐺2(𝑗𝜔)  

∠𝐺 𝑗𝜔 = ∠𝐺0 𝑗𝜔 + ∠𝐺1 𝑗𝜔 + ∠𝐺2(𝑗𝜔) 
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0.1Hz 1Hz 10Hz Log(f) 

Log(f) 

𝜋/2 

−𝜋/2 

𝐺 𝑗𝜔  

∠𝐺 𝑗𝜔  

𝐺0 𝑠 = s + 2𝜋 0.1𝐻𝑧 

𝐺1 𝑠 =
1

𝑠 + 2𝜋 1𝐻𝑧
 

𝐺2 𝑠 =
1

𝑠 + 2𝜋 10𝐻𝑧
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0.1Hz 1Hz 10Hz Log(f) 

Log(f) 

𝜋/2 

−𝜋/2 

𝐺 𝑗𝜔  

∠𝐺 𝑗𝜔  

𝐺 𝑠 = 𝐺0(𝑠) ∙ 𝐺1(𝑠) ∙ 𝐺2 𝑠  
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𝑘 = 500, 𝑧 = 0.1 𝐻𝑧, 𝑝 = 1𝐻𝑧, 10𝐻𝑧 

𝐺0 𝑠 = s + 2𝜋 0.1𝐻𝑧 

𝐺1 𝑠 =
1

𝑠 + 2𝜋 1𝐻𝑧
 

𝐺2 𝑠 =
1

𝑠 + 2𝜋 10𝐻𝑧
 

𝐺 𝑠 = 500 ∙ 𝐺0(𝑠) ∙ 𝐺1(𝑠) ∙ 𝐺2 𝑠   

b
o

d
eexam

p
les.m
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𝑘 = 500, 𝑧 = 0.1 𝐻𝑧, 𝑝 = 1𝐻𝑧, 10𝐻𝑧 

>> z=-2*pi*0.1; 

>> p=-2*pi*[1 10]; 

>> k=500; 

>> G=zpk(z,p,k); 

>> [m,p]=bode(G, w); b
o

d
eexam

p
les.m
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Exercise 

Sketch bode plot for the following TF 

 

𝐺 𝑠 = 100
𝑠 + 50

𝑠 + 100
 

 

What is the DC gain (gain for 𝜔 → 0)? What is 
the gain for 𝜔 → ∞? Confirm results with 
MATLAB 
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Exercise 

Sketch bode plot for the following TF 

 

𝐺 𝑠 = 100
𝑠 + 1

𝑠 + 10 𝑠 + 20 𝑠 + 30
 

 

What is the DC gain (gain for 𝜔 → 0)? What is 
the gain for 𝜔 → ∞? Confirm results with 
MATLAB 
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Exercise 

Sketch bode plot for the following TF 

 

𝐺 𝑠 = 30
𝑠 + 30

𝑠2 + 2𝑠 + 40
 

 

What is the DC gain (gain for 𝜔 → 0)? What is 
the gain for 𝜔 → ∞? Confirm results with 
MATLAB 
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So far… 
• A system’s TF is a complex function 

– Can be represented in terms of its magnitude and phase 

• Bode plots 
– Help visualize the TF 

– Plot of magnitude vs. frequency and phase vs. frequency. 

– Different conventions 

• We have explored Bode plots of basic TFs 

–
1

𝑠
,
1

𝑠2
, 𝑠, 𝑠2,

𝑎

𝑠+𝑎
 and SHO 

• Bode plot of more complex TFs can be expressed in 
terms of simpler terms 

𝐺 𝑗𝜔 = 𝐺1(𝑗𝜔) ∙ 𝐺2(𝑗𝜔) ∙ ⋯ ∙ 𝐺𝑛(𝑗𝜔)  

∠𝐺 𝑗𝜔 = ∠𝐺1 𝑗𝜔 + ∠𝐺2 𝑗𝜔 +⋯+ ∠𝐺𝑛(𝑗𝜔) 
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General Stability 
Criterion 

The feedback control system is 
stable if and only if all the poles 
of the closed loop transfer 
function 𝐺𝐶𝐿 have a negative 
real part. Otherwise the system 
is unstable. 
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In general 

c 

r 
G(s) 

e 

- 

+ 

H(s) 

𝑒

𝑟
=

1

1 + 𝐺𝐻
 

𝑐

𝑟
=

𝐺𝐻

1 + 𝐺𝐻
 

Open loop gain 𝐺𝑂𝐿 

Closed loop gain 𝐺𝐶𝐿 

Stability: the poles’ 
real part of 𝐺𝐶𝐿 must 
be negative  
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Loop stability and design 

• If the system is unstable,  

• We can’t change 𝐺 𝑠  but 

• We can design a different controller 𝐻 so as to make the 
system stable 

• But how should we change H? Let’s look closely at 
the root of the problem 

c 

r 
G(s) 

e 

- 

+ 

H(s) 
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The problem 

 

 

 

 

c 

r 
G(s) 

e 

- 

+ 

H(s) 

𝑒

𝑟
=

1

1 + 𝐺𝐻
=

1

1 + 𝐺𝑂𝐿
 

𝑐

𝑟
=

𝐺𝐻

1 + 𝐺𝐻
=

𝐺𝑂𝐿
1 + 𝐺𝑂𝐿

= 𝐺𝐶𝐿 

If 𝐺𝑂𝐿 ever becomes −1 then system is unstable 
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The general shape of 𝐺𝑂𝐿 

c 

r 
G(s) 

e 

- 

+ 

H(s) 

𝑒

𝑟
=

1

1 + 𝐺𝑂𝐿
 

𝐺𝑂𝐿 has a limited bandwidth. 

Within bandwidth:  
𝐺𝑂𝐿 ≫ 1 

𝑒

𝑟
≅ 0 

Outside bandwidth:  
𝐺𝑂𝐿 ≪ 1 

𝑒

𝑟
≅ 1 
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The general shape of 𝐺𝑂𝐿 

Log(f) 

Log(f) 

−𝜋 

𝐺𝑂𝐿  

∠𝐺𝑂𝐿 

100 

“Bandwidth” 

Unity gain 

Unity Gain Frequency 
(UGF): 𝐺𝑂𝐿 = 1 

−1800 
Matone: An Overview of Control Theory and Digital Signal Processing (2) 42 
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Stability Criteria 

A closed loop system is 
stable if the unity gain 
frequency is lower than 
the −1800 crossing. 

Log(f) 

Log(f) 

−𝜋 

𝐺𝑂𝐿  

∠𝐺𝑂𝐿 

100 

UGF 

−1800 crossing 

Matone: An Overview of Control Theory and Digital Signal Processing (2) 43 LIGO-G1100863 



Stability Criteria: 
Rule of Thumb 

The system is (almost always) 

stable if 𝐺𝑂𝐿 ∝
1

𝑓
 at the unity 

gain frequency.  

Log(f) 

Log(f) 

−𝜋 

𝐺𝑂𝐿  

∠𝐺𝑂𝐿 

100 Slope at UGF: 
1

𝑓
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Nyquist stability criterion 
The closed loop system is stable if the polar plot of the 

open loop transfer function Im 𝐺𝑂𝐿  vs Re 𝐺𝑂𝐿  does 

not encircle the −1 point. 

>> G=10*tf(10,[1 10]; 

>> nyquist(G) 
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Nyquist stability criterion 
The closed loop system is stable if the polar plot of the 

open loop transfer function Im 𝐺𝑂𝐿  vs Re 𝐺𝑂𝐿  does 

not encircle the −1 point. 

Checking the step 
response of 1/(1+Gol) 
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Back to cruise control 
Let’s inspect the system’s 
loop stability. Recall 

• 𝐻 = 1000 𝑁
𝑚 𝑠   

• 𝐺 =
1 𝑚 

𝑠+𝑏/𝑚
 

• Mass m = 1000 kg 

• Coefficient for air 
friction b = 50 kg/s 

 

𝐺𝑂𝐿 𝑠 =
1

𝑠 + 2𝜋 ∙ 8 mHz
 

 

G v f vr H 

K 

θ 

+ - e 

- 

+ 

c 

𝑒 =
1

1 + 𝐺 ∙ 𝐻
𝑣𝑟 +

𝐾 ∙ 𝐺

1 + 𝐺 ∙ 𝐻
𝜃 
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Cruise control: Bode plot of 𝐺𝑂𝐿 

𝐺𝑂𝐿 𝑠 =
1

𝑠 + 2𝜋 ∙ 8 mHz
 

8 mHz 
UGF @160 mHz 

cru
ise_freq

d
o

m
ain

.m
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Cruise control: Nyquist plot of 𝐺𝑂𝐿 
cru

ise_freq
d

o
m

ain
.m
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𝐺𝐶𝐿 
With a little algebra: 

𝐺𝐶𝐿 =
𝐺𝑂𝐿

1 + 𝐺𝑂𝐿
=

1
(𝑠 + 𝑎) 

1 + 1
(𝑠 + 𝑎) 

=
1

𝑠 + 𝑎 + 1

=
1

𝑠 + 2𝜋 8mHz + 1
=

1

𝑠 + 2𝜋 170mHz
 

 

 

𝐺𝐶𝐿 𝑠 =
1

𝑠 + 2𝜋 ∙ 170 mHz
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Let’s check step response of 𝐺𝐶𝐿 
cru

ise_freq
d

o
m

ain
.m

 

𝐺𝐶𝐿 𝑠 =
1

𝑠 + 2𝜋 ∙ 170 mHz
 

 

𝜏 =
1

2𝜋 ∙ 170 mHz
= 0.95 s 

𝐺𝐶𝐿 𝑠 → 0 Hz =
1

2𝜋 ∙ 170 mHz
= 0.95 
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Is the system with open loop transfer function 
𝐺𝑂𝐿 stable? 

 

𝐺𝑂𝐿(𝑠) = 𝑘 ∙
1

𝑠2
∙

𝑠 + 2𝜋 10

𝑠 + 2𝜋 100 𝑠 + 2𝜋 500
 

 
𝑘 = 3.8 × 108 
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Two poles at 0 Hz Zero at 10 Hz 
Pole at 100 Hz 

Pole at 500 Hz 

feed
b

ack_exam
p

le4
.m
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𝐺𝑂𝐿(𝑠) = 𝑘 ∙
1

𝑠2
∙

𝑠 + 2𝜋 10

𝑠 + 2𝜋 100 𝑠 + 2𝜋 500
 

1
𝑓2  

1
𝑓  

1
𝑓3  

−𝜋 
−𝜋 + 𝜋/4 

−𝜋/2 

−3𝜋/2 

feed
b

ack_exam
p

le4
.m
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Problem 

If a system has an open loop transfer function 

 

𝐺𝑂𝐿 =
𝑘

𝑠 + 10 𝑠 + 100
 

 

what values of 𝑘 make it stable? Use MATLAB to 
confirm this. 
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Relative stability 
• Gain and phase margin 

– Measure of “relative” stability 

– The larger they are → the “safer we are” 

• Gain margin 
– By how much can the gain increase until the system 

becomes unstable? 

– Defined as 𝐺𝑀 =
1

𝐺𝑂𝐿(𝜔𝜋)
 

• Phase margin 
– By how much can the system tolerate a phase change 

at UGF? 

– Defined as PM = ∠𝐺𝑂𝐿 𝜔𝑈𝐺𝐹 + 180 

– Rule of thumb: keep the phase margin above 40° 
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𝐺𝑂𝐿(𝑠) = 𝑘 ∙
1

𝑠2
∙

𝑠 + 2𝜋 10

𝑠 + 2𝜋 100 𝑠 + 2𝜋 500
 

1
𝑓  

UGF @30 Hz 

Phase margin: 500 

Gain margin: 20 

feed
b

ack_exam
p
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.m
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𝐺𝑂𝐿(𝑠) = 𝑘 ∙
1

𝑠2
∙

𝑠 + 2𝜋 10

𝑠 + 2𝜋 100 𝑠 + 2𝜋 500
 

Step response of 𝐺𝐶𝐿 =
1

1+𝐺𝑂𝐿
 

feed
b

ack_exam
p

le4
.m
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𝐺𝑂𝐿(𝑠) = 𝑘 ∙
1

𝑠2
∙

𝑠 + 2𝜋 10

𝑠 + 2𝜋 100 𝑠 + 2𝜋 500
 

Pole-zero map of 𝐺𝐶𝐿 =
1

1+𝐺𝑂𝐿
 feed

b
ack_exam

p
le4

.m
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Performance to noise input d:  
with no feedback 

c r 
G1 

d 

+ 
+ e 

- 

+ 
G2 

H 

𝑒 = 𝑟 

𝑐 = 𝐺1𝐺2 𝑟 + 𝐺2 𝑑 
Noise contribution 
to signal c 
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Performance to noise input d:  
with feedback 

c r 
G1 

d 

+ 
+ e 

- 

+ 
G2 

H 

𝑒 =
1

1 + 𝐺𝑂𝐿
𝑟 +

𝐻𝐺2
1 + 𝐺𝑂𝐿

𝑑 

𝑐 =
𝐺1𝐺2

1 + 𝐺𝑂𝐿
𝑟 +

𝐺2
1 + 𝐺𝑂𝐿

𝑑 Controlled signal 

Suppression factor 

Noise contribution 
to signal c 
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Setting the parameters 

c r 
G1 

d 

+ 
+ e 

- 

+ 
G2 

H 

𝐺2 =
𝜔 

𝑠2 + 2𝛿𝜔 𝑠 + 𝜔 2
 with 𝜔 = 2𝜋 1Hz, 𝛿 = 0.1  

𝐺1 = zeros at 1, 10Hz; poles at 0, 100 Hz, k = 300 

𝐻 = 1 
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𝐺𝑂𝐿 = 𝐺1 ∙ 𝐺2 ∙ 𝐻 
feed

b
ack_exam

p
le6

.m
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𝐺𝑂𝐿 = 𝐺1 ∙ 𝐺2 ∙ 𝐻 
feed

b
ack_exam

p
le6

.m
 

Controller 𝐺1 has a 
low pass filter at 1kHz 
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Suppression factor 1 1+𝐺𝑂𝐿  
feed

b
ack_exam

p
le6

.m
 

Noise term 
suppression 

No suppression 

If the DC gain is increased, so 
is the suppression 

Bandwidth 
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𝐺𝐶𝐿 =
𝐺𝑂𝐿

1 + 𝐺𝑂𝐿
  

feed
b

ack_exam
p

le6
.m
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How can we correct an unstable 
loop? Typical compensators 

• Integral controller 

𝐺 𝑠 =
1

𝑠
 

The output is proportional to the time integral of the 
input 

• Derivative controller 
𝐺 𝑠 = 𝑠 

The output is proportional to the time derivative of 
the input 
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Phase-lag compensator 
co

m
p

en
sato

r_p
h

ase
lag.m

 

𝐺 𝑠 =
𝑓2
𝑓1

𝑠 + 2𝜋𝑓1
𝑠 + 2𝜋𝑓2

 

𝑓2 < 𝑓1 
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Phase-lead compensator 
co

m
p

en
sato

r_p
h

ase
lead

.m
 

𝐺 𝑠 =
𝑓2
𝑓1

𝑠 + 2𝜋𝑓1
𝑠 + 2𝜋𝑓2

 

𝑓1 < 𝑓2 
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“Boost” 
co

m
p

en
sato

r_b
o

o
st.m

 

𝐺 𝑠 =
1

𝑠
(𝑠 + 2𝜋𝑓1) 
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Problem 

If a system has an open loop transfer function 

 

𝐺𝑂𝐿 =
103

𝑠 + 10 3
 

 

design a compensator that would make the 
system stable with an UGF at 100 Hz. Use 
MATLAB to confirm this. 
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Example: locking one LIGO arm 

𝜈𝑙𝑎𝑠𝑒𝑟  

𝑛𝑠 

+ 

+ e 

- 

+ 

𝑛𝑐  

C 

H S 

Reference signal 𝜈𝑙𝑎𝑠𝑒𝑟: 
the cavity “locks” to the 
laser frequency. For 
simplicity, units of length. 

Noise term 𝑛𝑠:  Mirror 
motion due to seismic 
noise, units of length 
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Example: locking one LIGO arm 

𝜈𝑙𝑎𝑠𝑒𝑟  

𝑛𝑠 

+ 

+ e 

- 

+ 

𝑛𝑐  

C 

H S 

Ligo arm cavity C: a cavity 
length change is converted 
to electronic signal e 

Controller H: designed in the 
control room, processes signal 
e and sends commands to the 
suspension S 

Suspension S: 
receives the 
signal from H 
and drives the 
mirror, units of 
length 

Noise term 𝑛𝑐: Noise 
from coil drivers 
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Example: no lock  

𝜈𝑙𝑎𝑠𝑒𝑟  

𝑛𝑠 

+ 

+ e 

- 

+ 

𝑛𝑐  

C 

H S 

𝑒 = 𝐶 𝑛𝑠 + 𝐶 𝜈𝑙𝑎𝑠𝑒𝑟 
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Example: locking one LIGO arm 

𝜈𝑙𝑎𝑠𝑒𝑟  

𝑛𝑠 

+ 

+ e 

- 

+ 

𝑛𝑐  

C 

H S 

𝑒 =
1

1 + 𝐶𝐻𝑆
∙ 𝐶 ∙  𝑛𝑠 + 𝐶 ∙  𝜈𝑙𝑎𝑠𝑒𝑟 − 𝑆 ∙ 𝐶 ∙ 𝑛𝑐  

Suppression factor :  
1

1+𝐶𝐻𝑆
  

Open Loop gain:   𝐶 𝐻 𝑆 

Note on noise 
term 𝑛𝑐: Noise 
term appears only 
when mirrors are 
driven → limited 
bandwidth desired 
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Example: locking one LIGO arm 

• Need to design H so as to have 

– Enough suppression of noise terms 

– Stable 

– “Small” bandwidth 
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Example: locking one LIGO arm 
• Cavity transfer 

function C: 
– Pole at 100 Hz 

• Suspension 
transfer function S 
– Simple harmonic 

oscillator (SHO) 
with 𝑓0 = 1𝐻𝑧 and 
quality factor 
𝑄 = 2 

• Shown is 𝐶 ∙ 𝑆 

• What controller H 
can we use? 

 

cavityfee
d

b
ack_exam

p
leA

.m
 

Matone: An Overview of Control Theory and Digital Signal Processing (2) 77 LIGO-G1100863 



Example: locking one LIGO arm 
• Set UGF at 100 Hz 

• Need H with a zero after 
1 Hz and before 100 Hz 

• Try phase lead 

𝐻 𝑠 = 𝑘 ∙
𝑠 + 𝜔1

𝜔1
 

with 𝑘 = 1500 and 
𝜔1 = 2𝜋 10Hz.  

• Bode plot of OL 

– UGF at 100 Hz 

– PM ~40 deg 

– Stable 

 

cavityfee
d
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Example: locking one LIGO arm 
Double check stability 

 

• Step response plot of 
1

1 + 𝐶𝐻𝑆
 

 

• Step is driven to zero as it 
should (it is a suppression 
factor) 

 

• In about 10 ms (~1/UGF) 
response is close to zero 

 

• Two oscillation cycles – little 
ringing 

 

cavityfee
d
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Example: locking one LIGO arm 
• Bode plot of the 

suppression factor  
1

1 + 𝐶𝐻𝑆
 

 
• Suppression of ~1500x at 

100 mHz 

 

• No suppression above 
100 Hz 

 

• Notice spike at 100 Hz 
– This spike is responsible of 

the ringing in the step 
response 

– decreased if phase margin 
is increased 

cavityfee
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Example: locking one LIGO arm 
• Let’s increase the low 

frequency gain with a 
“boost” 

• Try H 

𝐻 𝑠 = 𝑘 ∙
1

𝑠
∙
𝑠 + 𝜔1

𝜔1

∙
𝑠 + 𝜔2

𝜔2
 

with 𝑘 = 7000, 
𝜔1 = 2𝜋 10Hz and 
𝜔2 = 2𝜋 1 Hz  

• OL bode plot 
– UGF at 100 Hz 

– PM ~40 deg 

– Stable 
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Example: locking one LIGO arm 
Double check stability 

• Step response plot of 
1

1 + 𝐶𝐻𝑆
 

• Very similar response 

• Step is driven to zero as it 
should (it is a suppression 
factor) 

• In about 10 ms (~1/UGF) 
response is close to zero 

• Two oscillation cycles – little 
ringing 

cavityfee
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Example: locking one LIGO arm 
• Bode plot of the 

suppression factor  
1

1 + 𝐶𝐻𝑆
 

 
• More suppression at low 

frequencies: ~104 at 
100 mHz 

 

• No suppression above 
100 Hz 

 

• Notice spike at 100 Hz 
– Similar ringing 
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Example: locking one LIGO arm 
• Let’s also “cut-off” the 

drive to the coils at high 
frequency 

• Introduce a low pass LP 6th 
order Butterworth filter 
with cut-off frequency at 2 
kHz. 

• Try H 

𝐻 𝑠 = 𝑘 ∙
1

𝑠
∙
𝑠 + 𝜔1

𝜔1
∙
𝑠 + 𝜔2

𝜔2

∙ LP 
with 𝑘 = 7000, 𝜔1 =
2𝜋 10Hz and 𝜔2 = 2𝜋 1 Hz  

• OL bode plot 
– UGF at 100 Hz 

– PM ~30 deg 

– Stable 
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Example: locking one LIGO arm 
Double check stability 

• Step response plot of 
1

1 + 𝐶𝐻𝑆
 

• Very similar response 

• Step is driven to zero as it 
should (it is a suppression 
factor) 

• In about 10 ms (~1/UGF) 
response is close to zero 

• ~Two oscillation cycles  

cavityfee
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Example: locking one LIGO arm 
• Bode plot of the 

suppression factor  
1

1 + 𝐶𝐻𝑆
 

 
• Same suppression: ~104 

at 100 mHz 

 

• No suppression above 
100 Hz 

 

• Notice spike at 100 Hz 
– A little higher than before 

– Similar ringing 
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Example: locking one LIGO arm 
• Increasing the gain by 

2x: 𝑘 = 14000 

• OL bode plot 

– UGF at ~133 Hz 
• Should have gone 

to 200 Hz but the 
slope is not 1/f 
(because of the 
cavity pole at 100 
Hz) 

– PM ~20 deg 

– Stable but with 
little phase margin 
left  
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Example: locking one LIGO arm 
• Step response plot of 

1

1 + 𝐶𝐻𝑆
 

• Ringing has increased 
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Example: locking one LIGO arm 
• Bode plot of the 

suppression factor  
1

1 + 𝐶𝐻𝑆
 

 
• Suppression has 

increased 
– Gain was increased by 

factor 2 

 

• Notice spike at 100 Hz is 
more pronounced 

cavityfee
d

b
ack_exam

p
leD

.m
 

Matone: An Overview of Control Theory and Digital Signal Processing (2) 89 LIGO-G1100863 



Summary 
• We have explored the stability criteria 

– The feedback control system is stable if and only if 
all the poles of the closed loop transfer function 
𝐺𝐶𝐿 have a negative real part. Otherwise the 
system is unstable. 

• Stability in terms of the open loop gain 

– A closed loop system is stable if the unity gain 
frequency is lower than the −1800 crossing. 

– Rule of thumb: the system is (almost always) 

stable if 𝐺𝑂𝐿 ∝
1

𝑓
 at the unity gain frequency 
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Summary 
• Noise suppression 

• How close to instability is a system? Gain and 
phase margin 
– Measure of “relative” stability 

– The larger they are → the “safer we are” 

– Rule of thumb: keep the phase margin to more 
than 40° 

• Typical compensators 
– Phase-lag 

– Phase-lead 

– “Boost” 

• Cavity lock example 
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Problem for the afternoon 
Identify a (single-input-single-output) control 
system at LIGO – its plant TF along with its 
controller TF (LSC, ASC, SUS, MC, PSL, …) 

1. Sketch the block diagram and model the system 
with MATLAB. Generate the corresponding bode 
plot.  

2. Can you measure its OL TF? Where is the UGF 
and how does it compare with the model? 

3. For what range of frequencies can the UGF be 
placed at by simply adjusting the systems’ gain? 
What DC gain does it have, what suppression?  
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Problem for the afternoon 
Optical levers are/were used to damp the 
fundamental mode of the suspensions. The 
controller has no DC gain (check this).  

1. Sketch the block diagram and model the system 
with MATLAB. Generate the corresponding bode 
plot.  

2. Can you measure its OL TF? Where is the UGF 
and how does it compare with the model? 

3. For what range of frequencies can the UGF be 
placed at by simply adjusting the systems’ gain? 
What DC gain does it have, what suppression?  
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Solutions to problems 
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What is the transfer function of a system whose input 𝑢 and 
output 𝑦 are related by the following differential equation? 

𝑑2𝑦

𝑑𝑡2
+ 3

𝑑𝑦

𝑑𝑡
+ 2𝑦 = 𝑢 +

𝑑𝑢

𝑑𝑡
 

 
Sol: Taking the Laplace transform of the equation 
 

𝑠2 𝑌 𝑠 + 3 𝑠 𝑌 𝑠 + 2 𝑌 𝑠 = 𝑈 𝑠 + 𝑠 𝑈 𝑠  
 
Which can be re-written as 
 

𝑌 𝑠

𝑈 𝑠
=

𝑠 + 1

𝑠2 + 3 𝑠 + 2
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Given 𝑃 𝑠 =
2 𝑠+1

𝑠2+𝑠+1
, determine the system’s 

differential equation to input 𝑢 𝑡 . 

Sol: 

𝑦 =
2 𝐷 + 1

𝐷2 + 𝐷 + 1
 𝑢 

or 
𝐷2𝑦 + 𝐷𝑦 + 𝑦 = 2 𝐷 𝑢 + 𝑢 

or 
𝑑2𝑦

𝑑𝑡2
+
𝑑𝑦

𝑑𝑡
+ 𝑦 = 2

𝑑𝑢

𝑑𝑡
+ 𝑢 
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Determine which of the following transfer functions 
represent stable systems and which represent 
unstable systems. Use MATLAB’s step to verify your 
answer. 

a) P s =
s−1

s+2 s2+4
, unstable 

b) P s =
s−1

s+2 s+4
, stable 

c) P s =
s+2 s−2

s+1 s−1 s+4
, unstable 

d) P s =
6

s2+s+1 s+1 2, stable 

e) P s =
5 s+10

s2−s+10 s+5
, unstable 
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A simple mechanical accelerometer 
is shown below. The position y is 
with respect of the case, the case’s 
position is x. What is the transfer 
function between the input 
acceleration 𝐴 (𝑎 = 𝑑2𝑥 𝑑𝑡2 ) and 
the output Y?  
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M 

y 

k 

B 

x 

−𝐵
𝑑𝑦

𝑑𝑡
− 𝑘𝑦

= 𝑀 
𝑑2

𝑑𝑡2
𝑦 − 𝑥  

Sol: 
𝑌

𝐴
=

1

𝑠2 + 𝐵/𝑀  𝑠 + 𝐾/𝑀
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Sketch bode plot for the following TF 

𝐺 𝑠 = 100
𝑠 + 50

𝑠 + 100
 

What is the DC gain (gain for 𝜔 → 0)? 
What is the gain for 𝜔 → ∞? Confirm 
results with MATLAB 
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b
o

d
e

excercise
1

.m
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Sketch bode plot for the following TF 

𝐺 𝑠 = 100
𝑠 + 1

𝑠 + 10 𝑠 + 20 𝑠 + 30
 

What is the DC gain (gain for 𝜔 → 0)? What is the gain 
for 𝜔 → ∞? Confirm results with MATLAB 
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Sketch bode plot for the following TF 

𝐺 𝑠 = 30
𝑠 + 30

𝑠2 + 2𝑠 + 40
 

What is the DC gain (gain for 𝜔 → 0)? What is the gain for 
𝜔 → ∞? Confirm results with MATLAB 
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Solution 
If a system has an open loop transfer function 

𝐺𝑂𝐿 =
𝑘

𝑠 + 10 𝑠 + 100
 

what values of 𝑘 make it stable? 

Sol: UGF can be set after the pole at 10 and before 
pole at 100 

𝐺𝑂𝐿 = 𝑘
1

𝜔2 + 102
∙

1

𝜔2 + 1002
 

Set 𝐺𝑂𝐿 = 1 and 𝜔 = 10. Find corresponding k. 

Set 𝐺𝑂𝐿 = 1 and 𝜔 = 100. Find corresponding k 
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Solution 
If a system has an open loop transfer function 

𝐺𝑂𝐿 =
103

𝑠 + 10 3
 

design a compensator that would make the 
system stable with an UGF at 100 Hz. Use 
MATLAB to confirm this. 

Sol: two zeros at 10, decreasing the gain by 3x 
H=zpk([],[-10 -10 -10],1e3) * zpk([-10 -10],[],0.3) 
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