

An Overview of Control Theory and Digital Signal Processing

Luca Matone Columbia Experimental Gravity group (GECo) LHO Jul 18-22, 2011 LLO Aug 8-12, 2011 LIGO-G1100863

Syllabus (tentative)

Day	Торіс	Textbooks
1	<u>Control theory</u> : Physical systems, models, linear systems, block diagrams, differential equations, feedback loops, cruise control example, MATLAB implementation.	Chau, Pao C. Process Control: A First Course with MATLAB [®] . Cambridge University Press, 2002. ISBN 0-521-00255-9. Ingle, Vinay K. and John G. Proakis. Digital Signal Processing using Matlab [®] . Brooks/Cole 2000. ISBN 0- 534-37174-4. Smith, Steven W. The Scientist and Engineer's Guide to Digital Signal Processing. California Technical Publishing 1999. http://www.dspguide.com/
2	<u>Control theory</u> : Laplace transform and its inverse , transfer functions, partial fraction expansion, first-order and second- order systems, dynamic response, bode plots, stability criteria, MATLAB implementation.	
3	<u>Control theory</u> : robustness, typical compensators, noise suppression, one arm cavity lock example, MATLAB implementation and time-domain simulations with SIMULINK.	
4	<u>DSP</u> : Discrete-time signals and systems, impulse response, system stability, convolution and correlation, differential to difference equations, the Z transform, the Discrete-time Fourier Transform (DTFT), the Discrete Fourier Transform (DFT), MATLAB implementation.	
5	<u>DSP</u> : The Fast-Fourier Transform (FFT), power spectral density, sampling theorem, aliasing, analog-to-digital transformations, digital filtering, FIR filters, IIR filters, moving average filter, filter design, ADC and DACs, MATLAB implementation.	

Objective

Control System

- Manages and regulates a set of variables in a system
 - SISO single-input-singleoutput
 - MIMO multiple-inputmultiple-output
- A quantity is measured then controlled
- Requirements
 - Bandwidth
 - Rise time
 - Overshoot
 - Steady state error

Objective

10 11 12 13

Digital Signal Processing

- Measure and filter an analog signal
- Digital signal
 - Created by sampling an analog signal
 - Can be stored
- Analog filters
 - Cheap, fast and have a large dynamic range in both amplitude and frequency
- Digital filters
 - Can be designed and implemented "onthe-fly"
 - Superior level of performance.
 - Example: a low pass digital filter can have a gain of 1 ± 0.0002 , a frequency cutoff at 1000 Hz, and a gain of less than 0.0002 for frequencies above 1001 Hz. A transition of 1 Hz!

Control Theory 1

- Given a physical system
 - Objective: <u>sense</u> and <u>control</u> a variable in the system
- Examples
 - As basic as
 - a car's cruise control (SISO) or
 - Not so basic as
 - Locking the full LIGO interferometer (MIMO)

Example: Cruise Control

Physical model

First-order differential equation

Direction of motion

 Solving for first-order differential equation (assuming *f* is a constant)

$$m\frac{dv}{dt} = f - bv$$

Using MATLAB's Symbolic Math Toolbox

>> dsolve('m*Dy=f-b*y', 'y(0)=0')
ans =
(f - f/exp((b*t)/m))/b

Matone: An Overview of Control Theory and Digital Signal Processing (1)

- Block diagram: representing the physical system
 - To illustrate a cause-and-effect relationship
 - A single block represents a physical system
 - Blocks are connected by lines
 - Lines represent how signals flow in the system
 - In general, a physical system G has signal x(t) as input and signal y(t) as output
 - G is the transfer function of the system

Car's body

Transfer function G represents the car's body

- G converts the force from the engine f (input signal, N) to the car's actual speed v (output signal, m/s)

$$v = G \cdot f$$

with
$$G = \frac{1}{b}(1 - e^{-\frac{b}{m}t})$$

- Units: s/kg f(t) G v(t)

Setting the desired speed

- Second transfer function H (the controller)
 - Converts the desired speed (or reference) v_r to a required force f
 - Sets the throttle
 - For simplicity, H is set to a constant

$$\begin{cases} f = H \cdot v_r \\ v = G \cdot f \end{cases} \rightarrow v = G \cdot H \cdot v_r$$

 $-G \cdot H$ must be dimensionless

Plotting results

• With H = b the actual speed is the reference: $v = v_r$

Introducing a disturbance – a hill

- In the presence of a hill the equation of motion needs to be re-visited
- Assuming a small angle θ

$$m\frac{dv}{dt} = f - bv - mg \cdot \theta$$

Added term

Assuming f and θ are constants

Modifying the block diagram

Modifying the block diagram

Plotting results

Setting desired speed to 25 m/s and slope of $\theta = 5^{\circ}$

Negative Feedback

- 1. Let's measure the car's speed and
- 2. Correct for it by feeding back into the system a measure of the actual speed v

Negative Feedback

- 1. Let's measure the car's speed and
- 2. Correct for it by feeding back into the system a measure of the actual speed v

K

- Error signal e: the difference between the desired speed and
- the measured speed. If null, then

just a measure of the actual speed Matone: An Overview of Control Theory and Digital Signal Processing (1)

Negative feedback

- Plot of *force* vs. *time* and *speed* vs. *time* with
 negative feedback
- Setting $H = 10^3 kg/s$
- Result:
 - Faster response with feedback (compare blue against red curves)
 - Speed at regime:
 23 m/s (error of ~10%)

Negative feedback

Matone: An Overview of Control Theory and Digital Signal Processing (1)

- Increasing the controller's gain (H)
 - decreases the rise time_
 - while decreasing the steady state error
- Setting $H = 10^4 kg/s$
- Result:

LIGO-G1100863

- Even faster response
- Speed at regime:
 24.8 m/s (error of ~1%)

Plotting GH and GH/(1 + GH)

- Open loop $v = G \cdot H \cdot v_r$
- Closed loop $v = \frac{G \cdot H}{1 + G \cdot H} \cdot v_r$
- Setting $H = 10^3 kg/s$
- Plotting the open loop 1
 transfer function vs. time 0.8
 and the closed loop 1
 transfer function vs. time 0.4
- Notice the rapid rise time of for the closed loop case

The error signal e

- Plot of error signal e vs time
 Error signal decreases 20 to 3 m/s.
- Notice a ~10% steady state error

Search Content of the search o

 $H = 10^{4} kg/s$

Error signal *e* with $H = 10^4 kg/s$

LIGO-G1100863

Cruise control example

- First-order differential equation
- Simplest controller: simply a gain with no time constants involved
- How to handle more complicated problems?

Block diagram reduction

Determine the output C in terms of inputs U and R.

LIGO-G1100863

Practice

Determine the output C in terms of inputs U_1, U_2 and R.

Determine C/R for the following systems.

LSC How do we MEASURE the OL TF of the OL TF

a system when the loop is closed?

- Add an injection point in a closed loop system
- 2. Inject signal x and read signal y_1 (just before the injection) and y_2 (right after the injection)
- 3. Solve for the ratio $\frac{y_1}{y_2}$

So far...

- Control theory builds on differential equations
- Block diagrams help visualize the signal flow in a physical system
- The cause-and-effect relationship between variables is referred to as a transfer function (TF)
- The system's open-loop TF is the product of transfer functions
 - cruise control example: $G \cdot H$
 - Two cases: $G \cdot H \ll 1$ and $G \cdot H \gg 1$
- MATLAB implementation
 - Functions used: dsolve

Laplace Transforms

- The technique of Laplace transform (and its inverse) facilitates the solution of ordinary differential equations (ODE).
- Transformation from the time-domain to the frequency-domain.
- Functions are complex, often described in terms of magnitude and phase

Linear systems

- To map a model to frequency space
 - System must be linear
 - Output proportional to input
- Given system P
 - Input signals: x_1 and x_2
 - Output signals (response): y_1 and y_2
- System P is linear
 - If input signal: $a x_1 + b x_2$
 - Then output signal: $a y_1 + b y_2$
 - Superposition principle

Example

• Is
$$y = \frac{dx}{dt}$$
 a linear system?
> Knowing that $y_1 = \frac{dx_1}{dt}$ and $y_2 = \frac{dx_2}{dt}$
> If input is $c_1x_1 + c_2x_2$, output is
 $\frac{d}{dt}(c_1x_1 + c_2x_2) =$
 $c_1\frac{d}{dt}x_1 + c_2\frac{d}{dt}x_2 =$
 $c_1y_1 + c_2y_2$
> System is linear

Example

Is y = x² a linear system?
➤Knowing that y₁ = (x₁)² and y₂ = (x₂)²
➤If input is c₁x₁ + c₂x₂, output is (c₁x₁ + c₂x₂)² ≠ c₁ y₁ + c₂ y₂
➤System is not linear

Laplace Transform \mathcal{L}

- Transforms a *linear differential equation* into an *algebraic equation*
- Tool in solving differential equations
- Laplace transform of function f $F(s) = \mathcal{L}[f(t)]$
- Laplace inverse transform of function F $f(t) = \mathcal{L}^{-1}[F(s)]$

where $s = j\omega$ is the transform variable

 $2\pi f$

Imaginary unit^{*}

Time domain \leftrightarrow Laplace domain

Laplace Transform \mathcal{L}

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty f(t)e^{-st}dt$$

$$f(t) = \mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi j} \int_{-j\omega}^{+j\omega} F(s)e^{st} ds$$

LSC (Sor

(Some) Laplace transform pairs

	f(t)	F(s)
Unit step	u(t)	$1/_{S}$
Unit ramp	t	$\frac{1}{s^2}$
Exponential	e^{at}	$\frac{1}{(s-a)}$
Sinusoid	$sin(\omega_0 t)$	$\omega/(s^2 + \omega_0^2)$
	$(1/a)(1-e^{-at})$	$\frac{1}{s(s+a)}$
SHO	$\frac{\omega_0}{\sqrt{1-\delta^2}} e^{-\delta\omega_0 t} \times$	$\frac{{\omega_0}^2}{s^2+2\delta\omega_0s+{\omega_0}^2}$
	$\times \sin(\sqrt{1-\delta^2} \omega_0 t)$	

- Linearity $\mathcal{L}[c_1 f_1(t) + c_2 f_2(t)] = c_1 F_1(s) + c_2 F_2(s)$
- Derivatives

- First-order:
$$\mathcal{L}\left[\frac{df(t)}{dt}\right] = sF(s)$$

- Second-order:
$$\mathcal{L}\left[\frac{d^2f(t)}{dt^2}\right] = s^2F(s)$$

Integral

$$\mathcal{L}\left[\int_0^t f(t)dt\right] = \frac{1}{s}F(s)$$

Solution to ODEs

- 1. Laplace transform the system's ODE
- 2. Solve the algebraic equation in s
- 3. Inverse transform back to the time domain

Transfer Function G(s)

Transfer function G(s) relates input X(s) to output $Y(s)_{3}$

Transfer Function G(s)

G(s)

The roots of the numerator are referred to as *zeros*.

Transfer function G(s) can be defined by

- The coefficients of *s* or
- Its poles and zeros

The roots of the denominator are referred to as *poles*.

 $\frac{Y(s)}{X(s)} = \frac{\sum_{i=0}^{m} b_i s^i}{\sum_{i=0}^{n} a_i s^i}$

LIGO-G1100863

LIGO-G1100863

First-order system step response

MATLAB implementation

The step response of transfer function $G(s) = \frac{5}{s+5}$

>> G=tf(5, [1 5]); >> step(G);

Partial fraction expansion

- 1. Reduce a complex function to a collection of simpler ones
- 2. Then use lookup table Order m $F(s) = \frac{Q(s)}{P(s)} = \sum_{i} \frac{\alpha_i}{s + a_i}$ $m \leq n$ $f(t) = \mathcal{L}^{-1} \left| \frac{\alpha_1}{s + a_1} \right| + \dots + \mathcal{L}^{-1} \left| \frac{\alpha_n}{s + a_m} \right|$ $= \alpha_1 e^{-a_1 t} + \dots + \alpha_n e^{-a_n t}$ $\lambda \alpha_i e^{-\alpha_i t}$

Comments

- Poles of *F(s)* determine the time evolution of *f(t)*
- 2. Zeros of *F(s)* affect coefficients
- 3. Poles closer to origin \rightarrow larger time constants

Example

Find f(t) of the Laplace transform

$$F(s) = \frac{(6s^2 - 12)}{s^3 + s^2 - 4s - 4}$$

Sol: Using MATLAB

Example: LRC circuit

Example: LRC circuit $v_{in}(t)$ $v_{out}(t)$ $v_{in}(t) = (L C D^2 + R C D + 1) v_{out}(t)$ $V_{in}(s) = (L C s^2 + R C s + 1) V_{out}(s)$

LRC circuit: transfer function

$$V_{out}(s) = \frac{1}{L C s^2 + R C s + 1} \cdot V_{in}(s)$$

Setting L = 1 H, C = 1 F and R = 1 Ω

$$V_{out}(s) = \frac{1}{s^2 + s + 1} \cdot V_{in}(s)$$

LRC circuit: dynamic response to step

Setting the input to a step of amplitude 1 V

$$V_{in}(s) = \frac{1}{s}$$

The unit step response is $V_{out}(s) = \frac{1}{s^2 + s + 1} \cdot \frac{1}{s} = \frac{1}{s^3 + s^2 + s}$

LRC circuit: dynamic response to step

$$V_{out}(s) = \frac{1}{s^3 + s^2 + s} = \sum_{i} \frac{\alpha_i}{s + a_i}$$

Using MATLAB for the solution

>> $[\alpha, a, k] = residue(n, d);$

$$v_{out}(t) = \alpha_1 e^{a_1 t} + \alpha_2 e^{a_2 t} + \alpha_3 e^{a_3 t}$$

Plotting results of two methods

secondorder.m

Verify the following

$$F(s) = \frac{6s^2 - 12}{s^3 + s^2 - 4s - 4}$$
$$f(t) = 2e^{-t} + 3e^{-2t} + e^{2t}$$

$$F(s) = \frac{6s}{s^3 + s^2 - 4s - 4}$$
$$f(t) = 3e^{-t} - 6e^{-2t} + 3e^{-3t}$$

$$F(s) = \frac{s+5}{s^2+4s+13}$$
$$f(t) = 2e^{-t} - 3e^{-2t} + e^{2t}$$

LIGO-G1100863

Step response $V(s) = \frac{G \cdot H}{1 + G \cdot H} \cdot \frac{1}{s} = \frac{\frac{G \cdot H}{1 + K_{gain}}}{s^2 + \frac{(b + K_{gain})}{m}s}$ $v(t) = \frac{K_{gain}}{K_{gain} + m} \left(1 - e^{-t/\tau}\right) \text{ with } \tau = \frac{m}{b + K_{gain}}$

Back to cruise control

LIGO-G1100863

Matone: An Overview of Control Theory and Digital Signal Processing (1)

Back to cruise control

LIGO-G1100863

Matone: An Overview of Control Theory and Digital Signal Processing (1)

Transfer function, poles and zeros

It is convenient to express a transfer function
 G(s) in terms of its poles and zeros:

$$G(s) = \frac{Q(s)}{P(s)} = k \cdot \frac{(s - z_1) \cdot (s - z_2) \dots (s - z_m)}{(s - p_1) \cdot (s - p_2) \dots (s - p_n)}$$

• *k* is the gain of the transfer function

- <u>Real distinct poles (often negative)</u> $\frac{c_i}{s - p_i} \iff c_i e^{p_i t}$
- <u>Real poles, repeated m times (often negative)</u>

$$\begin{bmatrix} \frac{c_{i,1}}{s-p_{i,1}} + \frac{c_{i,2}}{\left(s-p_{i,2}\right)^2} + \dots + \frac{c_{i,3}}{\left(s-p_{i,3}\right)^3} + \frac{c_{i,m}}{\left(s-p_{i,m}\right)^m} \end{bmatrix}$$

$$\uparrow$$

$$\begin{bmatrix} c_{i,1} + c_{i,2}t + \frac{1}{2!}c_{i,3}t^2 + \dots + \frac{c_{i,m}}{(m-1)!}t^{m-1} \end{bmatrix} \cdot e^{p_i t}$$

Summary of pole characteristics

<u>Complex-conjugate poles</u>

often re-written as a second-order term

$$\frac{\omega^2}{^2 + 2\delta\omega \, s + \omega^2} \iff \sim e^{\alpha t} \cdot \sin(\beta t + \varphi)$$

- Poles on imaginary axis
 - Sinusoid

S

- Pole at zero: step function
- Poles with a positive real part

– Unstable time-domain solution

Summary

- The Laplace transform is a tool to facilitate solving for ODEs.
- Systems need to be linear
- No need to do the transform (integral)
 - Use transform pairs, transform tables
 - Laplace transform properties: linearity, derivatives and integrals.
- Once in the Laplace domain, a TF is simply the ratio of two polynomials in s. Carry out algebra to solve the problem.
- No need to do the inverse transform
 - Use transform pairs, transform tables
 - For high-order TFs, use the partial-fraction expansion to reduce the problem to simpler parts
- <u>IMPORTANT</u>:
 - Poles of a transfer function determine the time evolution of the system
 - Poles with a real positive part correspond to unstable and unphysical systems
 - The system TF needs to have poles with a negative real part
- MATLAB implementation
 - Functions used: step, residue, tf

Solutions

Determine the output C in terms of inputs U and R. Sol:

Practice

82

Determine the output C in terms of inputs U_1, U_2 and R.

Sol:

Determine C/R for the following systems. Sol:

LSC How do we MEASURE the OL TF of the OL TF

a system when the loop is closed?

- Add an injection point in a closed loop system
- 2. Inject signal x and read signal y_1 (just before the injection) and y_2 (right after the injection)
- 3. Solve for the ratio $\frac{y_1}{y_2}$ Sol: $\frac{y_1}{y_2} = -G_{OL}$

Partial-fraction examples

- Denominator: has distinct, real roots
 Example 2.4, 2.5, 2.6
- Denominator: complex roots
 - Example 2.7, 2.8
- Denominator: repeated roots
 - Example 2.9

Practice: verify the following

$$F(s) = \frac{6}{(s+1)(s+2)(s+3)}$$
$$f(t) = 3e^{-t} - 6e^{-2t} + 3e^{-3t}$$

$$F(s) = \frac{s+5}{s^2+4s+13}$$
$$f(t) = \sqrt{2}e^{-2t}\sin(3t+\frac{\pi}{4})$$

$$F(s) = \frac{2}{(s+1)^3(s+2)}$$
$$f(t) = 2\left[\left(1 - t + \frac{t^2}{2}\right)e^{-t} - e^{-2t}\right]$$

LIGO-G1100863

Matone: An Overview of Control Theory and Digital Signal Processing (1)