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Day Topic Textbooks 

1 
Control theory: Physical systems, models, linear systems, block 
diagrams, differential equations, feedback loops, cruise control 
example, MATLAB implementation. 

Chau, Pao C. Process Control: 
A First Course with MATLAB®. 
Cambridge University Press, 
2002. ISBN 0-521-00255-9. 
 
Ingle, Vinay K. and John G. 
Proakis. Digital Signal 
Processing using Matlab®. 
Brooks/Cole 2000. ISBN 0-
534-37174-4. 
 
Smith, Steven W. The Scientist 
and Engineer’s Guide to 
Digital Signal Processing. 
California Technical 
Publishing 1999. 
http://www.dspguide.com/ 

2 

Control theory: Laplace transform and its inverse , transfer 
functions, partial fraction expansion, first-order and second-
order systems, dynamic response, bode plots,  stability criteria, 
MATLAB implementation. 

3 

Control theory: robustness, typical compensators, noise 

suppression, one arm cavity lock example, MATLAB 

implementation and time-domain simulations with SIMULINK.  

4 

DSP: Discrete-time signals and systems, impulse response, 
system stability, convolution and correlation, differential to 
difference equations, the Z transform, the Discrete-time Fourier 
Transform (DTFT), the Discrete Fourier Transform (DFT), MATLAB 
implementation. 

5 

DSP: The Fast-Fourier Transform (FFT), power spectral density, 
sampling theorem, aliasing, analog-to-digital transformations, 
digital filtering, FIR filters, IIR filters, moving average filter, filter 
design, ADC and DACs, MATLAB implementation. 

Syllabus (tentative) 
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Objective 
Control System 

• Manages and regulates a set 
of variables in a system 
– SISO – single-input-single-

output 

– MIMO – multiple-input-
multiple-output 

• A quantity is measured then 
controlled 

• Requirements 
– Bandwidth 

– Rise time 

– Overshoot 

– Steady state error 

– … 
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Objective 
Digital Signal Processing 

• Measure and filter an analog signal 

• Digital signal 
– Created by sampling an analog signal 

– Can be stored 

• Analog filters 
– Cheap, fast and have a large dynamic 

range in both amplitude and frequency 

• Digital filters 
– Can be designed and implemented “on-

the-fly” 

– Superior level of performance. 
• Example: a low pass digital filter can have a 

gain of 1 ± 0.0002, a frequency cutoff at 
1000 Hz, and a gain of less than 0.0002 
for frequencies above 1001 Hz. A 
transition of 1 Hz! 
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Control Theory 1 

• Given a physical system 

– Objective: sense and control a variable in the 
system 

• Examples 

– As basic as 

• a car’s cruise control (SISO) or 

– Not so basic as 

• Locking the full LIGO interferometer (MIMO) 
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Example: Cruise Control 

• Objective 

– Car needs to maintain 
a given speed 

• Physical system 
includes 

– car’s inertia 

– friction 

Direction 
of motion 

Normal 
force (n) 

Force from 
engine (f) 

Weight 
(mg) 

Friction 
force (ffr) 

Force or free body diagram: allows to 
analyze the forces at play 
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Physical model 
• Physical system described 

by the following equation 
of motion 

 𝑓

∥ 𝑡𝑜 𝑟𝑜𝑎𝑑

= 𝑓 − 𝑓𝑓𝑟 = 𝑚𝑎 

• Simplifying and assuming 
friction force 𝑓𝑓𝑟  is 

proportional to speed 
𝑓𝑓𝑟 = 𝑏𝑣 

𝑚𝑎 = 𝑚
𝑑𝑣

𝑑𝑡
= 𝑓 − 𝑏𝑣  

Direction 
of motion 

Force from 
engine (f) 

Normal 
force (n) 

Weight 
(mg) 

Friction 
force (ffr) 
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First-order differential equation 

• Solving for first-order 
differential equation 
(assuming 𝑓 is a constant) 

 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑓 − 𝑏𝑣 

 

yields the solution 

 

𝑣 = 𝑣𝑟 1 − 𝑒
−𝑡/𝜏  

 

 

Direction 
of motion 

Engine 
force (f) 

Friction 
force (ffr) 

Speed at 
regime
𝑣𝑟 = 𝑓/𝑏 Time 

constant 
𝜏 = 𝑚/𝑏 
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MATLAB implementation 
The linear differential equation describing the 
dynamics of the system 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑓 − 𝑏𝑣 

 
 
 
 
 
Using MATLAB’s Symbolic Math Toolbox 

 
>> dsolve('m*Dy=f-b*y','y(0)=0') 

ans = 

(f - f/exp((b*t)/m))/b 

 
 

 
 
 

Direction 
of motion 

Engine 
force (f) 

Friction 
force (ffr) 
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Results: 𝑣 = 𝑣𝑟 ∙ 1 − 𝑒−𝑡/𝜏  

𝑣𝑟 =
𝑓

𝑏
= 10
𝑚

𝑠
 

𝑣 τ = 63% ∙ 𝑣𝑟  

τ =
𝑚

𝑏
= 20 𝑠 

cru
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_tim
ed
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𝑚 = 1000 𝑘𝑔 
𝑏 = 50 𝑘𝑔 𝑠  
𝑓 = 500 𝑁 
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Block diagram: representing the 
physical system 

• To illustrate a cause-and-effect relationship 

• A single block represents a physical system 

• Blocks are connected by lines  

– Lines represent how signals flow in the system 

• In general, a physical system G has signal x(t) 
as input and signal y(t) as output  

• G is the transfer function of the system 

G 
x(t) y(t) 
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Car’s body 

Transfer function G represents the car’s body 

– G converts the force from the engine 𝑓 (input 
signal, 𝑁) to the car’s actual speed 𝑣 (output 
signal, 𝑚/𝑠) 

𝑣 = 𝐺 ∙ 𝑓 

with  G =
1

𝑏
(1 − 𝑒−

𝑏

𝑚
𝑡) 

– Units: 𝑠 𝑘𝑔  

 

 

G 
f(t) v(t) 
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Setting the desired speed 
• Second transfer function H (the controller) 

– Converts the desired speed (or reference) 𝑣𝑟  to a 
required force 𝑓 

– Sets the throttle 

– For simplicity, H is set to a constant 

𝑓 = 𝐻 ∙ 𝑣𝑟
𝑣 = 𝐺 ∙ 𝑓

 → 𝑣 = 𝐺 ∙ 𝐻 ∙ 𝑣𝑟   

– 𝐺 ∙ 𝐻 must be dimensionless 

  

  

  

 

G 
f v vr 

H 
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Plotting results 
• With 𝐻 = 𝑏 the actual speed 

is the reference:  𝑣 = 𝑣𝑟  

• Simulate: setting desired 
speed to 25 m/s (55 mph) 

Generated force 
by controller H 

Resulting speed v 

Desired speed vr 

cru
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Introducing a disturbance – a hill 

• In the presence of a hill the 
equation of motion needs 
to be re-visited 

• Assuming a small angle θ 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑓 − 𝑏𝑣 − 𝑚𝑔 ∙ θ  

 

 

 

Weight 
(mg) 

Direction 
of motion 

Force from 
engine (f) 

Friction 
force (ffr) 

θ 
Added term 
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Introducing a disturbance – a hill 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑓 − 𝑏𝑣 −𝑚𝑔 ∙ θ 

 

  

 
𝑣 = 𝐺 ∙ 𝑓 − 𝑚𝑔 ∙ θ  

 

 
Weight 
(mg) 

Direction 
of motion 

Force from 
engine (f) 

Friction 
force (ffr) 

ϑ 

Added term 

16 

Assuming 𝑓 and 𝜃 are constants 
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Modifying the block diagram 

G 
v f vr 

H 

𝑣 = 𝐺 ∙ 𝑓 

 

 
𝑣 = 𝐺 ∙ 𝑓 − 𝐾 ∙ 𝜃  

 

 

 

K 

θ 

+ - 

Summation junction 

𝐾 = 𝑚𝑔 
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Modifying the block diagram 

G 
v f vr 

H 

𝑣 = 𝐺 ∙ 𝑓 

 

 
𝑣 = 𝐺 ∙ 𝑓 − 𝐾 ∙ 𝜃  

 

 

 

K 

θ 

+ - 

Summation junction 
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𝐾 = 𝑚𝑔 
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Plotting results 

Setting desired speed to 25 
m/s and slope of 𝜃 = 5° 

 

Generated force 
by controller H 

Resulting speed v 

Desired speed 
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Negative Feedback 
1. Let’s measure the car’s speed and 

2. Correct for it by feeding back into the system 
a measure of the actual speed 𝑣 

G 
v f vr H 

K 

θ 

+ - 

c 

e 

Correction signal 

Error signal 

- 

+ 
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Negative Feedback 
1. Let’s measure the car’s speed and 

2. Correct for it by feeding back into the system 
a measure of the actual speed 𝑣 

G 
v f 

vr H 

K 

θ 

+ - 

c 

e 

Correction signal c: in this case it is 
just a measure of the actual speed 

Error signal e: the difference 
between the desired speed and 
the measured speed. If null, then 
𝒗 = 𝒗𝒓 

- 

+ 
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Negative feedback 

• Plot of force vs. time 
and speed vs. time with 
negative feedback 

• Setting 𝐻 = 103 𝑘𝑔/𝑠 

• Result: 

– Faster response with 
feedback (compare blue 
against red curves) 

– Speed at regime: 
23 𝑚/𝑠 (error of 
~10%) 
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Negative feedback 

• Increasing the 
controller’s gain (H) 

– decreases the rise time  

– while decreasing the 
steady state error 

• Setting 𝐻 = 104 𝑘𝑔/𝑠 

• Result: 

– Even faster response 

– Speed at regime: 
24.8 𝑚/𝑠 (error of 
~1%) 
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𝑒 = 𝑣𝑟 − 𝑐 
𝑣 = 𝐺 ∙ (𝑓 − 𝐾 ∙ 𝜃) 

G 
v f vr H 

K 

θ 

+ - e 

- 

+ 

c 

𝑐 = 𝑣 

𝑓 = 𝐻 ∙ 𝑒 

Signal flow and block diagrams 
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𝑒 = 𝑣𝑟 − 𝑐 

G 
v f vr H 

K 

θ 

+ - e 

- 

+ 

c 

= 𝑣𝑟 − 𝑣 

= 𝑣𝑟 − 𝐺 ∙ 𝑓 − 𝐾 ∙ 𝜃  

= 𝑣𝑟 − 𝐺 ∙ 𝐻 ∙ 𝑒 − 𝐾 ∙ 𝜃  

𝑒 =
1

1 + 𝐺 ∙ 𝐻
∙ 𝑣𝑟 +

𝐾 ∙ 𝐺

1 + 𝐺 ∙ 𝐻
∙ 𝜃 

System’s open 
loop gain 
(dimensionless) 
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G 
v f vr H 

K 

θ 

+ - e 

- 

+ 

c 

𝑒 =
1

1 + 𝐺 ∙ 𝐻
∙ 𝑣𝑟 +

𝐾 ∙ 𝐺

1 + 𝐺 ∙ 𝐻
∙ 𝜃 

𝐈𝐅 𝐺 ∙ 𝐻 ≫ 1 (high gain, 
closed loop, with feedback) 

𝑒 ≈ 0 ∙ 𝑣𝑟 +
𝐾 ∙ 𝐺

𝐺 ∙ 𝐻
∙ 𝜃 ≈
𝐾

𝐻
𝜃 

26 

𝐈𝐅 𝐺 ∙ 𝐻 ≪ 1(low 
gain, open loop, or no 
feedback) 
 
𝑒 ≈ 1 ∙ 𝑣𝑟 + 𝐾 ∙ 𝐺 ∙ 𝜃 

Error signal in closed loop: close to 
zero, proportional to angle 𝜃 

𝑒 =
𝐾

𝐻
 𝜃 

The higher the controller’s gain, the 
lower e 

Matone: An Overview of Control Theory and Digital Signal Processing (1) LIGO-G1100863 



𝑣 = 𝐺 ∙ 𝐻 ∙ 𝑒 − 𝐾 ∙ 𝐺 ∙ 𝜃 

G 
v f vr H 

K 

θ 

+ - e 

- 

+ 

c 

= 𝐺 ∙ 𝐻 ∙ (𝑣𝑟 − 𝑣) − 𝐾 ∙ G ∙ 𝜃 

= 𝐺 ∙ 𝐻 ∙ 𝑣𝑟 − 𝐺 ∙ 𝐻 ∙ 𝑣 − 𝐾 ∙ 𝐺 ∙ 𝜃 

𝑣 =
𝐺 ∙ 𝐻

1 + 𝐺 ∙ 𝐻
∙ 𝑣𝑟 − (

𝐾 ∙ 𝐺

1 + 𝐺 ∙ 𝐻
) ∙ 𝜃 

With no feedback 

27 

𝑣 = 𝐺 ∙ 𝐻 ∙ 𝑣𝑟 − 𝐾 ∙ 𝐺 ∙ 𝜃 
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G 
v f vr H 

K 

θ 

+ - e 

- 

+ 

c 

𝑣 =
𝐺 ∙ 𝐻

1 + 𝐺 ∙ 𝐻
𝑣𝑟 −

𝐾 ∙ 𝐺

1 + 𝐺 ∙ 𝐻
𝜃 

𝐈𝐅 𝐺 ∙ 𝐻 ≫ 1 (high gain, closed 
loop, with feedback) 

𝑣 ≈ 1 ∙ 𝑣𝑟 −
𝐾 ∙ 𝐺

𝐺 ∙ 𝐻
∙ 𝜃 ≈ 𝑣𝑟 −

𝐾

𝐻
𝜃 

28 

𝐈𝐅 𝐺 ∙ 𝐻 ≪ 1 (low gain, 
open loop or no 
feedback) 
𝑣 ≈ 𝐺 ∙ 𝐻 ∙ 𝑣𝑟 − 𝐾 ∙ 𝐺 ∙ 𝜃 

Actual speed 𝑣: close to 𝑣𝑟 with an error proportional 
to 𝜃 when in closed loop. The higher the controller’s 
gain, the lower the speed error. 
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𝑓 = 𝐻 ∙ 𝑒 

G 
v f vr H 

K 

θ 

+ - e 

- 

+ 

c 

= 𝐻 ∙ (
1

1 + 𝐺 ∙ 𝐻
𝑣𝑟 +

𝐾 ∙ 𝐺

1 + 𝐺 ∙ 𝐻
𝜃) 

𝑓 =
𝐻

1 + 𝐺 ∙ 𝐻
∙ 𝑣𝑟 +

𝐾 ∙ 𝐺 ∙ 𝐻

1 + 𝐺 ∙ 𝐻
∙ 𝜃 
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G 
v f vr H 

K 

θ 

+ - e 

- 

+ 

c 

𝑓 =
𝐻

1 + 𝐺 ∙ 𝐻
∙ 𝑣𝑟 +

𝐾 ∙ 𝐺 ∙ 𝐻

1 + 𝐺 ∙ 𝐻
∙ 𝜃 

𝐈𝐅 𝐺 ∙ 𝐻 ≫ 1 (high gain, 
closed loop, with feedback) 

𝑓 ≈
1

𝐺
𝑣𝑟 + 𝐾 ∙ 𝜃 

30 

𝐈𝐅 𝐺 ∙ 𝐻 ≪ 1 (low gain, 
open loop, or no feedback) 
𝑓 ≈ 𝐻 ∙ 𝑣𝑟 + 𝐾 ∙ 𝐺 ∙ 𝐻 ∙ 𝜃 

Force 𝑓: at regime, it does not 
depend on the gain in 𝐻 while 
proportional to angle 𝜃  
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Plotting 𝐺𝐻 and 𝐺𝐻 1 + 𝐺𝐻  

• Open loop 
𝑣 = 𝐺 ∙ 𝐻 ∙ 𝑣𝑟 

• Closed loop 

𝑣 =
𝐺 ∙ 𝐻

1 + 𝐺 ∙ 𝐻
∙ 𝑣𝑟 

• Setting 𝐻 = 103 𝑘𝑔/𝑠 

• Plotting the open loop 
transfer function vs. time 
and the closed loop 
transfer function vs. time 

• Notice the rapid rise time 
for the closed loop case 
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The error signal e 
• Plot of error signal e vs 

time 

• Error signal decreases 
to 3 m/s. 

• Notice a ~10% steady 
state error 
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Open and closed loop TF with 
 𝐻 = 104 𝑘𝑔/𝑠  
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Error signal e with 
 𝐻 = 104 𝑘𝑔/𝑠   
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Cruise control example 

• First-order differential 
equation 

• Simplest controller: 
simply a gain with no 
time constants involved 

• How to handle more 
complicated problems? 
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P1 x y P2 
P1P2 y x 

P1 x y 

P2 

± 

+ 

P1 ±P2 y x 

P1 
x y 

P2 

∓ 

+ 

𝑃1
1 ± 𝑃1𝑃2

 y x 

Block diagram reduction 
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Practice 

Determine the output C in terms of inputs U and R. 
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U 

C R 
𝐺1 

+ + 

- 

+ 
𝐺2 



Practice 
Determine the output 𝐶 in terms of inputs 
𝑈1, 𝑈2 and 𝑅. 
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U1 

C R 
𝐺1 + 

+ 

+ 

+ 
𝐺2 

U2 

𝐻1 
+ 

+ 
𝐻2 



More practice 

Determine C/R for the 
following systems. 

 

39 

(a) 

(b) (c) 
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R 
𝐺1 + 

+ 

+ 

+ 

𝐺2 

C 

𝐻1 

R 
𝐺1 + 

+ 

+ 

+ 

𝐺2 

C 

𝐻1 

R 
𝐺1 + 

+ 

+ 

+ 

𝐺2 

C 

𝐻1 



How do we MEASURE the OL TF of 
a system when the loop is closed? 

1. Add an injection point in a closed loop 
system 

2. Inject signal 𝑥 and read signal 𝑦1 (just before 
the injection) and 𝑦2 (right after the 
injection) 

3. Solve for the ratio 
𝑦1

𝑦2
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𝑥 

𝑦1 𝑦2 

+ 

+ 

LIGO-G1100863 



So far… 
• Control theory builds on differential equations 

• Block diagrams help visualize the signal flow in a 
physical system 

• The cause-and-effect relationship between 
variables is referred to as a transfer function (TF) 

• The system’s open-loop TF is the product of 
transfer functions 
– cruise control example: 𝐺 ∙ 𝐻 

– Two cases: 𝐺 ∙ 𝐻 ≪ 1 and 𝐺 ∙ 𝐻 ≫ 1 

• MATLAB implementation 
– Functions used: dsolve 
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Laplace Transforms 

• The technique of Laplace transform (and its 
inverse) facilitates the solution of ordinary 
differential equations (ODE). 

• Transformation from the time-domain to the 
frequency-domain. 

• Functions are complex, often described in 
terms of magnitude and phase 
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Linear systems 
• To map a model to frequency space 

– System must be linear 

– Output proportional to input 

• Given system P 

– Input signals: 𝑥1 and 𝑥2 

– Output signals (response): 𝑦1 and 𝑦2 

• System P is linear 

– If input signal: 𝑎 𝑥1 + 𝑏 𝑥2 

– Then output signal: 𝑎 𝑦1 + 𝑏 𝑦2 

– Superposition principle 

P 
x y 
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Example 

• Is 𝑦 =
𝑑𝑥

𝑑𝑡
  a linear system? 

Knowing that 𝑦1 =
𝑑𝑥1

𝑑𝑡
 and 𝑦2 =

𝑑𝑥2

𝑑𝑡
 

If input is 𝑐1𝑥1 + 𝑐2𝑥2, output is 
𝑑

𝑑𝑡
𝑐1𝑥1 + 𝑐2𝑥2 = 

𝑐1
𝑑

𝑑𝑡
𝑥1 + 𝑐2

𝑑

𝑑𝑡
𝑥2 = 

𝑐1  𝑦1+ 𝑐2 𝑦2 

System is linear 
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Example 

• Is 𝑦 = 𝑥2  a linear system? 

Knowing that 𝑦1 = 𝑥1
2 and𝑦2 = 𝑥2

2 

If input is 𝑐1𝑥1 + 𝑐2𝑥2, output is 
𝑐1𝑥1 + 𝑐2𝑥2

2 ≠ 𝑐1  𝑦1+ 𝑐2 𝑦2 

System is not linear  
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In general 

𝑎𝑛
𝑑𝑛𝑦

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
+⋯+ 𝑎0𝑦

= 𝑏𝑚
𝑑𝑚𝑥

𝑑𝑡𝑚
+ 𝑏𝑚−1

𝑑𝑚−1𝑥

𝑑𝑡𝑚−1
+⋯+ 𝑏0𝑥 

 

 𝑎𝑖𝐷
𝑖𝑦 𝑡 = 𝑏𝑖𝐷

𝑖𝑥 𝑡

𝑚

𝑖=0

𝑛

𝑖=0

            𝑛 ≥ 𝑚 

Output 

Input 
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For a stable system 
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Laplace Transform L 

• Transforms a linear differential equation into an 
algebraic equation 

• Tool in solving differential equations 

• Laplace transform of function f 
𝐹 𝑠 = L 𝑓(𝑡)  

• Laplace inverse transform of function F 

𝑓(𝑡)  = L−1 𝐹(𝑠)  

 where 𝑠 = 𝑗𝜔 is the transform variable 

Imaginary unit 2𝜋𝑓 
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Time domain ↔ Laplace domain 

𝑓 =
𝑑𝑦
𝑑𝑡
  

y(𝑡) f(𝑡) 

𝐺(𝑠) 
𝑌(𝑠) F(𝑠) 

In
p

u
t 

O
u

tp
u

t 
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Laplace Transform L 

 

𝐹 𝑠 = L 𝑓(𝑡) =  𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

 

 

 

𝑓 𝑡 = L−1 𝐹(𝑠) =
1

2𝜋𝑗
 𝐹(𝑠)𝑒𝑠𝑡𝑑𝑠
+𝑗𝜔

−𝑗𝜔
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(Some) Laplace transform pairs 

𝒇(𝒕) 𝑭(𝒔) 

Unit step 𝑢(𝑡) 1
𝑠  

Unit ramp 𝑡 1
𝑠2 

 

Exponential 𝑒𝑎𝑡 1
𝑠 − 𝑎  

Sinusoid sin (𝜔0𝑡) 
𝜔
𝑠2 + 𝜔0

2  

1/𝑎 1 − 𝑒−𝑎𝑡  1
𝑠 𝑠 + 𝑎  

SHO 𝜔0

1 − 𝛿2
 𝑒−𝛿𝜔0𝑡 × 

      × sin( 1 − 𝛿2 𝜔0𝑡) 

𝜔0
2

𝑠2 + 2𝛿𝜔0 𝑠 + 𝜔0
2
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Laplace transform properties 

• Linearity 
L 𝑐1𝑓1 𝑡 + 𝑐2𝑓2 𝑡 = 𝑐1𝐹1 𝑠 + 𝑐2𝐹2 𝑠  

• Derivatives 

– First-order: L
𝑑𝑓(𝑡)

𝑑𝑡
= 𝑠𝐹(𝑠) 

– Second-order: L
𝑑2𝑓(𝑡)

𝑑𝑡2
= 𝑠2𝐹(𝑠) 

• Integral 

L  𝑓 𝑡 𝑑𝑡
𝑡

0

=
1

𝑠
𝐹(𝑠) 
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Solution to ODEs 

1. Laplace transform the system’s ODE 

2. Solve the algebraic equation in s 

3. Inverse transform back to the time domain 
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Transfer Function 𝐺 𝑠  

 𝑎𝑖𝐷
𝑖𝑦 𝑡 = 𝑏𝑖𝐷

𝑖𝑥 𝑡

𝑚

𝑖=0

𝑛

𝑖=0

 

 𝑎𝑖𝑠
𝑖𝑌 𝑠 = 𝑏𝑖𝑠

𝑖𝑋 𝑠

𝑚

𝑖=0

𝑛

𝑖=0

  

𝐺 𝑠 =
𝑌(𝑠)

𝑋(𝑠)
=
 𝑏𝑖𝑠

𝑖𝑚
𝑖=0

 𝑎𝑖𝑠
𝑖𝑛

𝑖=0
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Using 
derivative 
property 

Algebraic equation 
in s, the ratio of 2 
polynomials in s 

Transfer function 𝐺 𝑠  relates input 𝑋 𝑠  to output 𝑌 𝑠 . 
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Transfer Function 𝐺 𝑠  

𝐺 𝑠 =
𝑌(𝑠)

𝑋(𝑠)
=
 𝑏𝑖𝑠

𝑖𝑚
𝑖=0

 𝑎𝑖𝑠
𝑖𝑛

𝑖=0
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The roots of the numerator are referred to as zeros. 

The roots of the denominator are referred to as poles. 

Transfer function 𝐺 𝑠  can 
be defined by 
• The coefficients of s or 
• Its poles and zeros 
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Let’s apply it to the cruise control example: 
transfer function 𝐺 (the car’s body) 

𝑚
𝑑𝑣(𝑡)

𝑑𝑡
= 𝑓(𝑡) − 𝑏𝑣(𝑡) 

 

 
𝑚 𝑠 𝑉 𝑠 = 𝐹 𝑠 − 𝑏 𝑉(𝑠) 

 

 

 
𝑉 𝑠 = 𝐺 𝑠  𝐹 𝑠   

where 𝐺 𝑠 =
1 𝑚 

𝑠 + 𝑏/𝑚
 

Direction 
of motion 

Engine 
force (f) 

Friction 
force (ffr) 

G(t) 
f(t) v(t) 

G(s) 
F(s) V(s) 
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Pole at −𝑏 𝑚  
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Dynamic response: using lookup 
tables to inverse transform 

Laplace inverse 
transform using 
lookup tables 

1

𝑠 𝑠 + 𝑎
 

 

 

 

 
1

𝑎
1 − 𝑒−𝑎𝑡  

Input: step function, amplitude 𝐹0 
𝑓 𝑡 = 𝐹0 𝑢(𝑡) 

𝐹 𝑠 = L 𝑓(𝑡) =
𝐹0
𝑠  

 

The response (in frequency space) is 

𝑉 𝑠 = 𝐺 𝑠 ∙ 𝐹 𝑠 =
1/𝑚

𝑠 + 𝑏/𝑚
∙
𝐹0
𝑠

 

The time-domain response is 

𝑣 𝑡 = L−1 𝑉(𝑠) =

= L−1
𝐹0
𝑚
∙

1

𝑠 (𝑠 + 𝑏 𝑚 )
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Dynamic response: using lookup 
tables to inverse transform 

Laplace inverse 
transform using 
lookup tables 

1

𝑠 𝑠 + 𝑎
 

 

 

 

 
1

𝑎
1 − 𝑒−𝑎𝑡  

𝑣 𝑡 = L−1
𝐹0
𝑚
∙

1

𝑠 (𝑠 + 𝑏 𝑚 )

=
𝐹0
𝑚
∙ L−1

1

𝑠 (𝑠 + 𝑏 𝑚 )
 

 

 

 

𝑣 𝑡 =
𝐹0
𝑏
 1 − 𝑒−

𝑏
𝑚𝑡  
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Pole 𝑎 =
1

𝜏
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First-order system step response 

𝐺 𝑠 =
𝑝

𝑠 + 𝑝
 63 % 

Pole p 

fi
rs

to
rd

e
r.m
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𝑝 = 5 𝑟𝑎𝑑/𝑠, 𝜏 = 0.2 𝑠  
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MATLAB implementation 

The step response of transfer function  

𝐺 𝑠 =
5

𝑠 + 5
 

 
>> G=tf(5, [1 5]); 

>> step(G); 
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Partial fraction expansion 
1. Reduce a complex function to a collection of 

simpler ones 

2. Then use lookup table 

𝐹 𝑠 =
𝑄(𝑠)

𝑃(𝑠)
= 

𝛼𝑖
𝑠 + 𝑎𝑖

𝑖

 

𝑓 𝑡 = L−1
𝛼1
𝑠 + 𝑎1

+⋯+ L−1
𝛼𝑛
𝑠 + 𝑎𝑛

= 𝛼1 𝑒
−𝑎1𝑡 +⋯+ 𝛼𝑛 𝑒

−𝑎𝑛𝑡 

𝑓 𝑡 = 𝛼𝑖  𝑒
−𝑎𝑖𝑡

𝑛

𝑖=0

 

Order m 

Order n 

𝑚 ≤ 𝑛 
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Comments 

𝐹 𝑠 = 
𝛼𝑖
𝑠 + 𝑎𝑖

𝑖

                   𝑓 𝑡 = 𝛼𝑖  𝑒
−𝑎𝑖𝑡

𝑛

𝑖=0

 

1. Poles of F(s) determine the time evolution of 
f(t) 

2. Zeros of F(s) affect coefficients 

3. Poles closer to origin → larger time constants 
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Example 
Find 𝑓(𝑡) of the Laplace transform 

𝐹 𝑠 =
6𝑠2 − 12

𝑠3 + 𝑠2 − 4𝑠 − 4
 

Sol: Using MATLAB 
 
>> [R,P,K]=residue([6 0 -12],[1 1 -4 -4]) 

R = 

    3.0000 

    1.0000 

    2.0000 

P = 

   -2.0000 

    2.0000 

   -1.0000 

K = 

     [] 

62 

𝐹 𝑠 =
3

𝑠 + 2
+
1

𝑠 − 2
+
2

𝑠 + 1
 

𝑓 𝑡 = 3 𝑒−2𝑡 + 𝑒2𝑡 + 2 𝑒−𝑡 
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Example: LRC circuit 

𝑣𝑖𝑛(𝑡) 𝑣𝑜𝑢𝑡(𝑡) 

𝐿 𝑅 

𝐶 

𝑣𝑖𝑛 𝑡 = 𝑣𝐿 𝑡 + 𝑣𝑅 𝑡 + 𝑣𝐶 𝑡  

= 𝐿
𝑑

𝑑𝑡
𝑖(𝑡) + 𝑅 𝑖(𝑡)  +

1

𝐶
 𝑖 𝜏 𝑑𝜏

𝑡

0

 

= 𝐿 𝐷 𝑖 𝑡 + 𝑅 𝑖 𝑡 +
1

𝐶

1

𝐷
𝑖(𝑡) 
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Example: LRC circuit 

𝑣𝑖𝑛(𝑡) 𝑣𝑜𝑢𝑡(𝑡) 

𝐿 𝑅 

𝐶 

𝑣𝑖𝑛(𝑡) = 𝐿 𝐷 𝑖 𝑡 + 𝑅 𝑖 𝑡 +
1

𝐶

1

𝐷
𝑖(𝑡) 

𝑖 𝑡 = 𝐶
𝑑 

𝑑𝑡
𝑣𝑜𝑢𝑡 𝑡 = 𝐶 𝐷 𝑣𝑜𝑢𝑡 𝑡  

𝑣𝑖𝑛 𝑡 = 𝐿 𝐶 𝐷
2 + 𝑅 𝐶 𝐷 + 1  𝑣𝑜𝑢𝑡(𝑡) 

64 Matone: An Overview of Control Theory and Digital Signal Processing (1) LIGO-G1100863 



Example: LRC circuit 

𝑣𝑖𝑛(𝑡) 𝑣𝑜𝑢𝑡(𝑡) 

𝐿 𝑅 

𝐶 

𝑣𝑖𝑛 𝑡 = 𝐿 𝐶 𝐷
2 + 𝑅 𝐶 𝐷 + 1  𝑣𝑜𝑢𝑡(𝑡) 

𝑉𝑖𝑛 𝑠 = 𝐿 𝐶 𝑠
2 + 𝑅 𝐶 𝑠 + 1  𝑉𝑜𝑢𝑡(𝑠) 

L 
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LRC circuit: transfer function 

𝑉𝑜𝑢𝑡 𝑠 =
1

𝐿 𝐶 𝑠2 + 𝑅 𝐶 𝑠 + 1
∙ 𝑉𝑖𝑛 𝑠  

 

Setting L = 1 H, C = 1 F and R = 1 Ω 

 

𝑉𝑜𝑢𝑡 𝑠 =
1

𝑠2 +  𝑠 + 1
∙ 𝑉𝑖𝑛 𝑠  
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LRC circuit: dynamic response to step 

Setting the input to a step of amplitude 1 V 

𝑉𝑖𝑛 𝑠 =
1

𝑠
 

The unit step response is 

𝑉𝑜𝑢𝑡 𝑠 =
1

𝑠2 + 𝑠 + 1
∙
1

𝑠
=

1

𝑠3 + 𝑠2 + 𝑠
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LRC circuit: dynamic 
response to step 

𝑉𝑜𝑢𝑡(𝑠) =
1

𝑠3 + 𝑠2 + 𝑠
= 

𝛼𝑖
𝑠 + 𝑎𝑖

𝑖

 

Using MATLAB for the solution 

 
>> n = [1]; 

>> d = [1 1 1 0]; 

>> [α, a, k] = residue(n, d); 

 

𝑣𝑜𝑢𝑡 𝑡 = 𝛼1 𝑒
𝑎1𝑡 + 𝛼2 𝑒

𝑎2𝑡 + 𝛼3 𝑒
𝑎3𝑡 

Coefficient vector for 
polynomial at numerator 

Coefficient vector for 
polynomial at denominator 
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Plotting results of two methods 

>> y=α.'*exp(a*t); 
>> plot(t, y, 'bo'); 

>> y2=step(1,[1 1 1],t); 

>> plot(t, y2, ‘r.’); 
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Second-order system step 
response 

Overshoot 

Period of 
oscillation 

Settling time: time to 
settle to ±5% of final 
value (determined by 

the 𝑒−𝛿𝜔𝑡 term) 

se
co

n
d

o
rd

e
r.m
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Note: often the 
response of a high-
order system is 
similar to the 
second-order one 
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Verify the following 

𝐹 𝑠 =
6𝑠2 − 12

𝑠3 + 𝑠2 − 4𝑠 − 4
 

𝑓 𝑡 = 2𝑒−𝑡 + 3𝑒−2𝑡 + 𝑒2𝑡 

 

𝐹 𝑠 =
6𝑠

𝑠3 + 𝑠2 − 4𝑠 − 4
 

𝑓 𝑡 = 3𝑒−𝑡 − 6𝑒−2𝑡 + 3𝑒−3𝑡 

 

𝐹 𝑠 =
𝑠 + 5

𝑠2 + 4𝑠 + 13
 

𝑓 𝑡 = 2𝑒−𝑡 − 3𝑒−2𝑡 + 𝑒2𝑡 
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Back to cruise control: system’s 
step response 

𝑉(𝑠) =
𝐺 ∙ 𝐻

1 + 𝐺 ∙ 𝐻
∙ 𝑉𝑟(𝑠)   

where 𝐺 𝑠 =
1 𝑚 

𝑠 + 𝑏/𝑚
 and 𝐻 𝑠 = 𝐾𝑔𝑎𝑖𝑛 

 

 
G 

v f vr H 

K 

θ 

+ - 

c 

e 

- 
+ 
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Step response 

𝑉 𝑠 =
𝐺 ∙ 𝐻

1 + 𝐺 ∙ 𝐻
∙
1

𝑠
=

𝐾𝑔𝑎𝑖𝑛
𝑚 

𝑠2 +
(𝑏 + 𝐾𝑔𝑎𝑖𝑛)
𝑚

𝑠

 

 

 

𝑣 𝑡 =
𝐾𝑔𝑎𝑖𝑛

𝐾𝑔𝑎𝑖𝑛 +𝑚
 1 − 𝑒−𝑡/𝜏  with τ =

𝑚

𝑏 + 𝐾𝑔𝑎𝑖𝑛
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Back to cruise control 

>> n = [k/m]; 

>> d = [1 (b+k)/m 0]; 

>> [α, a, k] = residue(n, d); 
>> y=α.'*exp(a*t); 
>> plot(t, y, 'bo'); 
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Back to cruise control 

>> G  = tf([1/m],[1 b/m]); 

>> H  = k; 

>> CL = G * H / (1 + G * H); 

>> [y, t] = step(CL); 

>> plot(t, y, 'b.'); 
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Transfer function, poles and zeros 
• It is convenient to express a transfer function 

G(s) in terms of its poles and zeros: 

 

𝐺 𝑠 =
𝑄(𝑠)

𝑃(𝑠)

= 𝑘 ∙
𝑠 − 𝑧1 ∙ 𝑠 − 𝑧2 … 𝑠 − 𝑧𝑚
𝑠 − 𝑝1 ∙ 𝑠 − 𝑝2 … 𝑠 − 𝑝𝑛

 

 

• k is the gain of the transfer function 
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Summary of pole characteristics 
• Real distinct poles (often negative) 

𝑐𝑖
𝑠 − 𝑝𝑖

     ↔      𝑐𝑖 𝑒
𝑝𝑖𝑡 

• Real poles, repeated m times (often negative) 

 
𝑐𝑖,1
𝑠 − 𝑝𝑖,1

+
𝑐𝑖,2

𝑠 − 𝑝𝑖,2
2 +⋯+

𝑐𝑖,3

𝑠 − 𝑝𝑖,3
3 +

𝑐𝑖,𝑚

𝑠 − 𝑝𝑖,𝑚
𝑚  

↕ 

𝑐𝑖,1 + 𝑐𝑖,2𝑡 +
1

2!
𝑐𝑖,3𝑡
2 +⋯+

𝑐𝑖,𝑚
𝑚− 1 !

𝑡𝑚−1 ∙ 𝑒𝑝𝑖𝑡 
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Summary of pole characteristics 
• Complex-conjugate poles 
𝑐𝑖
𝑠 − 𝑝𝑖
 +
𝑐𝑖
∗

𝑠 − 𝑝𝑖
∗
      ↔      𝑐𝑖 𝑒

𝑝𝑖𝑡 + 𝑐𝑖
∗𝑒 𝑝𝑖

∗𝑡 

   often re-written as a second-order term 
𝜔2

𝑠2 + 2𝛿𝜔 𝑠 + 𝜔2
  ↔   ~ 𝑒𝛼𝑡 ∙ sin 𝛽𝑡 + 𝜑  

• Poles on imaginary axis 

– Sinusoid 

– Pole at zero: step function 

• Poles with a positive real part 

– Unstable time-domain solution 
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Summary 
• The Laplace transform is a tool to facilitate solving for ODEs. 
• Systems need to be linear 
• No need to do the transform (integral) 

– Use transform pairs, transform tables 
– Laplace transform properties: linearity, derivatives and integrals. 

• Once in the Laplace domain, a TF is simply the ratio of two polynomials 
in s. Carry out algebra to solve the problem. 

• No need to do the inverse transform 
– Use transform pairs, transform tables 
– For high-order TFs, use the partial-fraction expansion to reduce the 

problem to simpler parts 

• IMPORTANT: 
– Poles of a transfer function determine the time evolution of the system 
– Poles with a real positive part correspond to unstable and unphysical 

systems 
– The system TF needs to have poles with a negative real part 

• MATLAB implementation 
– Functions used: step, residue, tf 
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Solutions 
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Practice 

Determine the output C in terms of inputs U and R. 

Sol:  

𝐶 =
𝐺2

1 + 𝐺1𝐺2
∙ 𝐺1 𝑅 + 𝑈  

  

 

81 Matone: An Overview of Control Theory and Digital Signal Processing (1) LIGO-G1100863 

U 

C R 
𝐺1 

+ + 

- 

+ 
𝐺2 



Practice 
Determine the output 𝐶 in terms of inputs 𝑈1, 𝑈2 
and 𝑅. 

Sol: 

𝐶 =
1

1 − 𝐺1𝐺2𝐻1𝐻2
∙ 𝐺1 𝐺2 𝑅 + 𝐺2𝑈1 + 𝐺1𝐺2𝐻1𝑈2  
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U1 

C R 
𝐺1 + 

+ 

+ 

+ 
𝐺2 

U2 

𝐻1 
+ 

+ 
𝐻2 



More practice 
Determine C/R for the following 
systems. Sol: 

a)
𝐶

𝑅
=

𝐺1+𝐺2

1−𝐺1𝐻1−𝐺2𝐻2
 

b)
𝐶

𝑅
=
𝐺1+𝐺2

1−𝐺1𝐻1
 

c)
𝐶

𝑅
=
𝐺1+𝐺2 1−𝐺1𝐻1

1−𝐺1𝐻1
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(a) 

(b) (c) 
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R 
𝐺1 + 

+ 

+ 

+ 

𝐺2 

C 

𝐻1 

R 
𝐺1 + 

+ 

+ 

+ 

𝐺2 

C 

𝐻1 

R 
𝐺1 + 

+ 

+ 

+ 

𝐺2 

C 

𝐻1 



How do we MEASURE the OL TF of 
a system when the loop is closed? 

1. Add an injection point in a closed loop 
system 

2. Inject signal 𝑥 and read signal 𝑦1 (just before 
the injection) and 𝑦2 (right after the 
injection) 

3. Solve for the ratio 
𝑦1

𝑦2
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𝑥 

𝑦1 𝑦2 
Sol:  

𝑦1

𝑦2
= −𝐺𝑂𝐿 

+ 

+ 
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Partial-fraction examples 

• Denominator: has distinct, real roots 

– Example 2.4, 2.5, 2.6 

• Denominator: complex roots 

– Example 2.7, 2.8 

• Denominator: repeated roots 

– Example 2.9 
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Practice: verify the following 

𝐹 𝑠 =
6

(𝑠 + 1)(𝑠 + 2)(𝑠 + 3)
 

𝑓 𝑡 = 3𝑒−𝑡 − 6𝑒−2𝑡 + 3𝑒−3𝑡 

 

𝐹 𝑠 =
𝑠 + 5

𝑠2 + 4𝑠 + 13
 

𝑓 𝑡 = 2𝑒−2𝑡 sin(3𝑡 +
𝜋

4
) 

 

𝐹 𝑠 =
2

𝑠 + 1 3 𝑠 + 2
 

𝑓 𝑡 = 2 1 − 𝑡 +
𝑡2

2
𝑒−𝑡 − 𝑒−2𝑡  
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