

To recap

- Control theory builds on differential equations
- The Laplace transform is a tool to facilitate solving for ODEs.
- No need to do actually do the transform
 Lookup tables
- System G(s) is stable if
 - Its response is bounded and finite
 - poles must have *negative real parts*
- Still, how does the cruise control example work?

Getting there...

Recall

What is the transfer function of a system whose input *u* and output *y* are related by the following differential equation?

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = u + \frac{du}{dt}$$

Recall

Given the system's transfer function

$$P(s) = \frac{2s+1}{s^2+s+1}$$

determine the system's differential equation to input u(t).

Recall

Determine which of the following transfer functions represent stable systems and which represent unstable systems. Use MATLAB's step to verify your answer.

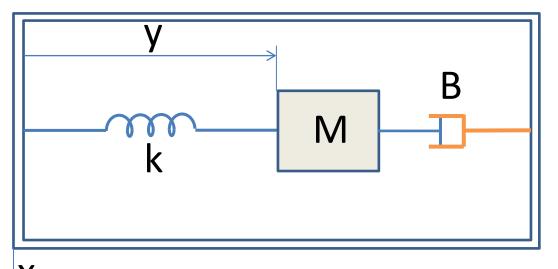
a)
$$P(s) = \frac{s-1}{(s+2)(s^2+4)}$$

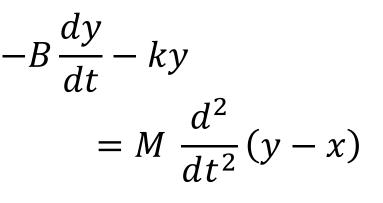
b) $P(s) = \frac{s-1}{(s+2)(s+4)}$
c) $P(s) = \frac{(s+2)(s-2)}{(s+1)(s-1)(s+4)}$
d) $P(s) = \frac{6}{(s^2+s+1)(s+1)^2}$
e) $P(s) = \frac{5(s+10)}{(s^2-s+10)(s+5)}$

Another example

Matone: An Overview of Control Theory and Digital Signal Processing (2)

A simple mechanical accelerometer is shown below. The position y is with respect of the case, the case's $-B\frac{dy}{dt}$ position is x. What is the transfer function between the input acceleration A ($a = d^2x/dt^2$) and the output Y?





5

The response of a stable system G(s) is characterized by its

Amplitude and Phase shift

to a sinusoidal excitation

Frequency response

It can be shown that if $x(t) = X\sin(\omega t)$

then

n be shown that if

$$x(t) = X \sin(\omega t)$$

$$y(t) = |G(s)| \cdot X \cdot \sin(\omega t + \varphi(s))$$

where

- |G(s)| is the amplitude response and
- $\varphi(s)$ is the phase shift

$$X(s)$$
 $G(s)$ $Y(s)$

Frequency response

- The dynamic behavior of a physical system can be determined by measuring its transfer function with a sinusoidal excitation
- 2. Magnitude and phase response are a function of frequency ($s = j\omega$)
- 3. Frequency-response helps to understand the stability criteria

Graphical analysis tool: Bode Plot

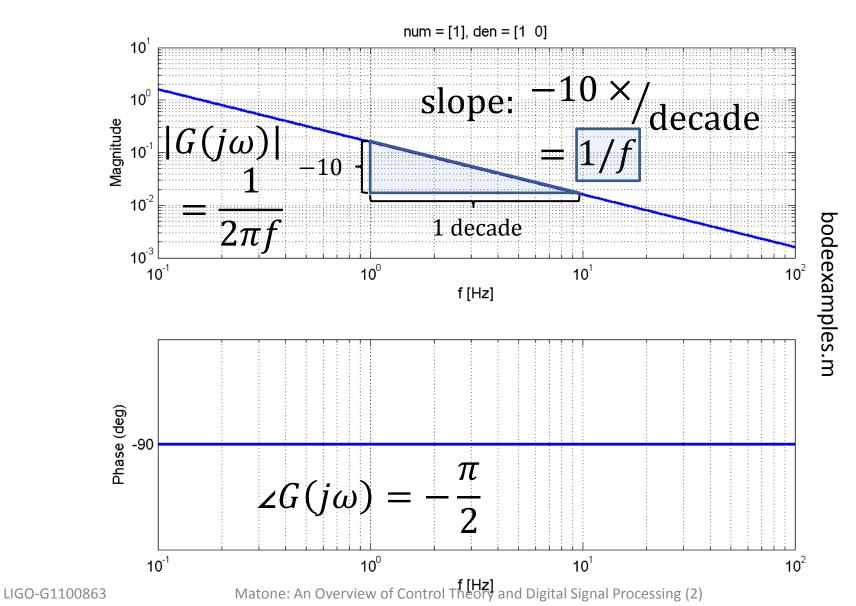
- Common graphical representation of transfer function G(s)
- G(s) is complex
 - plot of magnitude $|G(j\omega)|$ and phase $\angle G(j\omega)$
- Convention
 - Log-log scale for magnitude vs. frequency (Hz)
 - Semi-log scale for phase (deg) vs. frequency (Hz)
- Other conventions
 - Magnitude in dB ($X(dB) = 20 \log_{10} X$) vs. angular frequency (rad/s)

Bode plot:
$$G(s) = \frac{1}{s}$$

$$G(s) = \frac{1}{s} \rightarrow \qquad G(j\omega) = \frac{1}{j\omega} = -j\frac{1}{\omega}$$
$$|G(j\omega)| = GG^* = \frac{1}{\omega}$$
$$\angle G(j\omega) = \tan^{-1}\left(\frac{Im(G)}{Re(G)}\right) = -\frac{\pi}{2}$$

$$|G(j\omega)| = \frac{1}{\omega}$$
 $\angle G(j\omega) = -\frac{\pi}{2}$

Bode plot: $G(s) = \frac{1}{S}$



11

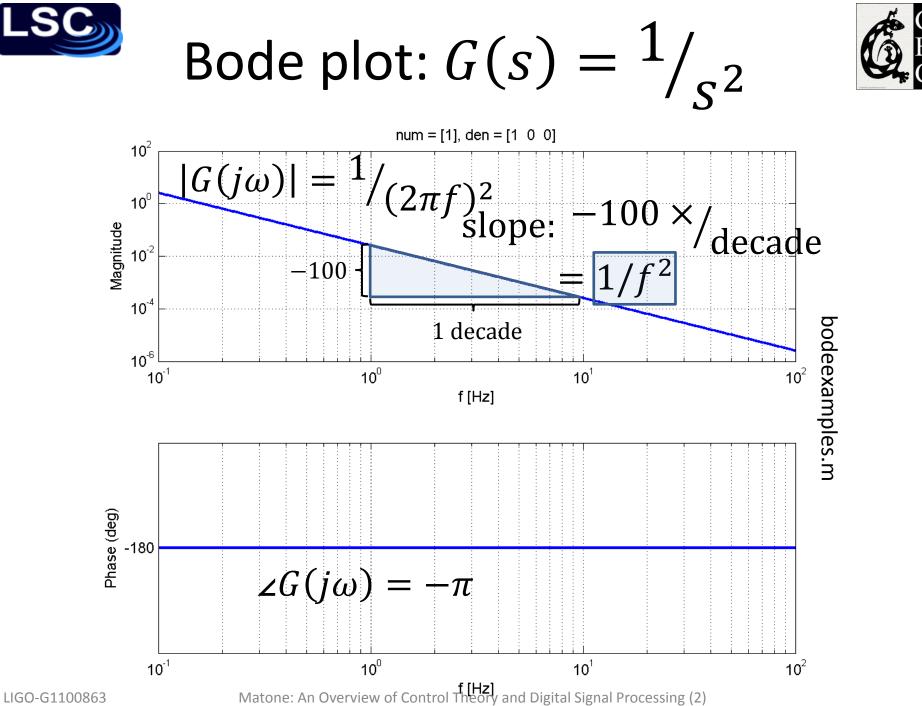
 $G(s) = \frac{1}{s^2} \rightarrow$

Bode plot:
$$G(s) = \frac{1}{s^2}$$

$$G(j\omega) = \frac{1}{(j\omega)^2} = -\frac{1}{\omega^2}$$
$$|G(j\omega)| = GG^* = \frac{1}{\omega^2}$$
$$\angle G(j\omega) = \tan^{-1}\left(\frac{Im(G)}{Re(G)}\right) = -\pi$$

$$|G(j\omega)| = \frac{1}{\omega^2} \quad \angle G(j\omega) = -\pi$$

LIGO-G1100863



Bode plot: G(s) = s

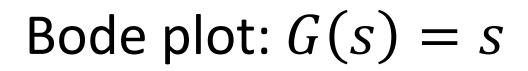
$$G(s) = s \rightarrow G(j\omega) = j\omega$$

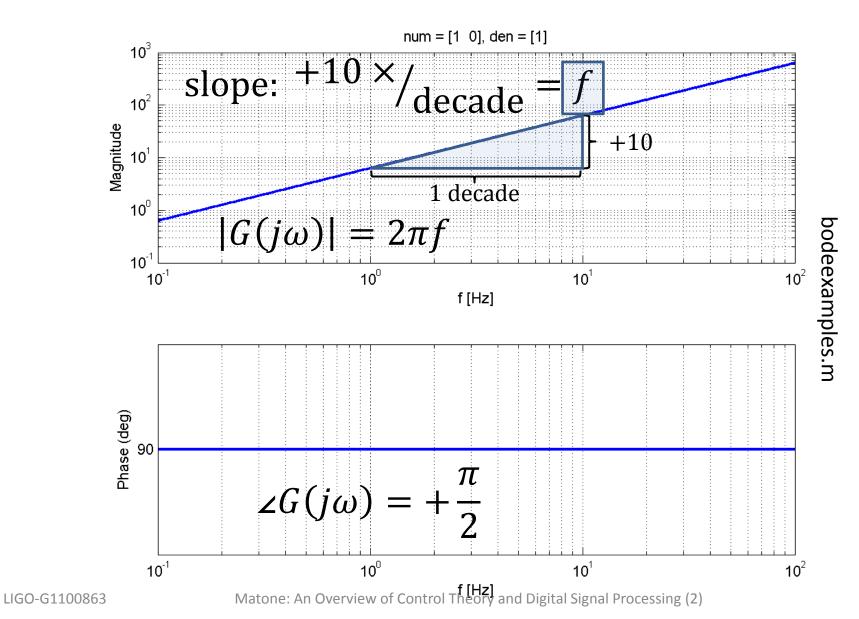
$$|G(j\omega)| = GG^* = \omega$$

$$\angle G(j\omega) = \tan^{-1}\left(\frac{Im(G)}{Re(G)}\right) = \frac{\pi}{2}$$

$$|G(j\omega)| = \omega$$
 $\angle G(j\omega) = \frac{\pi}{2}$

LIGO-G1100863





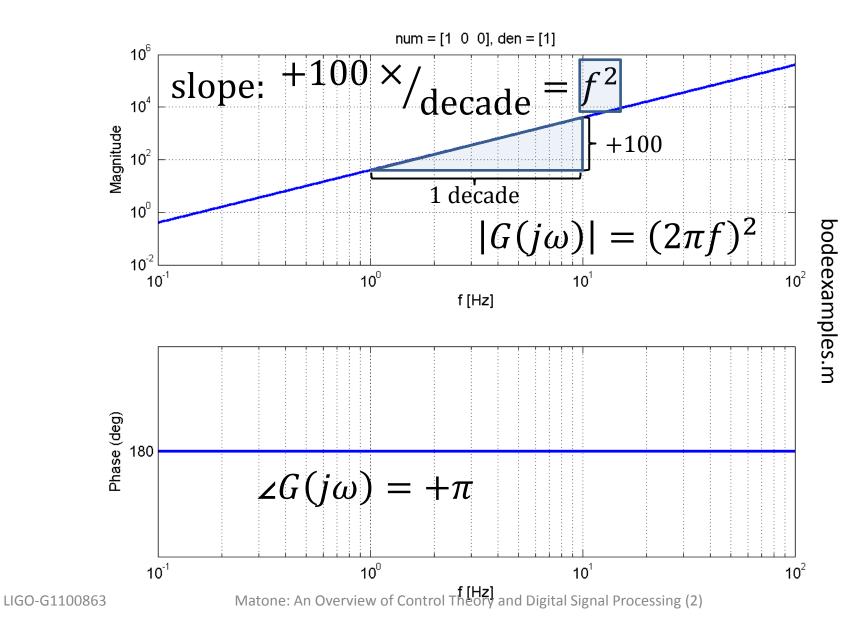
Bode plot: $G(s) = s^2$

$$G(s) = s^2 \Rightarrow \qquad G(j\omega) = (j\omega)^2 = -\omega^2$$

$$\angle G(j\omega) = \tan^{-1}\left(\frac{Im(G)}{Re(G)}\right) = +\pi$$

 $|G(i\omega)| = GG^* = \omega^2$

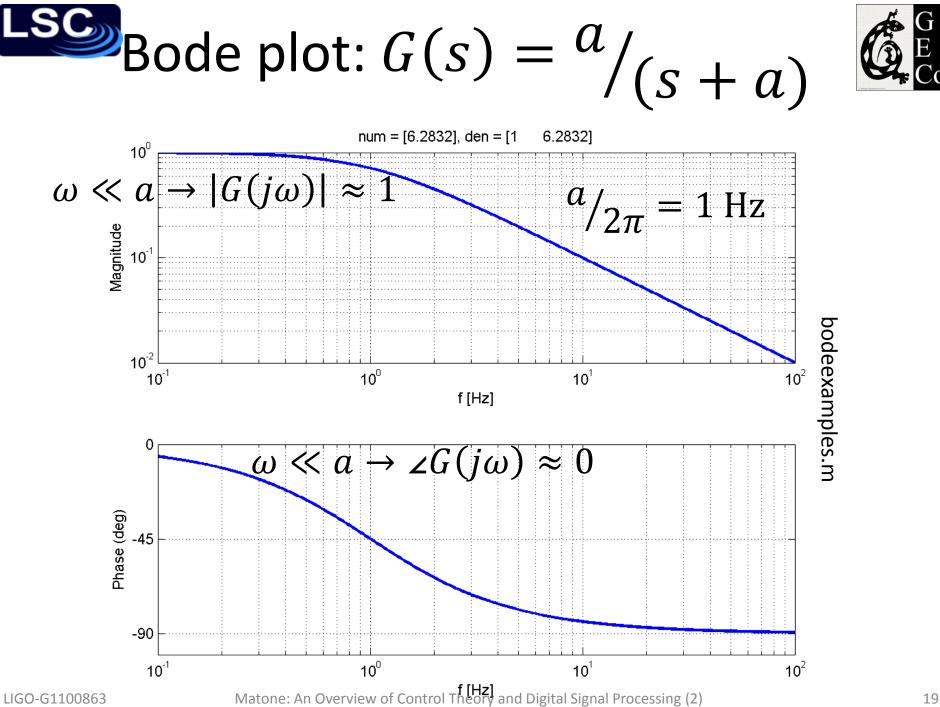
Bode plot: $G(s) = s^2$

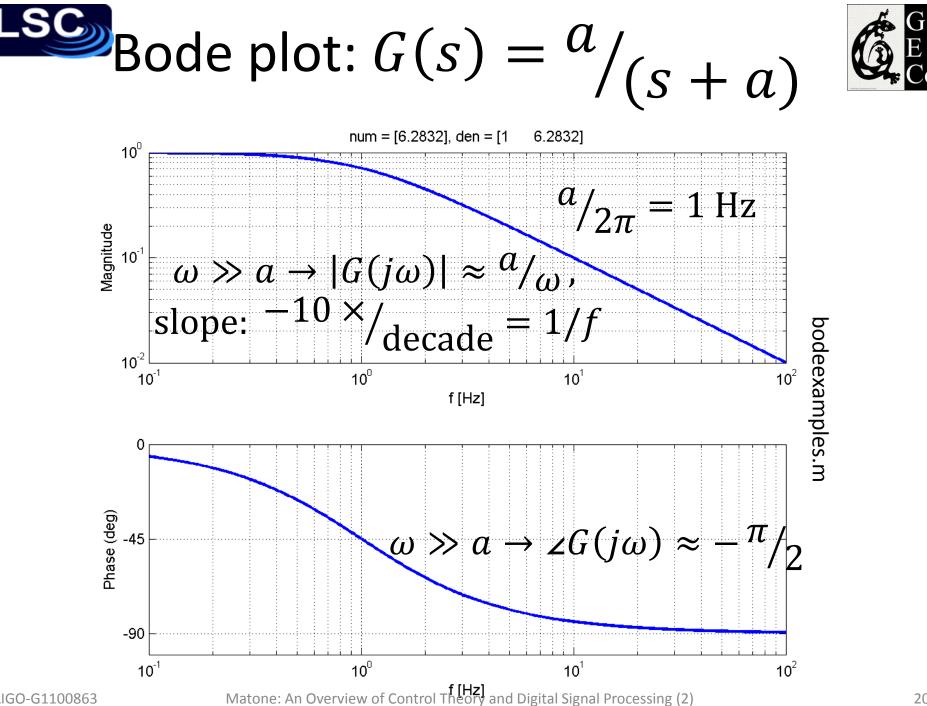


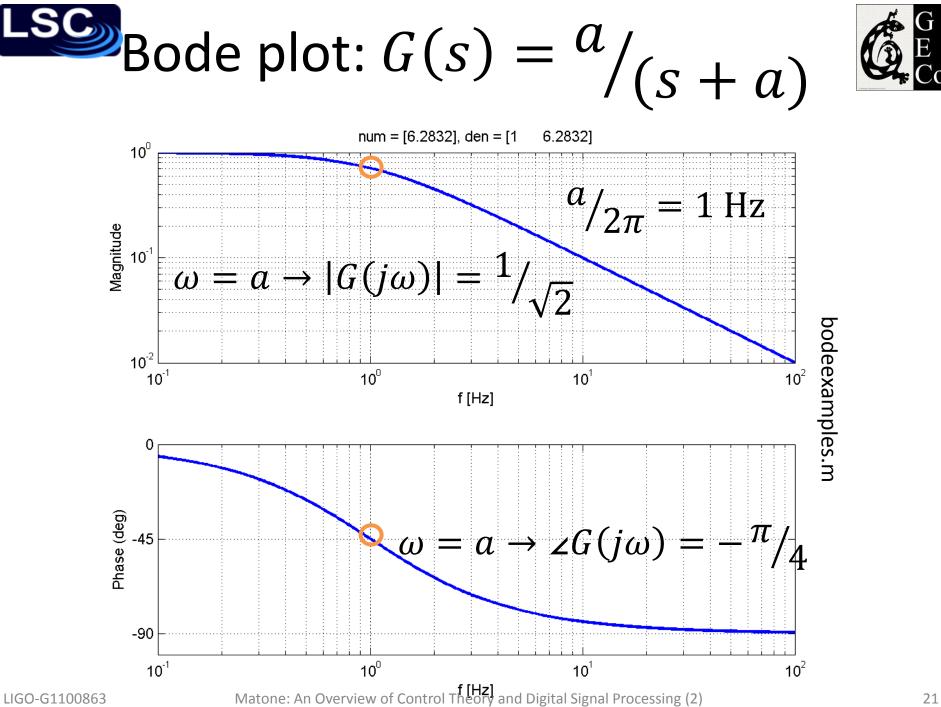
Bode plot:
$$G(s) = \frac{a}{(s+a)}$$

 $G(s) = \frac{a}{j\omega + a}$
 $|G(j\omega)| = GG^* = \frac{a}{\sqrt{\omega^2 + a^2}}$
 $\angle G(j\omega) = \tan^{-1}\left(\frac{Im(G)}{Re(G)}\right) = -\tan^{-1}\left(\frac{\omega}{a}\right)$
 $|G(j\omega)| = \frac{a}{\sqrt{\omega^2 + a^2}} \qquad \angle G(j\omega) = \frac{a}{\sqrt{\omega^2 + a^2}} = -\tan^{-1}\left(\frac{\omega}{a}\right)$

ſ

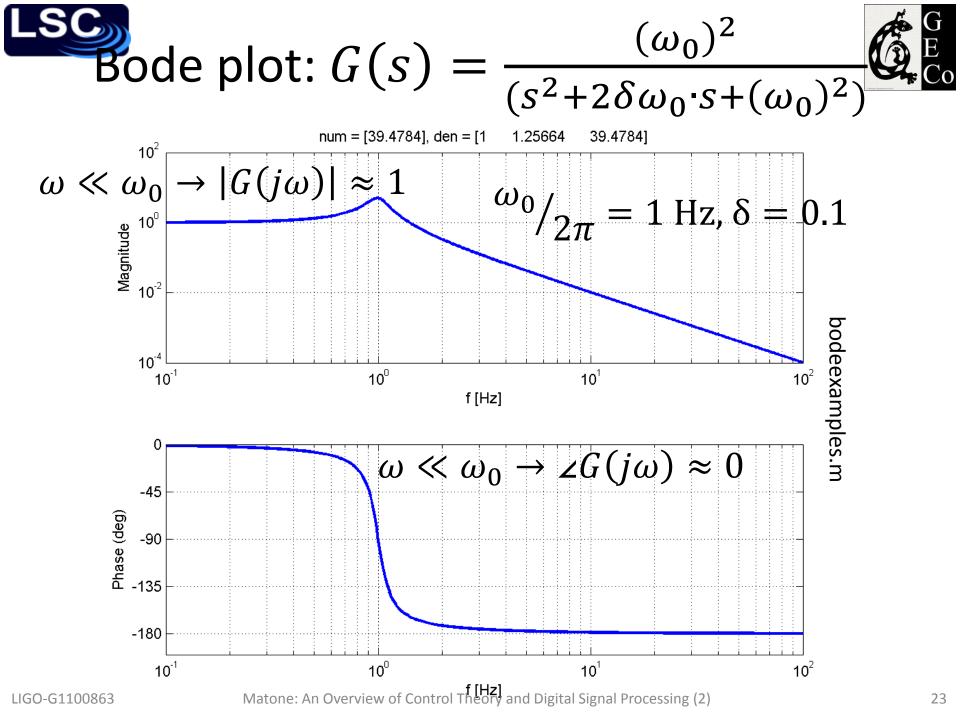


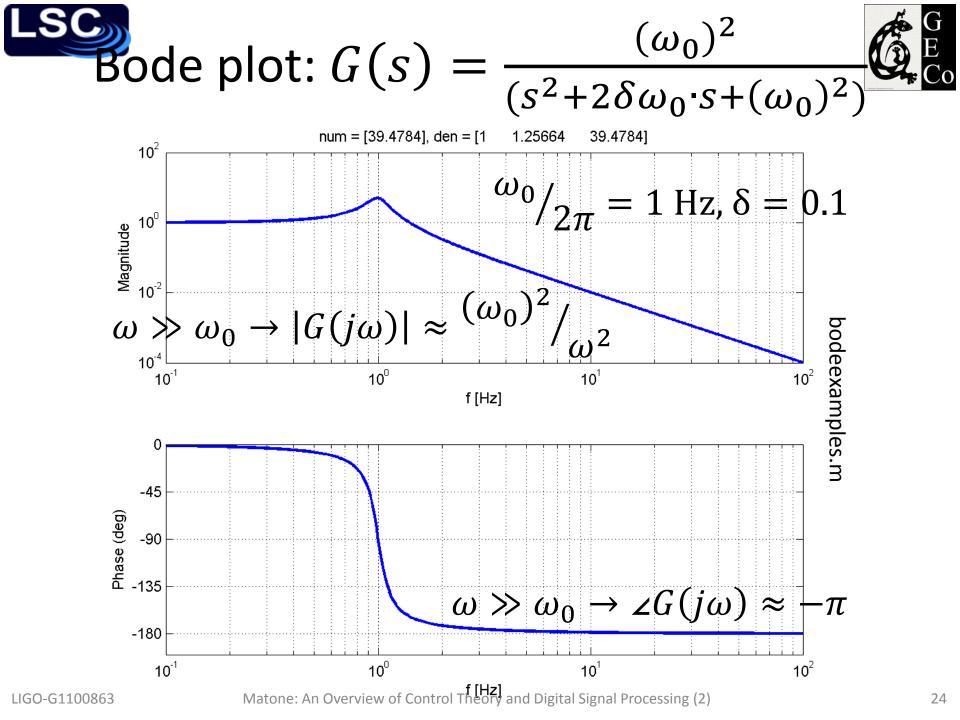


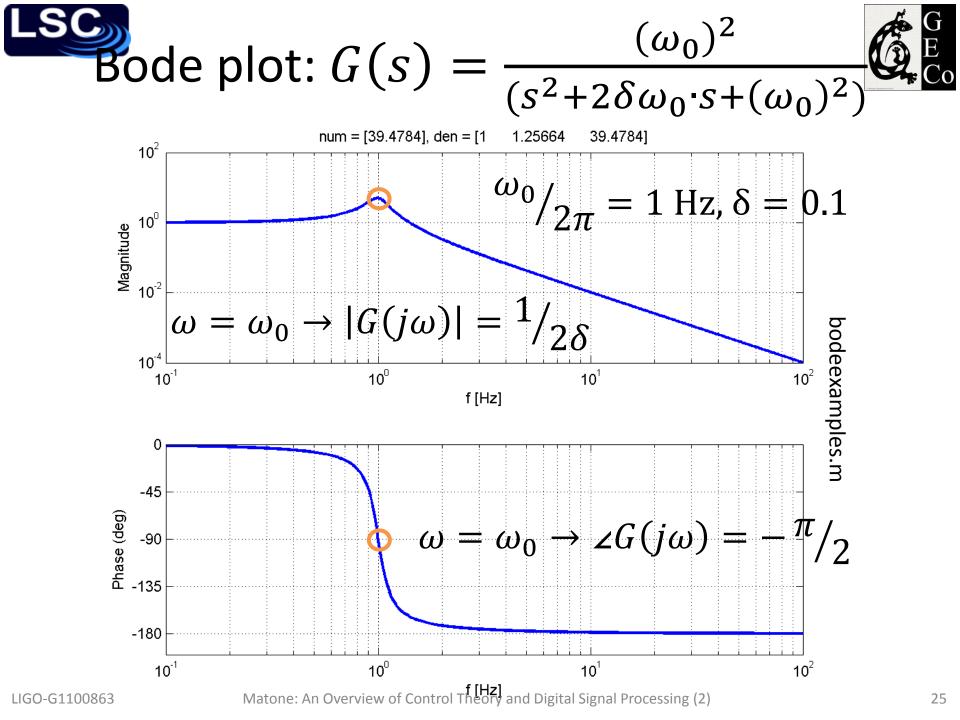


Bode plot: SHO

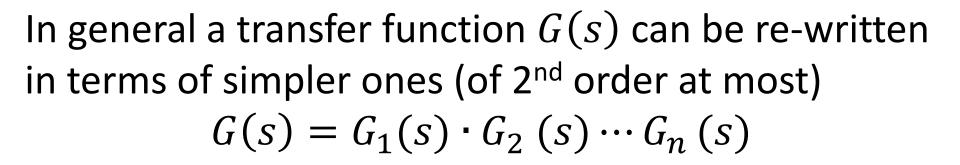
$$G(s) = \frac{(\omega_0)^2}{(s^2 + 2\delta\omega_0 \cdot s + (\omega_0)^2)}$$
$$|G(j\omega)| = \frac{(\omega_0)^2}{\sqrt{((\omega_0)^2 - \omega^2)^2 + (2\delta\omega_0\omega)^2}}$$
$$\angle G(j\omega) = -\tan^{-1}\left(\frac{2\delta\omega_0\omega}{(\omega_0)^2 - \omega^2}\right)$$







Bode plots for more complicated TFs? Break it into simpler parts



then

$|G(j\omega)| = |G_1(j\omega)| \cdot |G_2(j\omega)| \cdot \dots \cdot |G_n(j\omega)|$

$\label{eq:G_formula} \angle G(j\omega) = \angle G_1(j\omega) + \angle G_2(j\omega) + \dots + \angle G_n(j\omega)$

Example

Let's draw the bode plot for

$$G(s) = k \frac{(s + \omega_0)}{(s + \omega_1)(s + \omega_2)}$$

where

$$k = 500$$
$$\omega_0 = 2\pi \cdot 0.1 \text{ Hz}$$
$$\omega_1 = 2\pi \cdot 1 \text{ Hz}$$
$$\omega_2 = 2\pi \cdot 10 \text{ Hz}$$

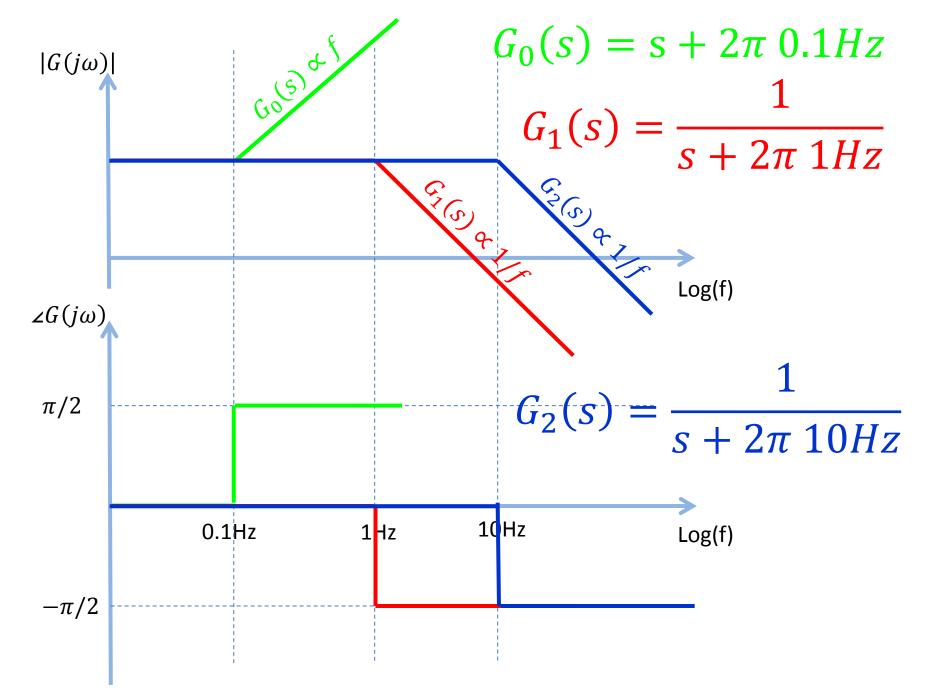
LIGO-G1100863

$$G(s) = k \frac{(s + \omega_0)}{(s + \omega_1)(s + \omega_2)}$$

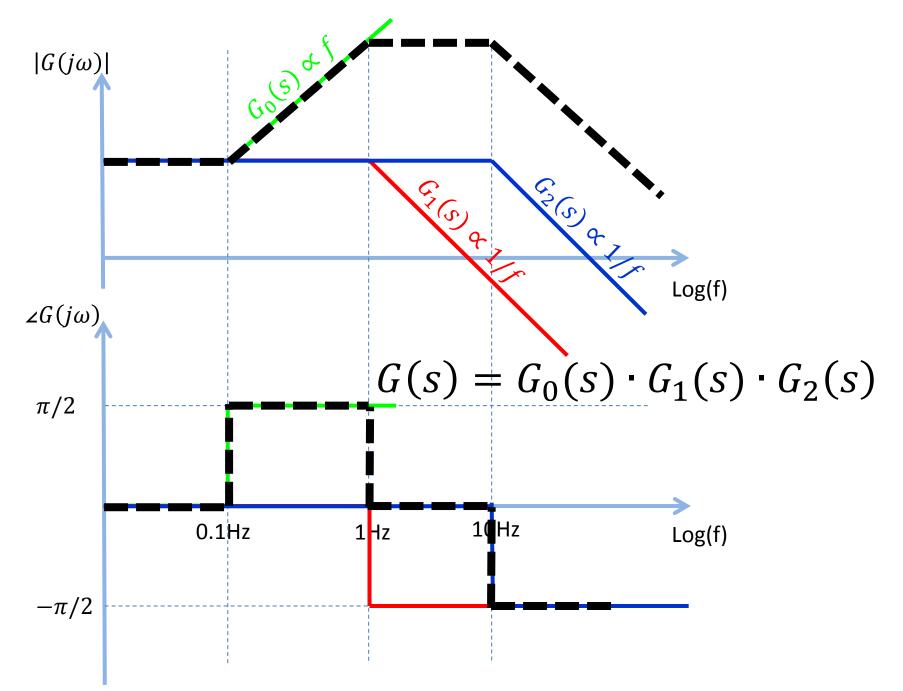
= $k \cdot G_0(s) \cdot G_1(s) \cdot G_2(s)$
$$\begin{cases} G_0(s) = s + \omega_0 \\ G_1(s) = \frac{1}{s + \omega_1} \\ G_2(s) = \frac{1}{s + \omega_2} \end{cases}$$

$$|G(j\omega)| = |G_0(j\omega)| \cdot |G_1(j\omega)| \cdot |G_2(j\omega)|$$

$$\angle G(j\omega) = \angle G_0(j\omega) + \angle G_1(j\omega) + \angle G_2(j\omega)$$

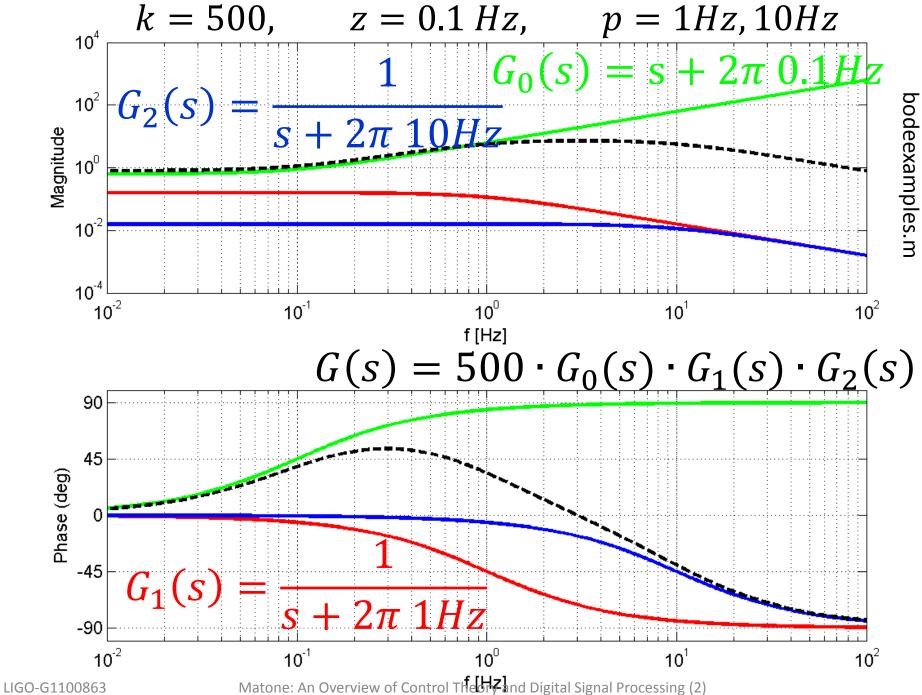


Matone: An Overview of Control Theory and Digital Signal Processing (2)



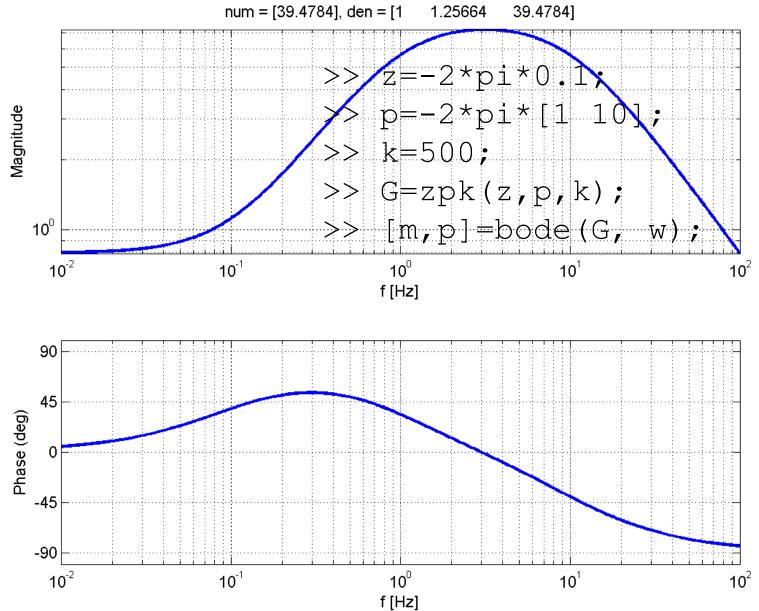
LIGO-G1100863

Matone: An Overview of Control Theory and Digital Signal Processing (2)



bodeexamples.m

$k = 500, \quad z = 0.1 \, Hz, \quad p = 1 Hz, 10 Hz$



LIGO-G1100863

Matone: An Overview of Control Theory and Digital Signal Processing (2)

Exercise

Sketch bode plot for the following TF

$$G(s) = 100 \frac{s + 50}{s + 100}$$

What is the DC gain (gain for $\omega \rightarrow 0$)? What is the gain for $\omega \rightarrow \infty$? Confirm results with MATLAB

Exercise

Sketch bode plot for the following TF

$$G(s) = 100 \frac{(s+1)}{(s+10)(s+20)(s+30)}$$

What is the DC gain (gain for $\omega \rightarrow 0$)? What is the gain for $\omega \rightarrow \infty$? Confirm results with MATLAB

Exercise

Sketch bode plot for the following TF

$$G(s) = 30 \frac{s+30}{s^2+2s+40}$$

What is the DC gain (gain for $\omega \rightarrow 0$)? What is the gain for $\omega \rightarrow \infty$? Confirm results with MATLAB

So far...

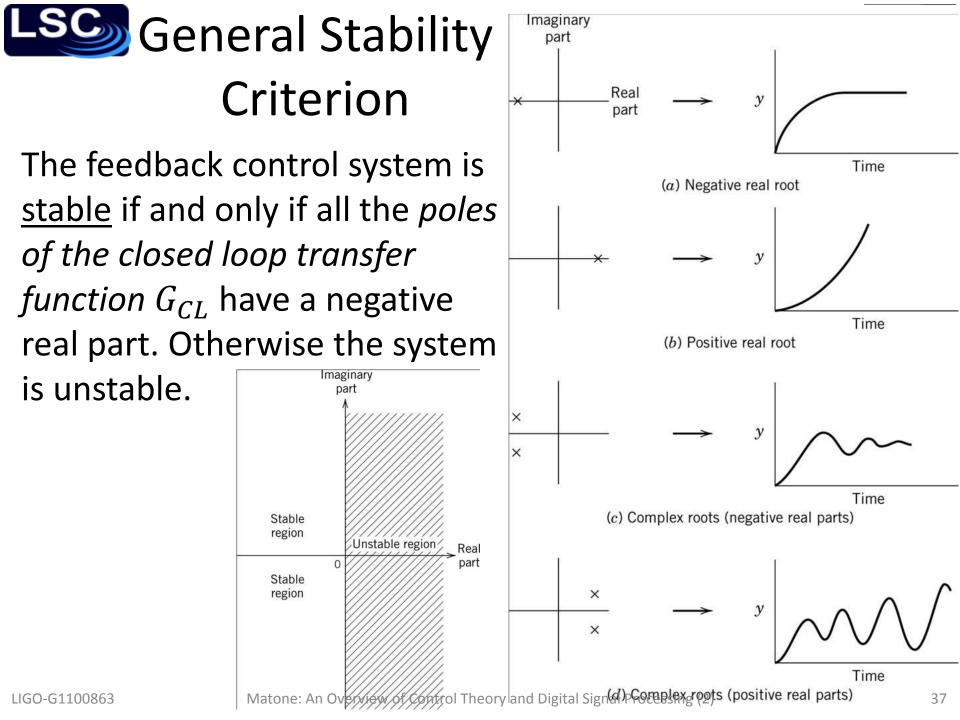
- A system's TF is a complex function
 - Can be represented in terms of its magnitude and phase
- Bode plots
 - Help visualize the TF
 - Plot of magnitude vs. frequency and phase vs. frequency.
 - Different conventions
- We have explored Bode plots of basic TFs

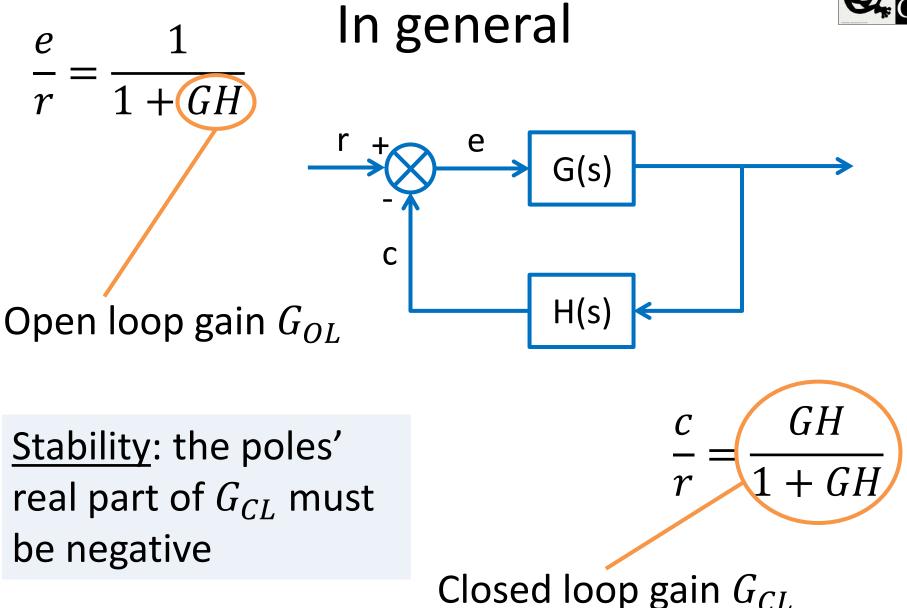
$$-\frac{1}{s}, \frac{1}{s^2}, s, s^2, \frac{a}{s+a}$$
 and SHO

Bode plot of more complex TFs can be expressed in terms of simpler terms

$$|G(j\omega)| = |G_1(j\omega)| \cdot |G_2(j\omega)| \cdot \dots \cdot |G_n(j\omega)|$$

$$\angle G(j\omega) = \angle G_1(j\omega) + \angle G_2(j\omega) + \dots + \angle G_n(j\omega)$$

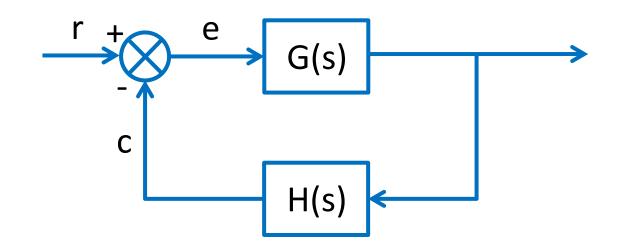




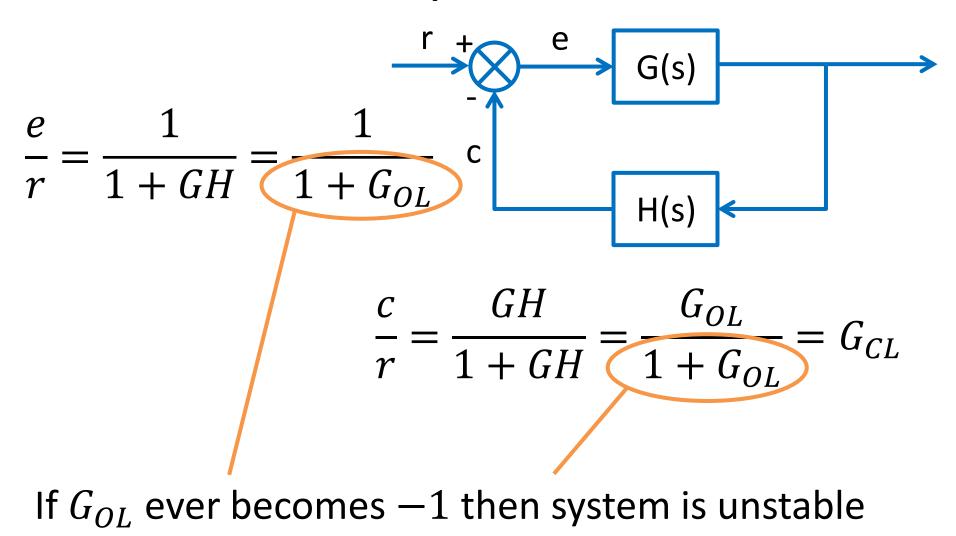
Matone: An Overview of Control Theory and Digital Signal Processing (2)

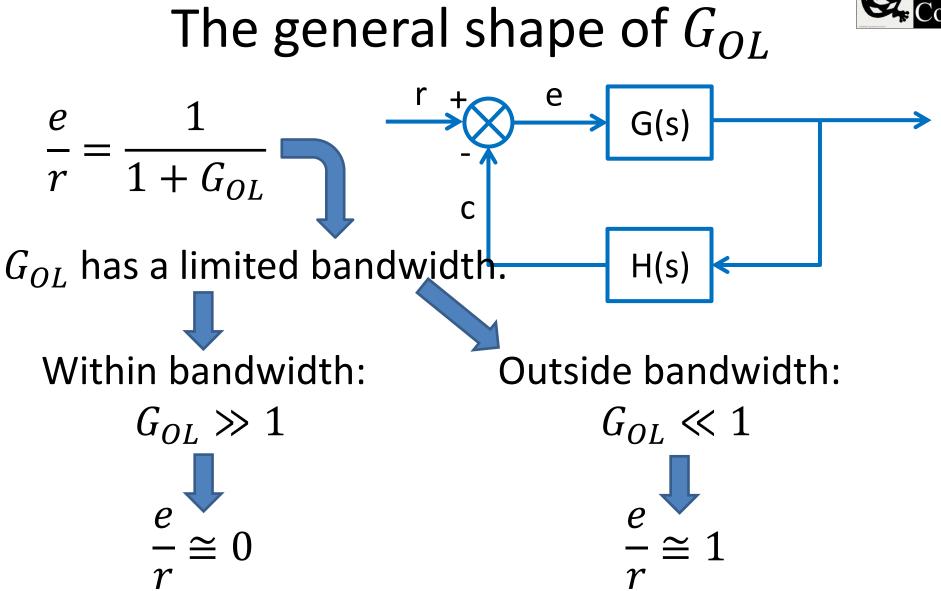
Loop stability and design

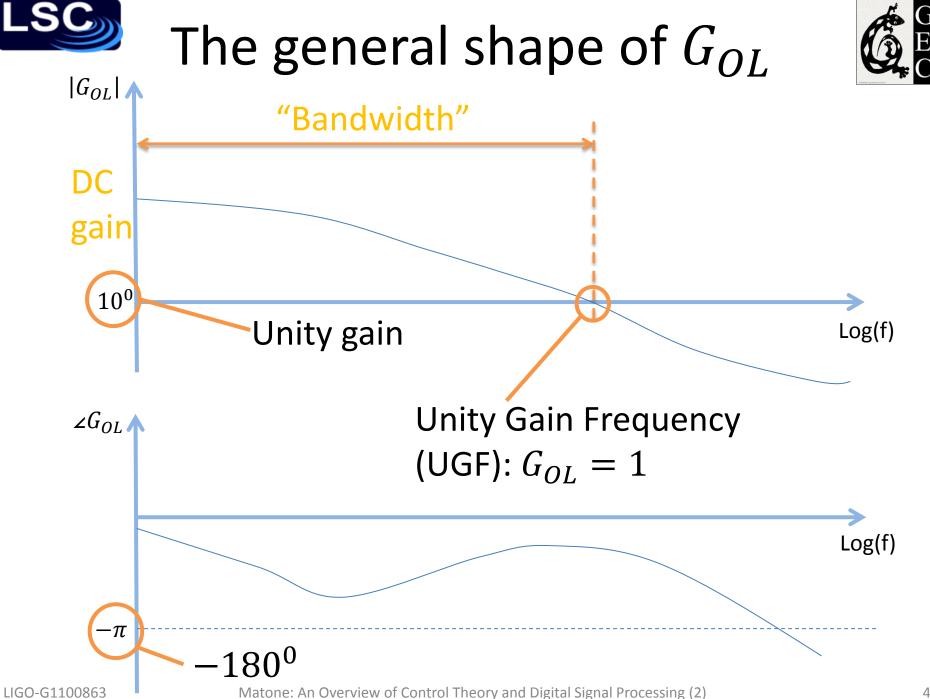
- If the system is unstable,
 - We can't change G(s) but
 - We can design a different controller *H* so as to make the system stable
- But how should we change H? Let's look closely at the root of the problem



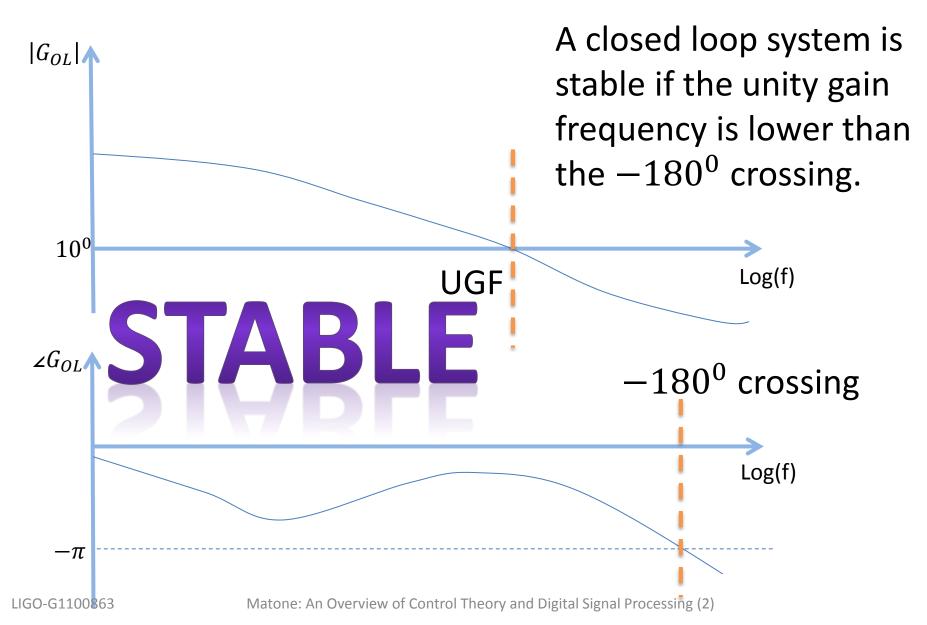
The problem

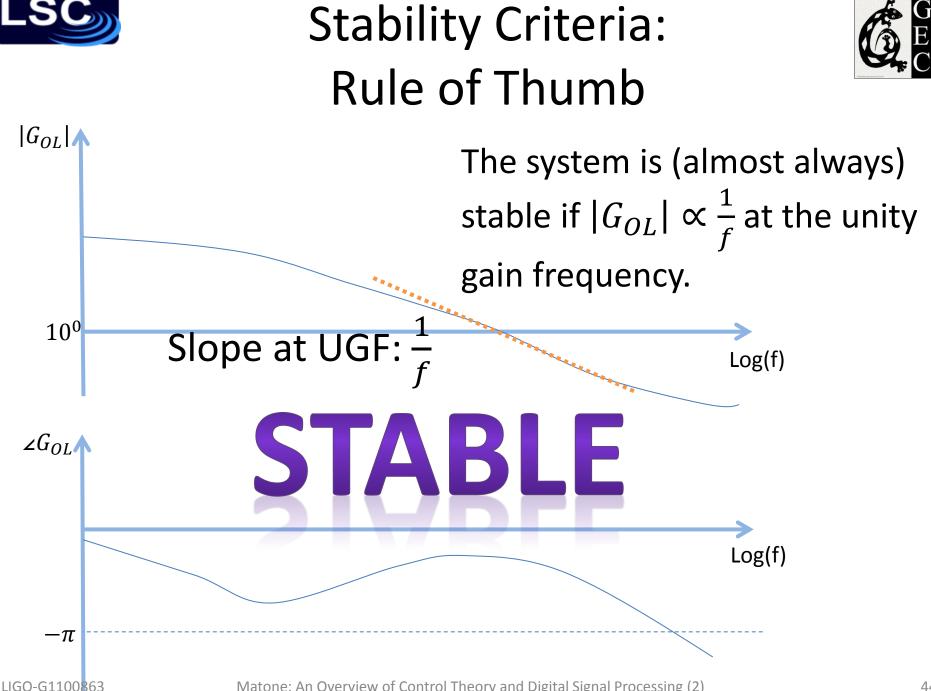




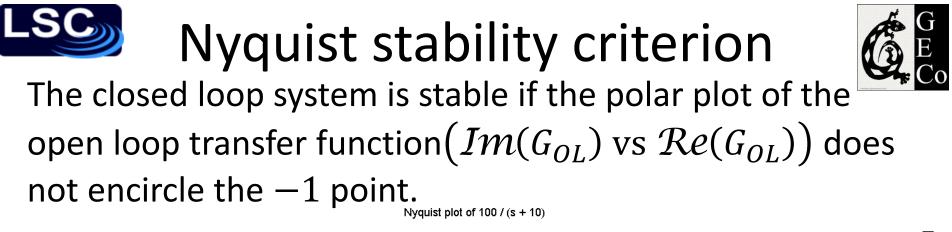


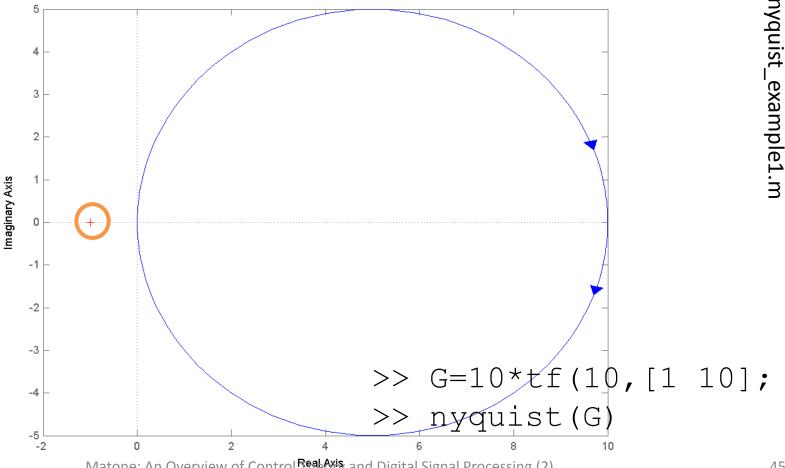
Stability Criteria





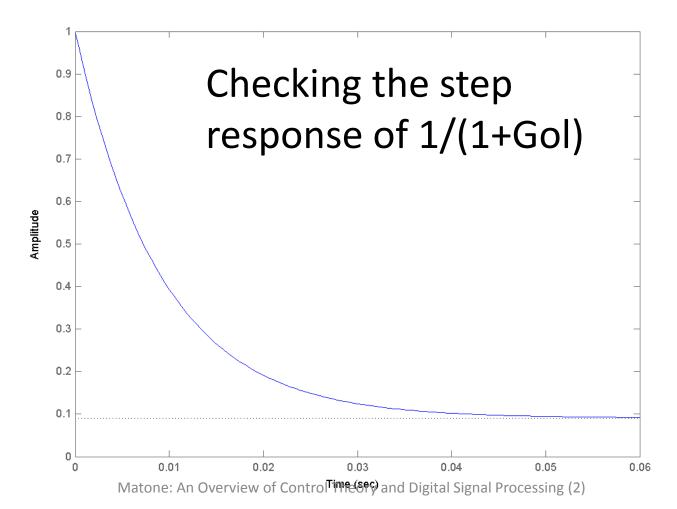
Matone: An Overview of Control Theory and Digital Signal Processing (2)





Matone: An Overview of Control Traction and Digital Signal Processing (2)

Solution Nyquist stability criterion The closed loop system is stable if the polar plot of the open loop transfer function $(Im(G_{OL}) \text{ vs } \mathcal{R}e(G_{OL}))$ does not encircle the -1 point.



LIGO-G1100863

46

Back to cruise control

Let's inspect the system's loop stability. Recall

- $H = 1000 \ ^{N}/_{(m/s)}$
- $G = \frac{1/m}{s+b/m}$
- Mass m = 1000 kg

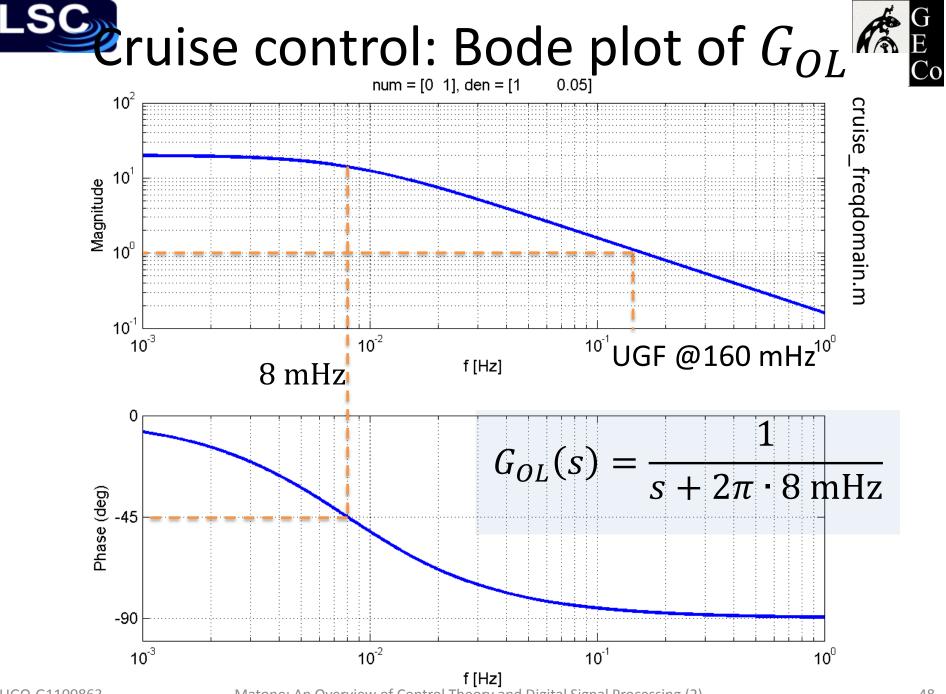
• Coefficient for air
friction b = 50 kg/s

$$G_{OL}(s) = \frac{1}{s + 2\pi \cdot 8 \text{ mHz}}$$

$$e = \frac{1}{1 + G \cdot H} v_r + \frac{K \cdot G}{1 + G \cdot H}$$

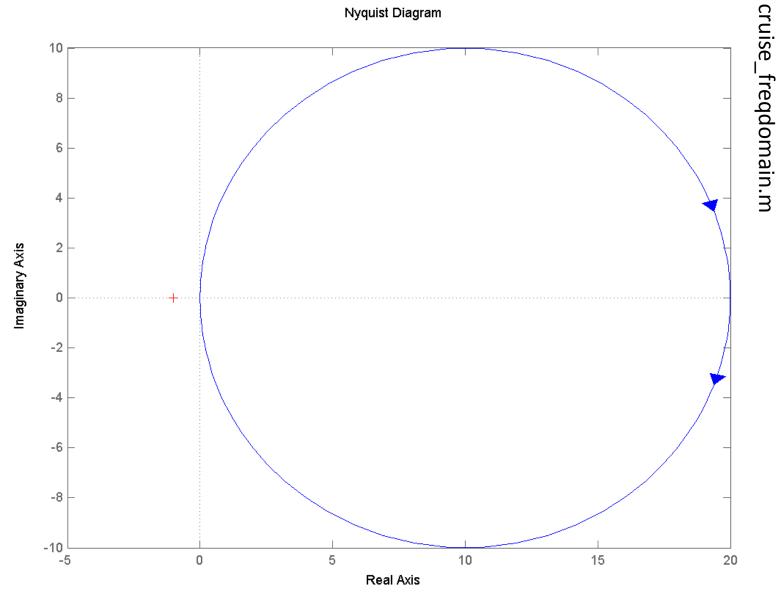
Α

С

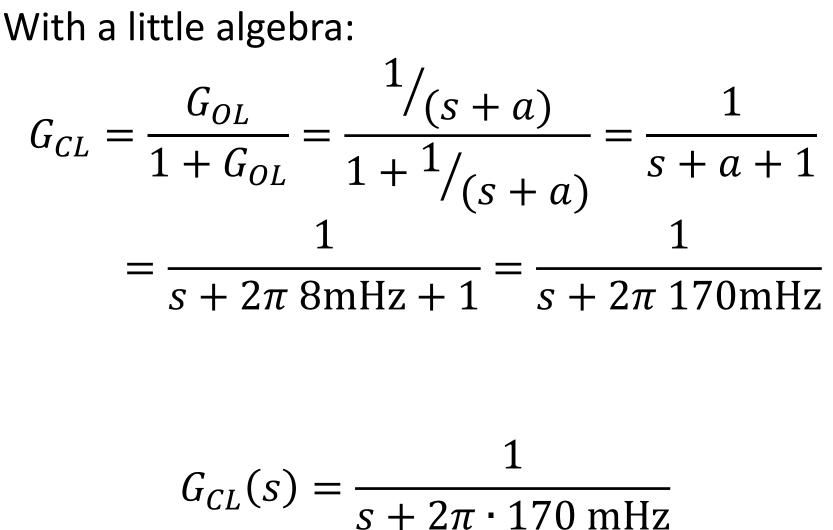


Matone: An Overview of Control Theory and Digital Signal Processing (2)

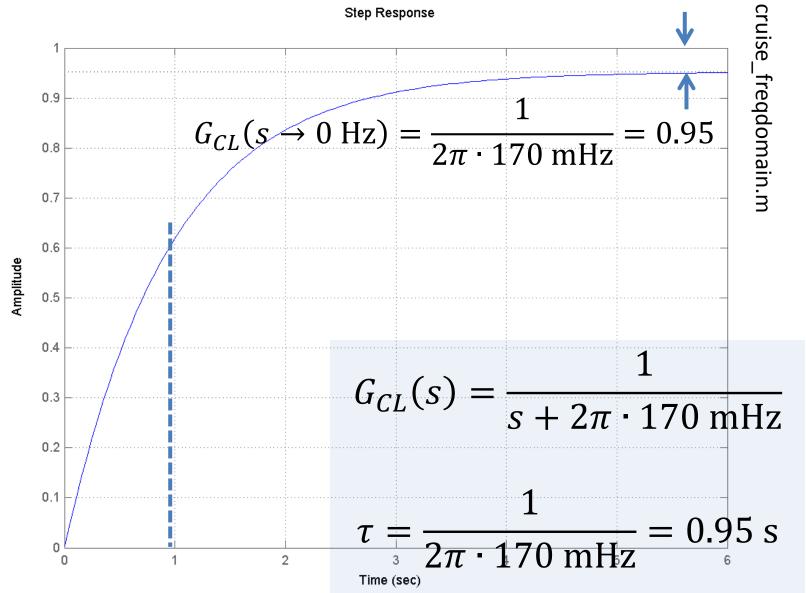
Less control: Nyquist plot of $G_O \mathcal{L}^{\mathbb{G}}$



Matone: An Overview of Control Theory and Digital Signal Processing (2)



Let's check step response of G_{CL}



Matone: An Overview of Control Theory and Digital Signal Processing (2)

Example

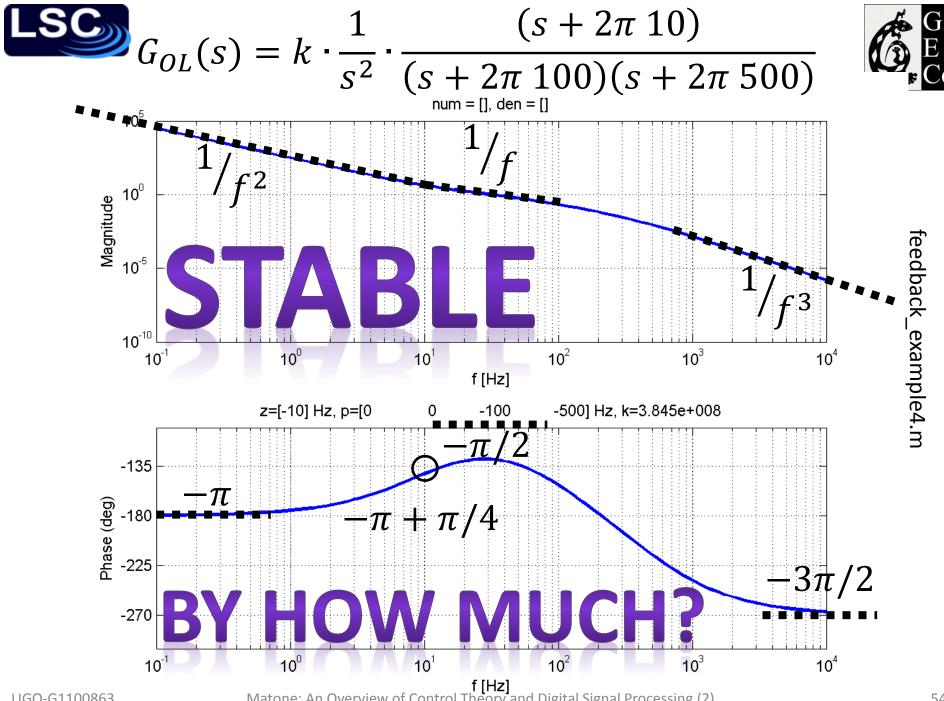
Is the system with open loop transfer function G_{OL} stable?

$$G_{OL}(s) = k \cdot \frac{1}{s^2} \cdot \frac{(s + 2\pi \ 10)}{(s + 2\pi \ 100)(s + 2\pi \ 500)}$$
$$k = 3.8 \times 10^8$$

num = [], den = [] 10⁵ 10⁰ Magnitude 10⁻⁵ Zero at 10 Hz Two poles at Hz 0 e at 1()()10⁻¹⁰ 10³ Pole at 500 Hz 10⁰ 10² 10⁻¹ 10¹ f [Hz] z=[-10] Hz, p=[0 -100 -500] Hz, k=3.845e+008 0 -135 Phase (deg) 180 -225 $(s + 2\pi 10)$ $_{-270} - G_{OL}(s) = k \cdot \frac{1}{s^2}$ $(s + 2\pi \ 100)(s + 2\pi \ 500)$ 10⁰ 10⁻¹ 10² 10¹ 10³ 10⁴

LIGO-G1100863

f [Hz] Matone: An Overview of Control Theory and Digital Signal Processing (2)



LIGO-G1100863

Matone: An Overview of Control Theory and Digital Signal Processing (2)

54

Problem

If a system has an open loop transfer function

$$G_{OL} = \frac{k}{(s+10)(s+100)}$$

what values of k make it stable? Use MATLAB to confirm this.

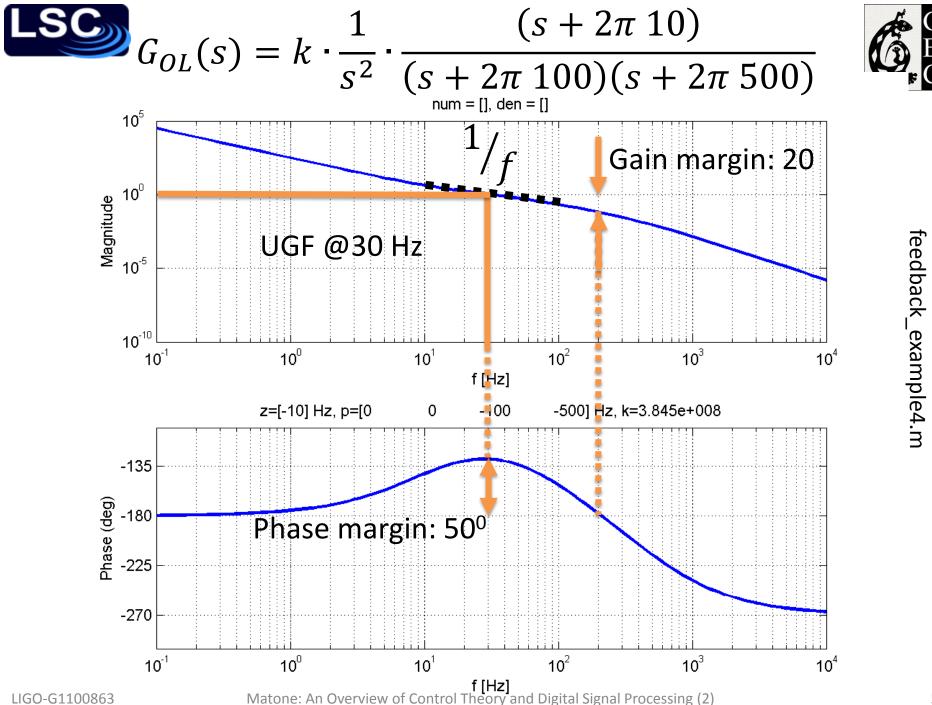
Relative stability

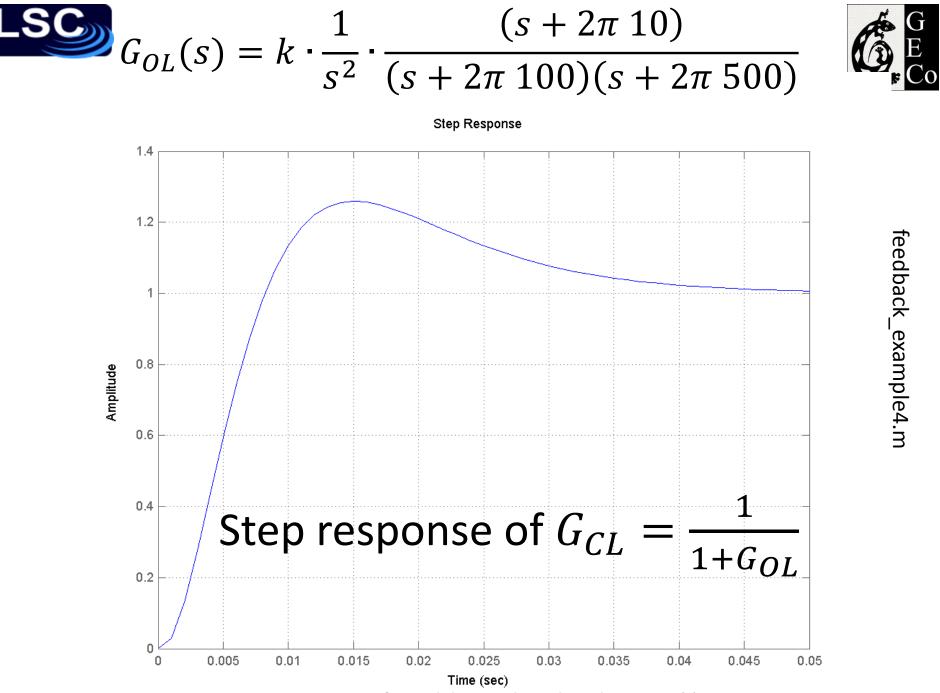
G E Co

- Gain and phase margin
 - Measure of "relative" stability
 - The larger they are \rightarrow the "safer we are"
- Gain margin
 - By how much can the gain increase until the system becomes unstable?

- Defined as
$$GM = \frac{1}{|G_{OL}(\omega_{\pi})|}$$

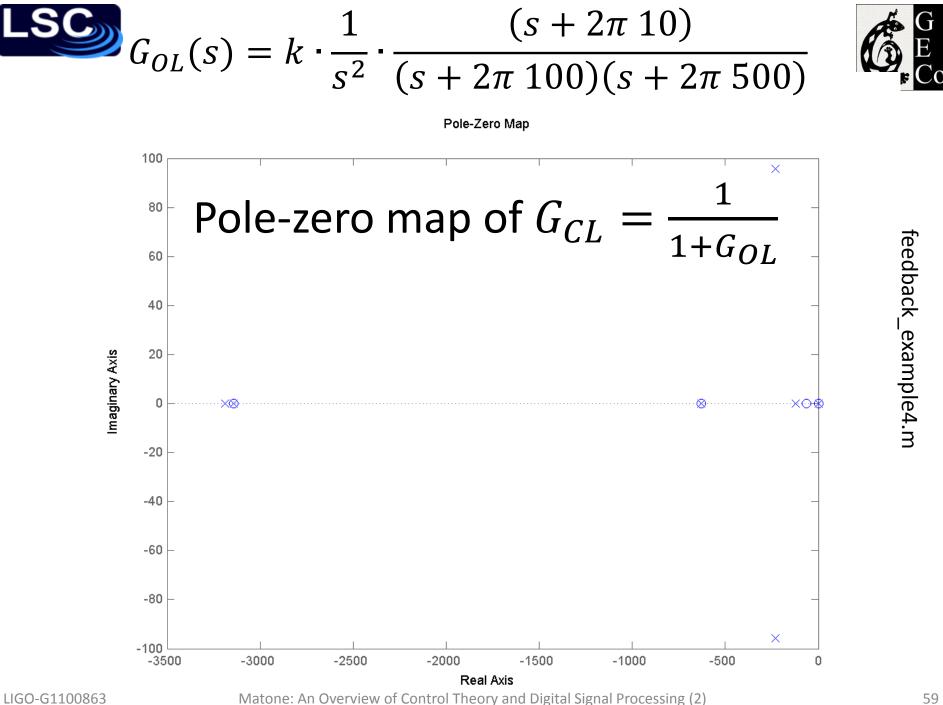
- Phase margin
 - By how much can the system tolerate a phase change at UGF?
 - Defined as $PM = \angle G_{OL}(\omega_{UGF}) + 180$
 - Rule of thumb: keep the phase margin above 40°

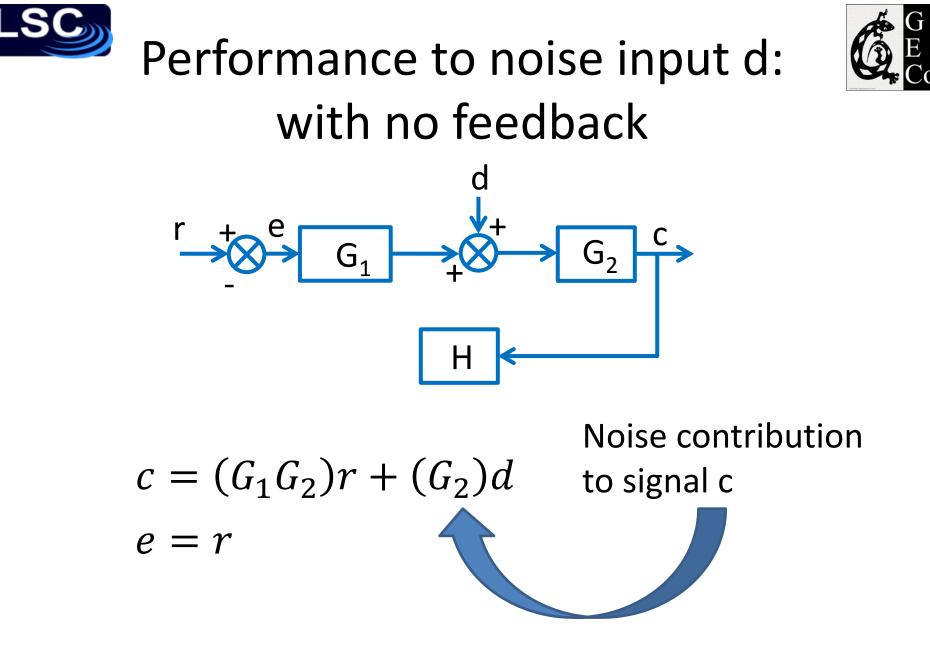


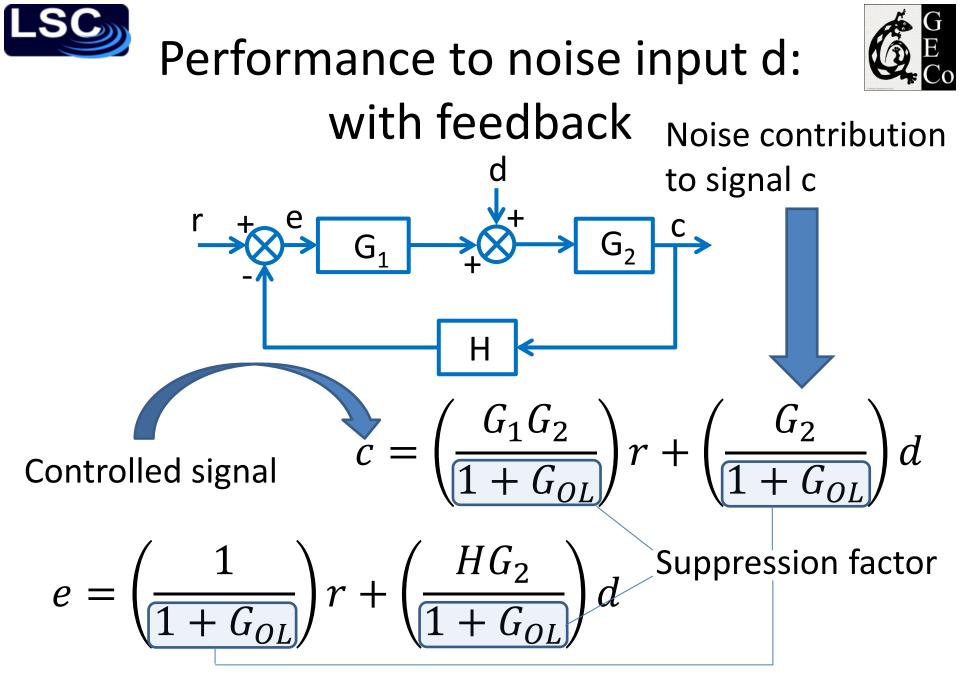


LIGO-G1100863

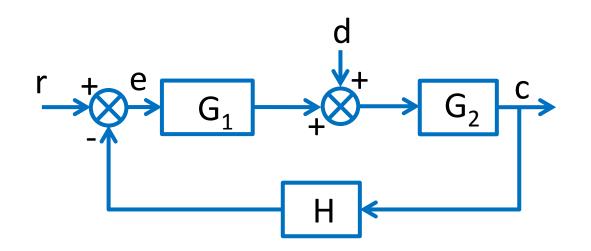
Matone: An Overview of Control Theory and Digital Signal Processing (2)







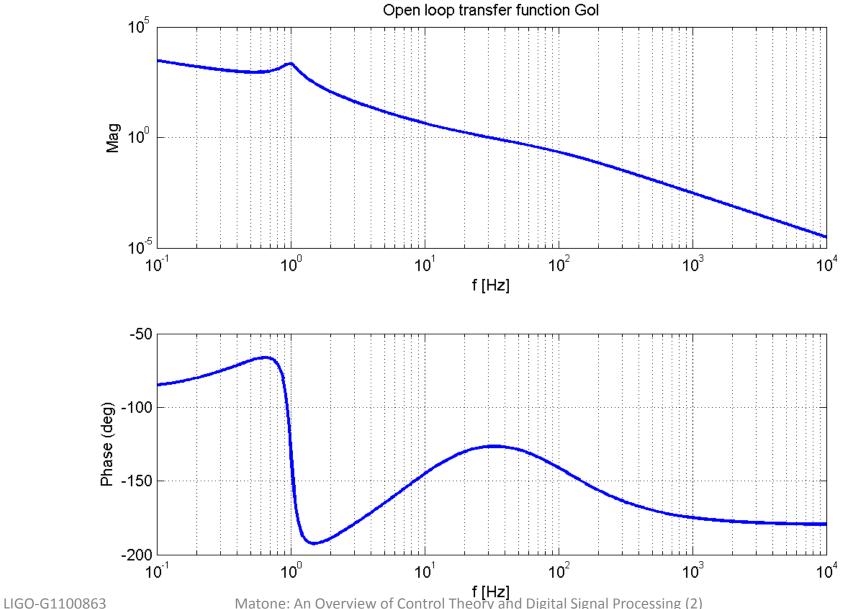
Setting the parameters



 $G_1 = \text{zeros at 1, 10Hz; poles at 0, 100 Hz, k = 300}$ $\widetilde{\omega}$ $G_2 = \frac{\widetilde{\omega}}{s^2 + 2\delta\widetilde{\omega}s + \widetilde{\omega}^2}$ with $\widetilde{\omega} = 2\pi \text{ 1Hz, } \delta = 0.1$

H = 1

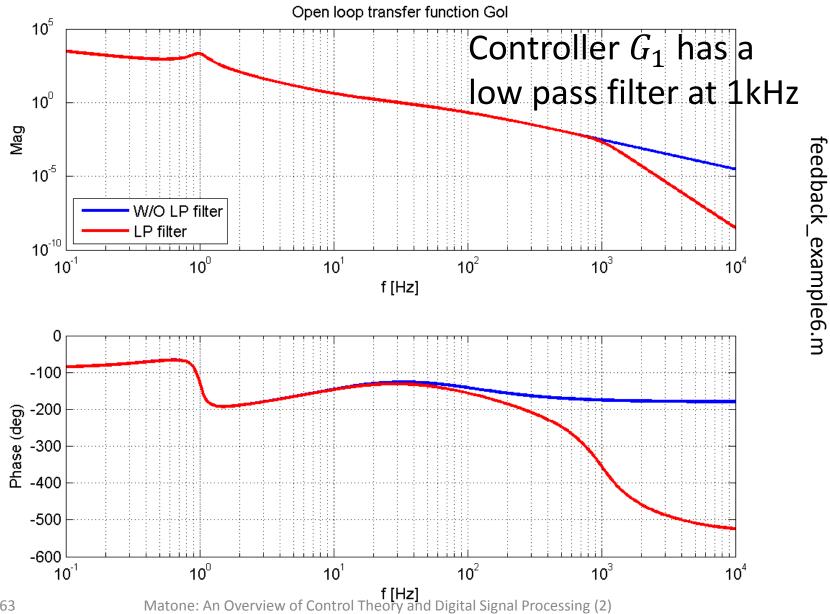
$G_{OL} = G_1 \cdot G_2 \cdot H$

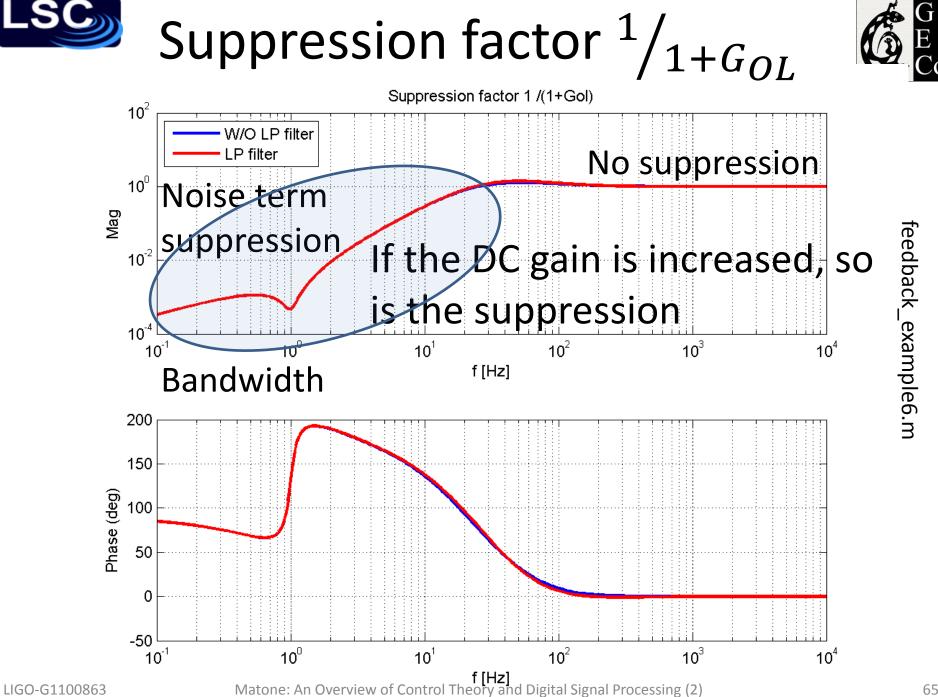


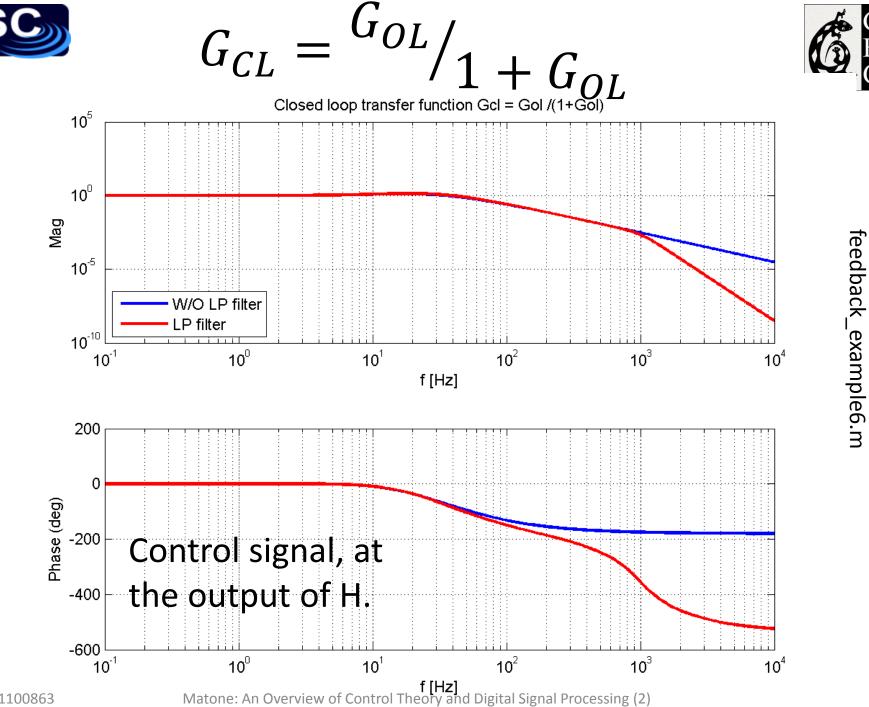
f [Hz] Matone: An Overview of Control Theory and Digital Signal Processing (2)

feedback_example6.m

 $G_{OL} = G_1 \cdot G_2 \cdot H$







Integral controller

$$G(s) = \frac{1}{s}$$

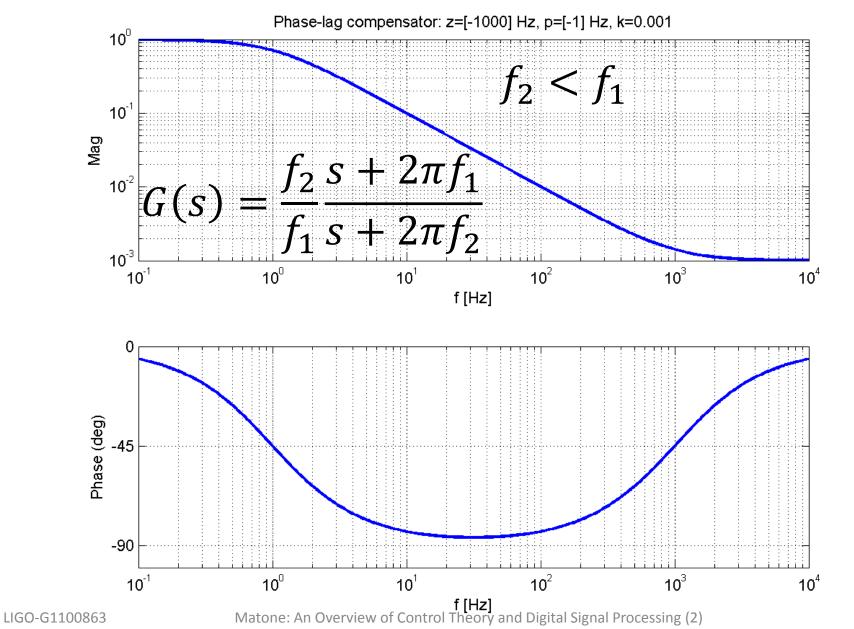
The output is proportional to the time integral of the input

• Derivative controller

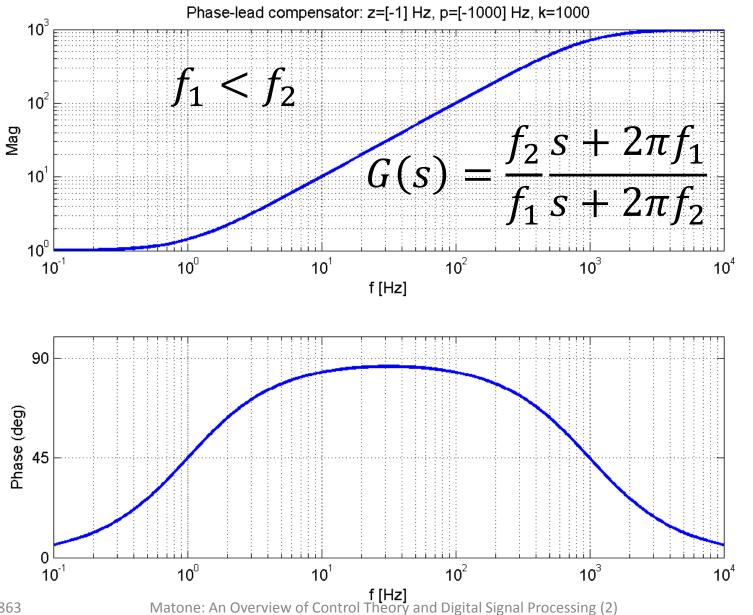
$$G(s) = s$$

The output is proportional to the time derivative of the input

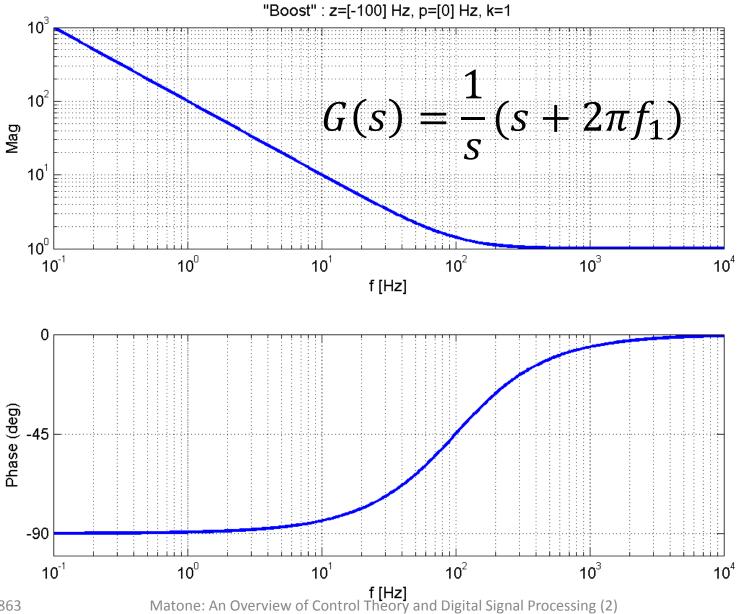
Phase-lag compensator



Phase-lead compensator



"Boost"



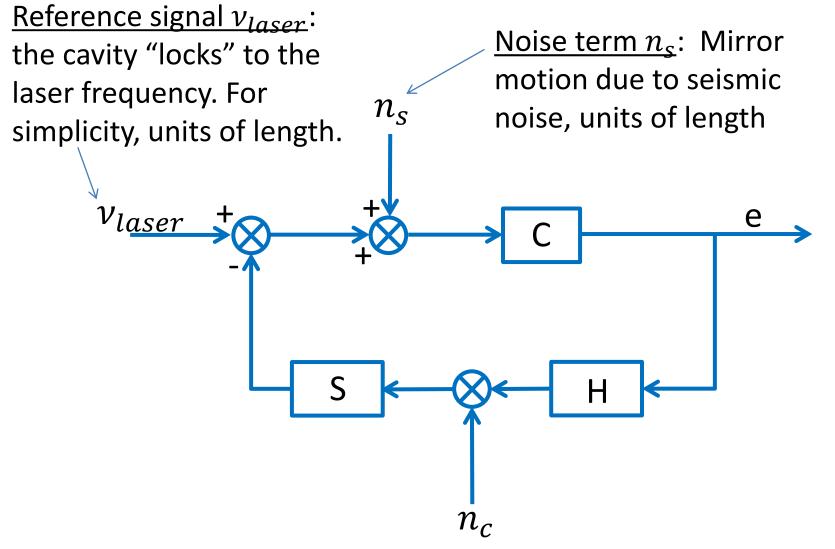
Problem

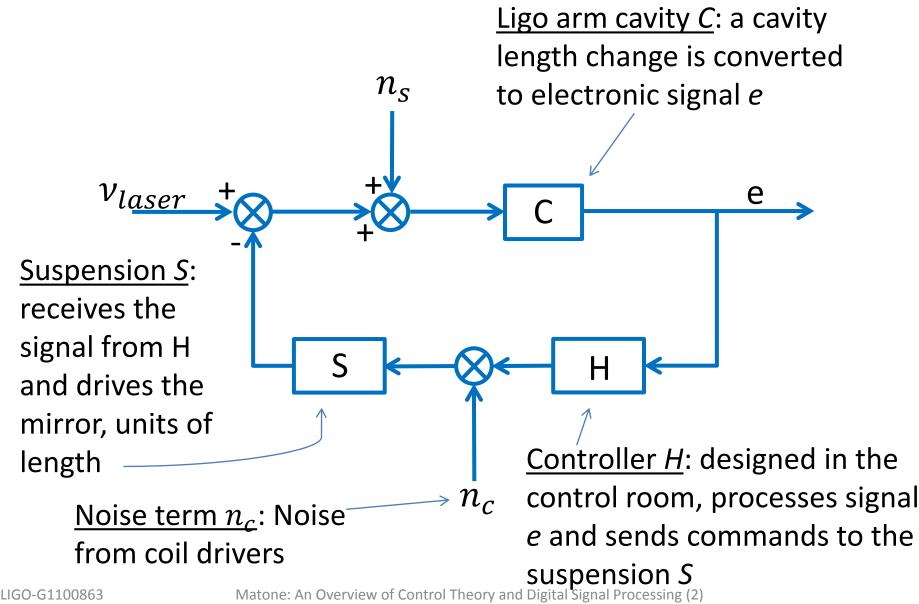
If a system has an open loop transfer function

$$G_{OL} = \frac{10^3}{(s+10)^3}$$

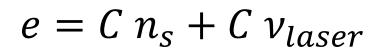
design a compensator that would make the system stable with an UGF at 100 Hz. Use MATLAB to confirm this.

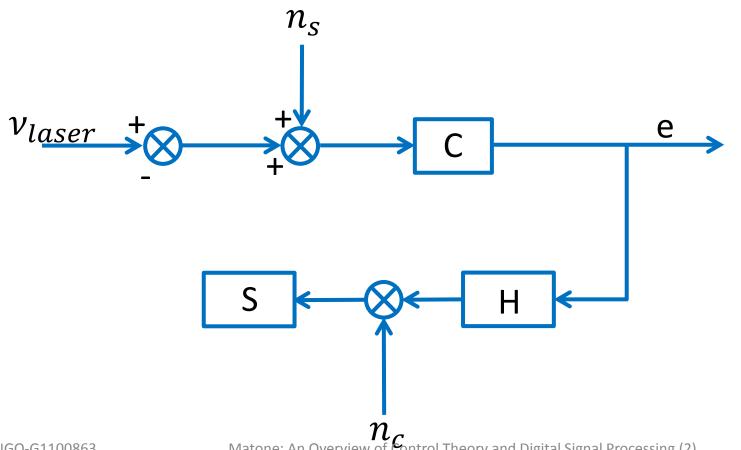
Example: locking one LIGO arm

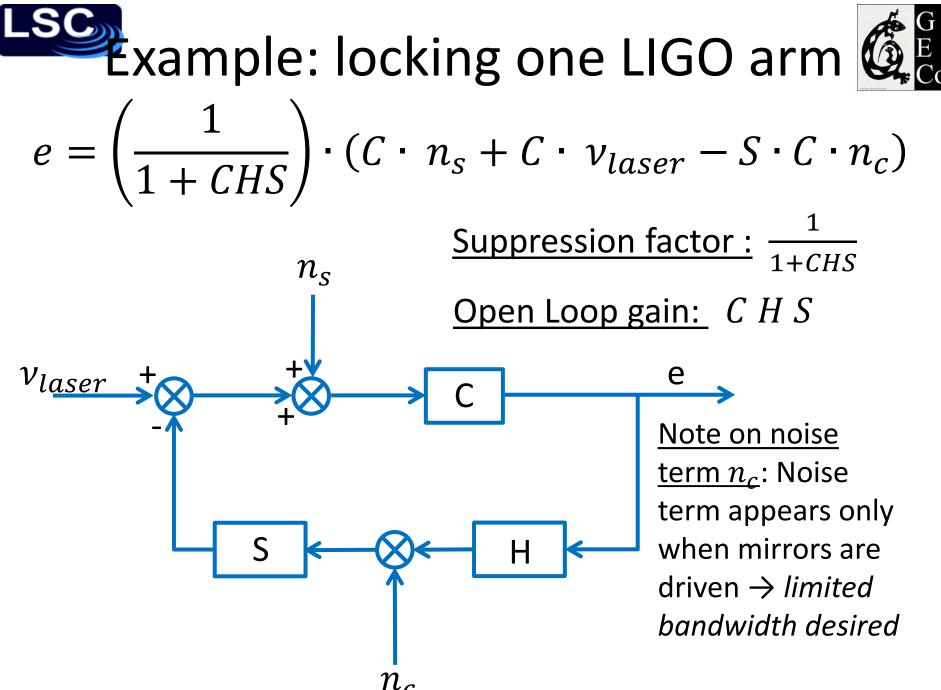




Example: no lock

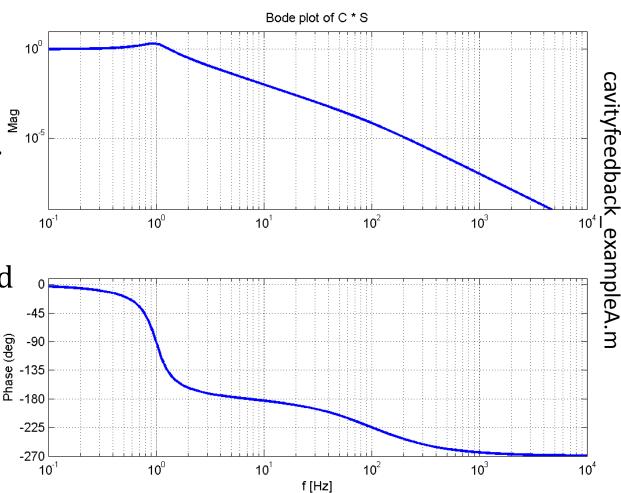




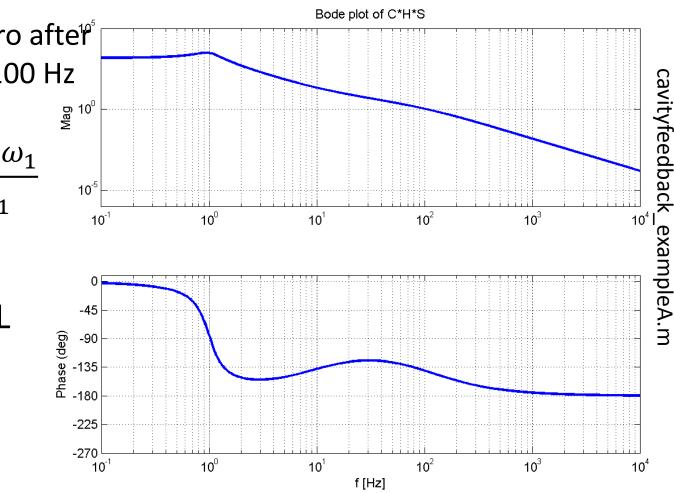


- Need to design H so as to have
 - Enough suppression of noise terms
 - Stable
 - "Small" bandwidth

- Cavity transfer function C:
 - Pole at 100 Hz
- Suspension transfer function S
 - Simple harmonic oscillator (SHO) with $f_0 = 1Hz$ and quality factor Q = 2
- Shown is $C \cdot S$
- What controller *H* can we use?



- Set UGF at 100 Hz
- Need H with a zero after
 1 Hz and before 100 Hz
- Try phase lead $H(s) = k \cdot \frac{s + \omega_1}{\omega_1}$ with k = 1500 and $\omega_1 = 2\pi \ 10$ Hz.
- Bode plot of OL
 - UGF at 100 Hz
 - PM ~40 deg
 - Stable

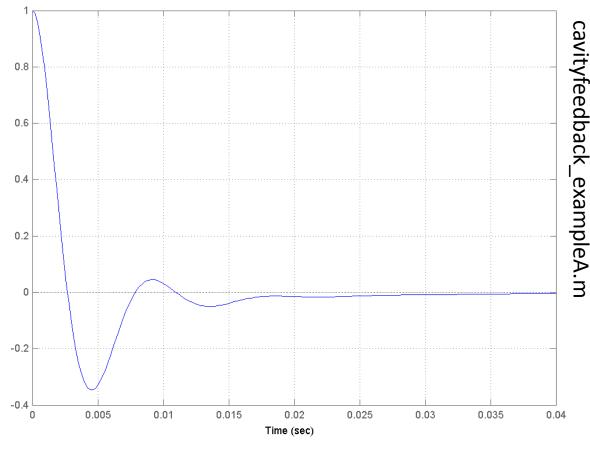


Double check stability

Step response plot of $\frac{1}{1 + CHS}$

- Step is driven to zero as it should (it is a suppression factor)
- In about 10 ms (~1/UGF) response is close to zero
- Two oscillation cycles little ringing

Step response of 1 / (1 + C*H*S)



Suppression of ~1500x at 100 mHz

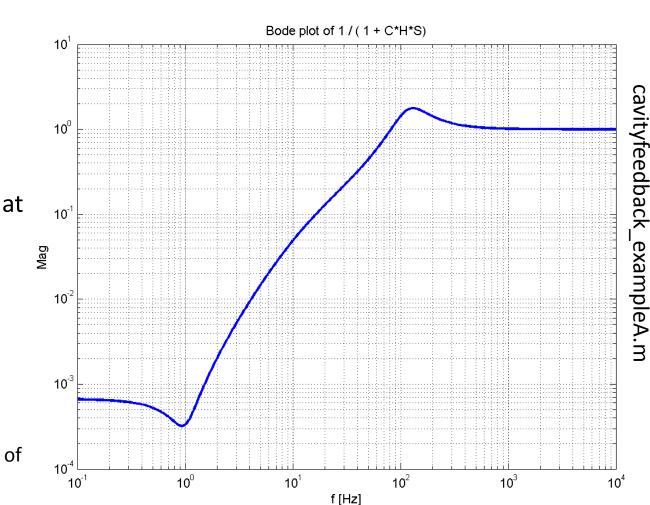
Bode plot of the

suppression factor

- No suppression above 100 Hz
- Notice spike at 100 Hz
 - This spike is responsible of the ringing in the step response
 - decreased if phase margin

is increased LIGO-G11008

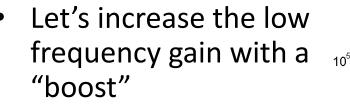
Matone: An Overview of Control Theory and Digital Signal Processing (2)



LIGO-G1100863

Matone: An Overview of Control Theory and Digital Signal Processing (2)

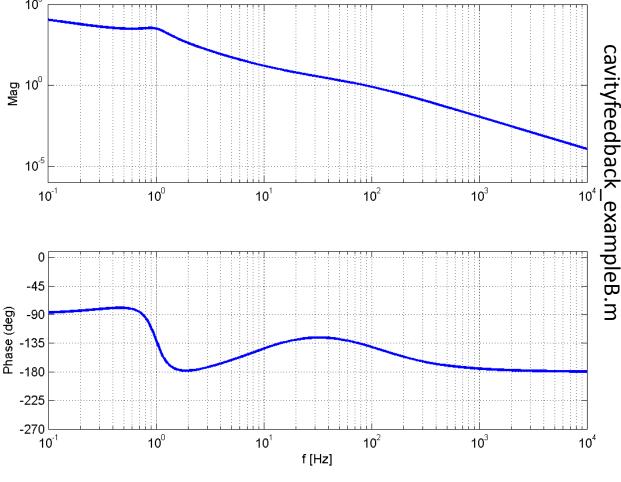
xample: locking one LIGO arm



Try H $H(s) = k \cdot \frac{1}{s} \cdot \frac{s + \omega_1}{\omega_1}$ $\cdot \frac{s + \omega_2}{\omega_2}$ with k = 7000,

 $\omega_1 = 2\pi \ 10 \text{Hz}$ and $\omega_2 = 2\pi \ 1 \ \text{Hz}$

- OL bode plot
 - UGF at 100 Hz
 - PM ~40 deg
 - Stable

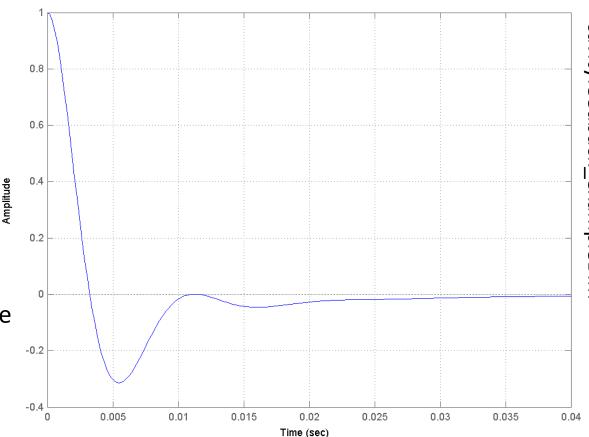


Bode plot of C*H*S

Double check stability

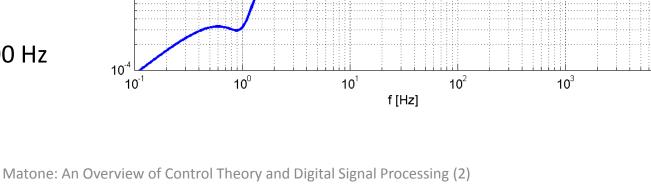
- Step response plot of $\frac{1}{1 + CHS}$
- Very similar response
- Step is driven to zero as it should (it is a suppression factor)
- In about 10 ms (~1/UGF) response is close to zero
- Two oscillation cycles little ringing

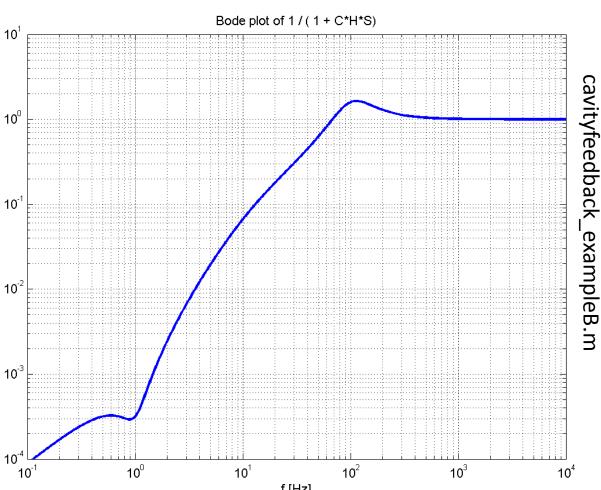
Step response of 1 / (1 + C*H*S)

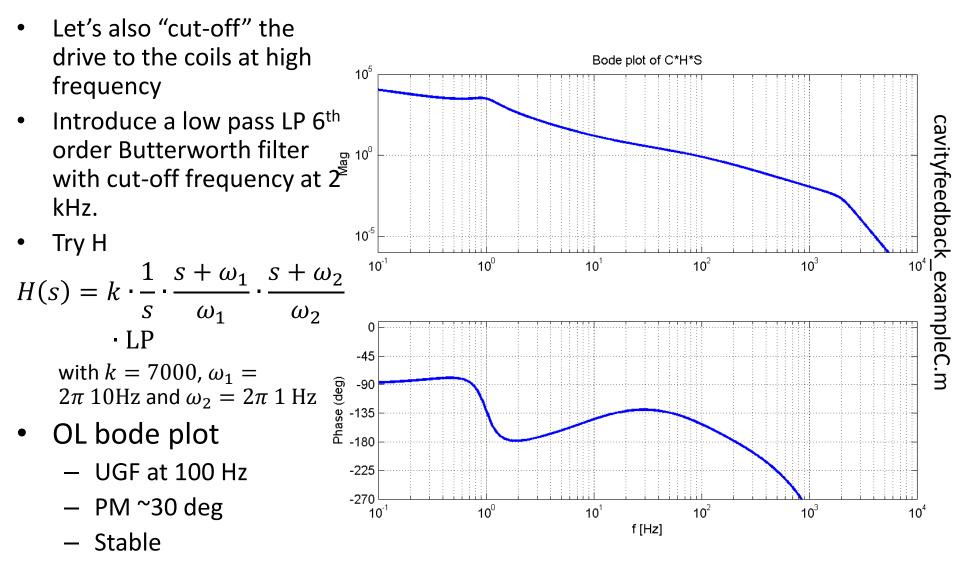


Mag

- Bode plot of the suppression factor $\frac{1}{1 + CHS}$
- More suppression at low frequencies: ~10⁴ at 100 mHz
- No suppression above 100 Hz
- Notice spike at 100 Hz
 - Similar ringing



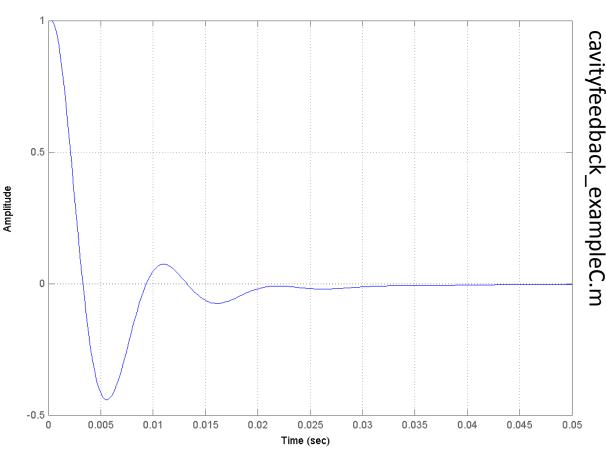




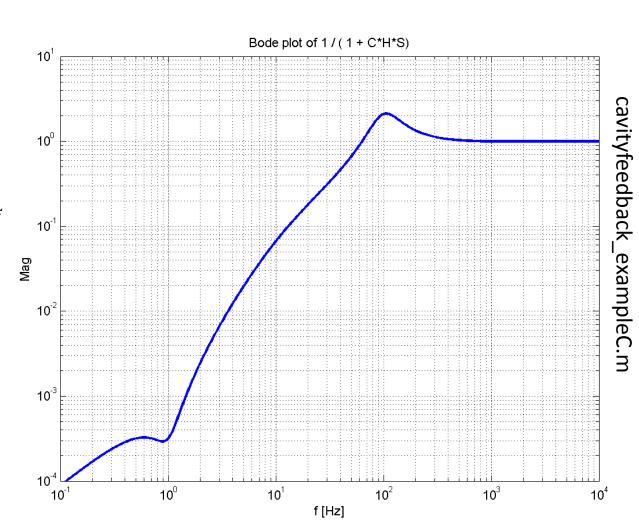
Double check stability

- Step response plot of $\frac{1}{1 + CHS}$
- Very similar response
- Step is driven to zero as it should (it is a suppression factor)
- In about 10 ms (~1/UGF) response is close to zero
- ~Two oscillation cycles

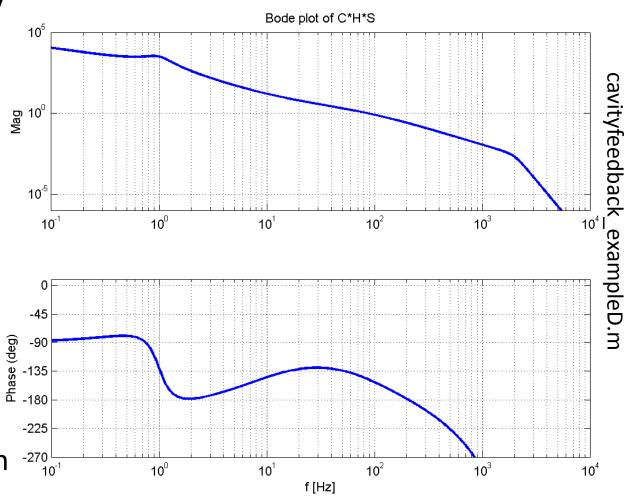
Step response of $1 / (1 + C^*H^*S)$

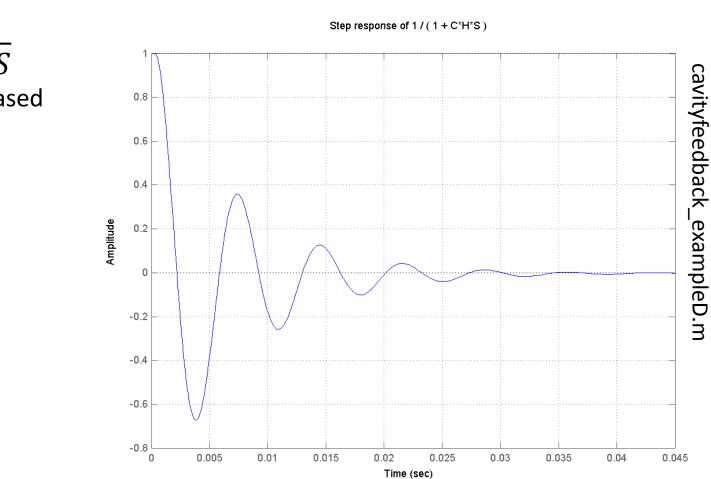


- Bode plot of the suppression factor $\frac{1}{1 + CHS}$
- Same suppression: $\sim 10^4$ at 100 mHz
- No suppression above 100 Hz
- Notice spike at 100 Hz
 - A little higher than before
 - Similar ringing



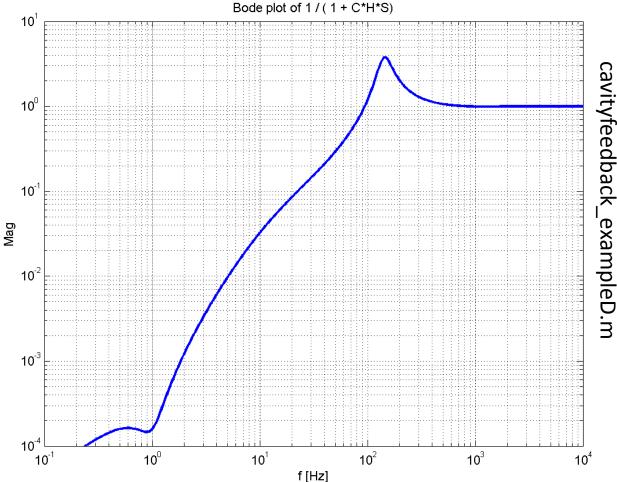
- Increasing the gain by 2x: k = 14000
- OL bode plot
 - UGF at ~133 Hz
 - Should have gone to 200 Hz but the slope is not 1/f (because of the cavity pole at 100 Hz)
 - PM ~20 deg
 - Stable but with
 little phase margin
 left





- Step response plot of $\frac{1}{1 + CHS}$
- Ringing has increased

- Bode plot of the suppression factor
 - 1 + CHS
- Suppression has increased
 - Gain was increased by factor 2
- Notice spike at 100 Hz is more pronounced



Summary

- We have explored the stability criteria
 - The feedback control system is <u>stable</u> if and only if all the *poles of the closed loop transfer function G_{CL}* have a negative real part. Otherwise the system is unstable.
- Stability in terms of the **open loop gain**
 - A closed loop system is stable if the unity gain frequency is lower than the -180^{0} crossing.
 - Rule of thumb: the system is (almost always) stable if $|G_{OL}| \propto \frac{1}{f}$ at the unity gain frequency

Summary

- Noise suppression
- How close to instability is a system? Gain and phase margin
 - Measure of "relative" stability
 - The larger they are \rightarrow the "safer we are"
 - Rule of thumb: keep the phase margin to more than 40°
- Typical compensators
 - Phase-lag
 - Phase-lead
 - "Boost"
- Cavity lock example

Problem for the afternoon

Identify a (single-input-single-output) control system at LIGO – its plant TF along with its controller TF (LSC, ASC, SUS, MC, PSL, ...)

- 1. Sketch the block diagram and model the system with MATLAB. Generate the corresponding bode plot.
- 2. Can you measure its OL TF? Where is the UGF and how does it compare with the model?
- 3. For what range of frequencies can the UGF be placed at by simply adjusting the systems' gain? What DC gain does it have, what suppression?

Problem for the afternoon

Optical levers are/were used to damp the fundamental mode of the suspensions. The controller has no DC gain (check this).

- 1. Sketch the block diagram and model the system with MATLAB. Generate the corresponding bode plot.
- 2. Can you measure its OL TF? Where is the UGF and how does it compare with the model?
- 3. For what range of frequencies can the UGF be placed at by simply adjusting the systems' gain? What DC gain does it have, what suppression?

Solutions to problems

What is the transfer function of a system whose input u and output y are related by the following differential equation?

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = u + \frac{du}{dt}$$

Sol: Taking the Laplace transform of the equation

$$s^{2} Y(s) + 3 s Y(s) + 2 Y(s) = U(s) + s U(s)$$

Which can be re-written as

$$\frac{Y(s)}{U(s)} = \frac{s+1}{s^2+3\,s+2}$$

Given $P(s) = \frac{2 s+1}{s^2+s+1}$, determine the system's differential equation to input u(t). Sol:

$$y = \left(\frac{2D+1}{D^2+D+1}\right) u$$

or

$$D^2y + Dy + y = 2 D u + u$$

or

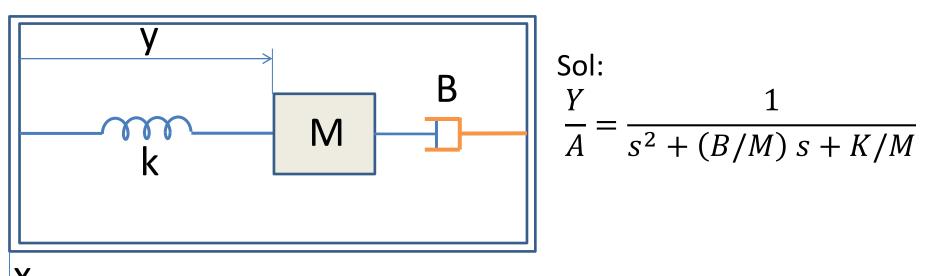
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + y = 2\frac{du}{dt} + u$$

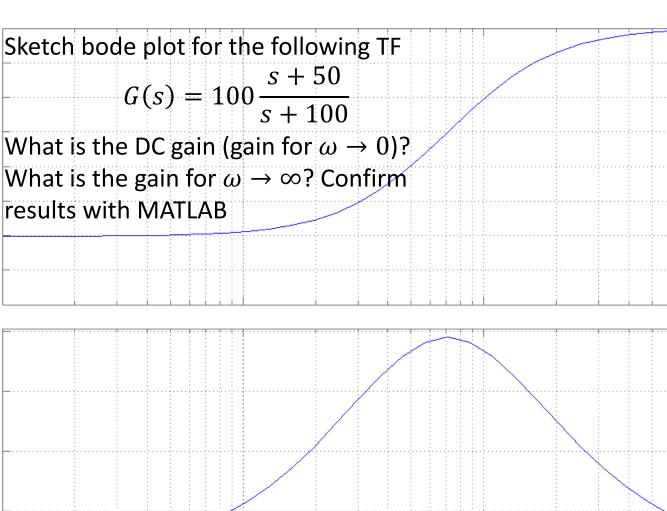
Determine which of the following transfer functions represent stable systems and which represent unstable systems. Use MATLAB's step to verify your answer.

a) $P(s) = \frac{s-1}{(s+2)(s^2+4)}$, unstable b) $P(s) = \frac{s-1}{(s+2)(s+4)}$, stable c) $P(s) = \frac{(s+2)(s-2)}{(s+1)(s-1)(s+4)}$, unstable d) $P(s) = \frac{6}{(s^2+s+1)(s+1)^2}$, stable e) $P(s) = \frac{5(s+10)}{(s^2-s+10)(s+5)}$, unstable

A simple mechanical accelerometer is shown below. The position y is with respect of the case, the case's position is x. What is the transfer function between the input acceleration A ($a = d^2x/dt^2$) and the output Y?

$$-B\frac{dy}{dt} - ky$$
$$= M\frac{d^2}{dt^2}(y - x)$$





Bode plot of H (mag at dc = 34dB, mag at infinity = 40dB)

LIGO-G1100863

40

39

38

37

36

35

34

33

32

20

15

5

0

10⁰

Phase (deg) 01

Magnitude (dB)

Matone: An Overview of Control Theory and Digital Signal Processing (2)

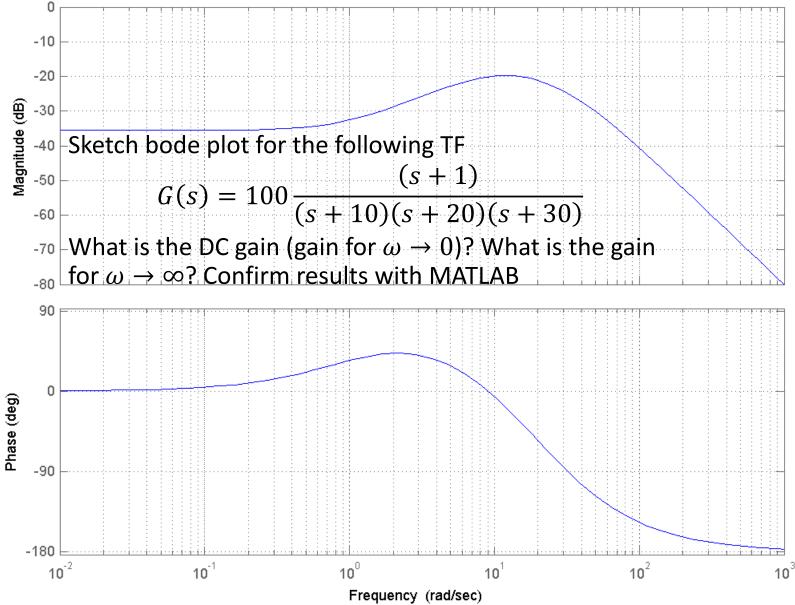
Frequency (rad/sec)

10¹

10²

10³

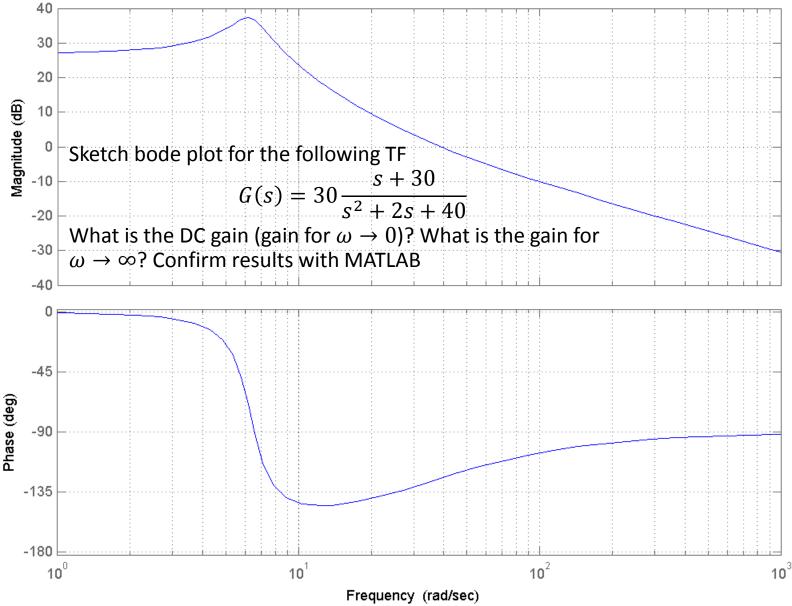
Bode plot of H (mag at dc = -36dB, mag at infinity = -InfdB)



LIGO-G1100863

Matone: An Overview of Control Theory and Digital Signal Processing (2)

Bode plot of H (mag at dc = 27dB, mag at infinity = -InfdB)



LIGO-G1100863

Matone: An Overview of Control Theory and Digital Signal Processing (2)

Solution

If a system has an open loop transfer function $G_{OL} = \frac{k}{(s+10)(s+100)}$

what values of k make it stable?

Sol: UGF can be set after the pole at 10 and before pole at 100

$$\begin{split} |G_{OL}| &= k \frac{1}{\sqrt{\omega^2 + 10^2}} \cdot \frac{1}{\sqrt{\omega^2 + 100^2}} \\ \text{Set} |G_{OL}| &= 1 \text{ and } \omega = 10. \text{ Find corresponding k.} \\ \text{Set} |G_{OL}| &= 1 \text{ and } \omega = 100. \text{ Find corresponding k} \end{split}$$

Solution

If a system has an open loop transfer function $G_{OL} = \frac{10^3}{(s+10)^3}$

design a compensator that would make the system stable with an UGF at 100 Hz. Use MATLAB to confirm this.

Sol: two zeros at 10, decreasing the gain by 3x H=zpk([],[-10 -10 -10],1e3) * zpk([-10 -10],[],0.3)