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•
 

This presentation is based on my recently submitted thesis:-

–

 

S. Aston. “Optical Read-out Techniques for the Control of Test-masses in 
Gravitational Wave Observatories”. January 2011

–

 

Available (once the official embargo has lifted on 19th July 2011) via the 
following address http://etheses.bham.ac.uk/1665/

•
 

Focusing on two core chapters:-

–

 

Advanced LIGO UK work carried out during 2003-2011, in developing the

BOSEM = Birmingham Optical Sensor and Electro-Magnet actuator

–

 

STFC funded research carried out from 2001-present, in developing the

EUCLID = Easy to Use Compact Laser Interferometric Device

Introduction

http://etheses.bham.ac.uk/1665/
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Part 1

•

 

Introduction

•

 

Primary Motivation
–

 

LISA Drag-free Control
–

 

Advanced LIGO Suspensions

•

 

Geometric Sensor Development (BOSEM)
–

 

Requirements
–

 

Imaging Sensor Design & Characterisation
–

 

Shadow Sensor Design & Characterisation
–

 

BOSEM Mechanical Design & Fabrication
–

 

BOSEM Characterisation
–

 

Excess Noise Investigation
•

 

Hunting for the Source
•

 

Identification of Alternative IRLED
•

 

Screening & Retrofitting Proposals
–

 

Final BOSEM Characterisation Results

Overview

Part 2

•

 

Interferometric Sensor Development 
(EUCLID)

–

 

Prototype Design
–

 

Fringe Interpolation
–

 

Final Design
–

 

Optical Modelling
–

 

Laser Selection Criteria
–

 

Fabrication
–

 

Misalignment Measurements
–

 

Noise Characterisation

•

 

Conclusions
–

 

Sensor Performance Comparison
–

 

Lessons Learned & Future Development  

•
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103 – 10 M @ z = 0.2

104 – 104 M @ z = 7

Motivation - LISA Drag-free Control

•
 

Goal is to improve LISA’s
 

low frequency sensitivity to enable the study of 
massive binary black hole coalescences [1]

[1] S. A. Hughes and D. E. Holz. Cosmology with coalescing massive black holes. Classical and Quantum Gravity, 20, S65-S72. 2003.
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Motivation - Advanced LIGO Suspensions [1]

Top Mass = 12

6 BOSEMs
 

Main Chain

6 BOSEMs
 

Reaction Chain

Upper Intermediate Mass = 4

4 BOSEMs
 

Reaction Chain

Penultimate Mass = 4

4 AOSEMs
 

Reaction Chain

Blades

•
 

Two stages of steel blades 
for enhanced vertical 
isolation

•
 

Local control for damping of 
all low frequency pendulum 
modes by 6 co-located 
OSEMs at top mass

•
 

Global control OSEMs at 
upper intermediate and 
penultimate mass

•
 

Electro-Static Drive (ESD) 
actuator at optic using 
adjacent “identical”

 
reaction 

pendulum as reference

Total = 20 OSEMS + 20% 
spares policy = 24

12 Quads in total ⇒ 288 units

Quad Suspension 
OSEM Counts

[1] N. A. Robertson et al. Quadruple suspension design for Advanced LIGO. Classical and Quantum Gravity, 19, 4043–4058. 2002.

Optic (ESD)
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Initial Sensor Requirements

•
 

Initial Sensor Requirements [1]:-
–

 

Assuming a minimal amount of passive eddy-current damping

•
 

Proceeded to identify and evaluate suitable sensor schemes, starting off with a 
clean-slate to meet these reasonably challenging requirements

•
 

Considered PSDs
 

and optical lever schemes, but believed the geometric 
sensor scheme to be most suitable

Specification Frequency Band 
 1 Hz to 10 Hz 10 Hz to 20 Hz 

Worst Case Noise ≈ 2×10-11  m Hz-1/2 ≈ 2×10-11 m Hz-1/2

   
Specification Displacement (peak-peak) 

 Minimum Target 
Operating Range 3.00 mm 3.00 mm 

   
 

[1] K. Strain. Advanced LIGO suspensions general interpretation of requirements for sensors - for use as an initial planning aid by the UK project team      
v1.01. ALUKGLA0005aJUN03. 2003.
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Imaging Sensor Design

Split 
Photodiode

Collimating Lens Cylindrical Plano-Convex 
Lens

Light Source

δyx

y

z

l

w
y

z

x

Photodiode Active 
Area

Dead band

Image

•

 

Simple design, where a 
collimated beam is imaged / 
focused along one axis onto a 
split photodiode

•

 

The object to be tracked is 
attached to the cylindrical lens 

•

 

All the light emitted is captured 
by the detector

•

 

Insensitive to displacement in the 
x and z axes, or rotation about z 
axis 

•

 

Shot-noise limited sensitivity 
obtained analytically for this 
configuration of ~1×10-11

 

m Hz-1/2 

which was encouraging!

Imaging Sensor Optical Configuration

Photodiode Active Element Nomenclature
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Imaging Sensor Prototype

•

 

Shot-noise limited sensitivity 
leads to an admissible technical 
noise of ~3.3 pA

 

Hz-1/2

•

 

Attainable by careful component 
selection, op-amps, feedback 
resistor, and ensuring Johnson 
noise does not dominate 

•

 

Opto

 

Diode Corp (OD-50L) 
IRLED was selected with typical 
output power of 50 mW

 

at          
500 mA

 

(880 nm peak emission)

•

 

UDT (SPOT-9D) photodiode is 
employed as the split detector 
with maximum rated incident 
power density of 100 W m-2

•

 

Measured responsivity of        
~4.5 kV m-1

 

over a 3 mm (peak-

 
peak) linear operating range

Translation
(±

 

x)

Photodiode

IRLED
OD-50L

Cylindrical 
Lens

Translation
(±

 

y)

Rotation
(θz

 

)

10 mm 41 mm

Imaging Sensor Bench-top Prototype

Imaging Sensor Responsivity
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Imaging Sensor Noise Characterisation

•

 

Sensitivity measured for both modulated 
(lock-in) and un-modulated schemes

•

 

Comparable high frequency performance 
above 25 Hz, significant divergence at 
frequencies below 25 Hz

•

 

Modulated scheme reaches the shot-

 
noise limited performance at around 2 Hz, 
but this scheme was not permitted for 
aLIGO

•

 

A problem was uncovered for all off-null 
measurements, the noise floor 
deteriorates significantly as you move 
away from the null position

•

 

Consistent with measurements taken by 
collaborator (N. Lockerbie), common 
IRLED suspected to be the cause

•

 

Pursued no further, requirements refined
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Final Sensor Requirements

•
 

Initial Sensor Requirements [1]:-
–

 

Assuming a minimal amount of passive eddy-current damping

•
 

Final Sensor Requirements [2] agreed 12 months later:-
–

 

Assuming a moderate amount of passive eddy-current damping

Specification Frequency Band 
 1 Hz to 10 Hz 10 Hz to 20 Hz 

Worst Case Noise ≈ 2×10-11  m Hz-1/2 ≈ 2×10-11 m Hz-1/2

   
Specification Displacement (peak-peak) 

 Minimum Target 
Operating Range 3.00 mm 3.00 mm 

   
 

Specification Frequency Band 
 1 Hz to 10 Hz 10 Hz to 20 Hz

Worst Case Noise 3×10-10 m/√Hz 1×10-10 m/√Hz 
   

Specification Displacement (peak-peak) 
 Minimum Target 

Operating Range 0.35 mm 0.70 mm 
   

 [1] K. Strain. Advanced LIGO suspensions general interpretation of requirements for sensors - for use as an initial planning aid by the UK project team      
v1.01. ALUKGLA0005aJUN03. 2003.

[2] K. Strain. Input to the OSEM selection review decision. LIGO-T040110-01-K. 2004.
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Shadow Sensor Design

•

 

Initial LIGO shadow sensor employs 
surface mount components with 
integral lenses with a single element 
photodiode

•

 

Linear operating range of 0.7 mm 
(peak-peak)

•

 

A shot-noise limited sensitivity for this 
configuration of ~7×10-11

 

mHz-1/2

•

 

Final design proposed courtesy of 
collaborator (N. Lockerbie [1]) sensor 
components identified via sensor 
study

Centronic

 

Photodiode 
(BPX65)

Integral 
Lens

OPTEK 
IRLED

(OP232)

x

y

z
δy

Collimating 
Lens

Mask (slit 1.4 ×

 

4.5 mm)

Cylindrical flag (∅3 mm)

Initial LIGO Sensor Configuration

Final BOSEM Sensor Configuration

Photodiode  
(Honeywell 
SMD2420)

Integral Lens

IRLED
(Honeywell 
SME2470)

δy
x

y

z

Integral Lens

Cylindrical flag (∅2 mm)

OP232 IRLED BPX65 Photodiode

[1] N. Lockerbie. Measurement of shadow-sensor displacement sensitivities. LIGO-T040136-00-K. 2004.
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Shadow Sensor & Actuator Implementation

•
 

Key sensor and actuator 
components (highlighted)

•
 

Significant changes from 
Initial LIGO OSEMs

–

 

Stronger actuator force 
50mN -> 500mN

•

 

Higher coil current
•

 

More coil windings
•

 

Larger magnets

–

 

Standard leaded device packages 
(i.e. not surface mount)

–

 

No epoxies or Ceramabond

 

used 
in assembly process

–

 

Commercial-of-the-shelf 
connectors (sub-D to μ-D)

–

 

Custom flexi-circuit for 
interconnections 

Magnet

Coil Winding

Flag

Photodiode

Mask

Lens

IRLED

BOSEM Sensor and Actuator Assembly
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BOSEM Mechanical Design

Mounting locations
(×4)

Coil-

 

former

Adjustment fixings (x2)

Coil-former clamp
Electrical 
interconnect

Sensor 
carriers

Mask
(1.4×4.5 mm)

Pin-hole 
locator

IRLED PEEK 
retainer

IRLED 
(OP232)

IRLED ceramic sleeve

IRLED phosphor bronze 
lens retainer

IRLED lens (∅

 

6.3 
mm) 

Machined flat

BOSEM Assembly (Left) Rear isometric view. (Right) Front isometric view

Sensor IRLED Carrier Sub-Assembly Section View Sensor Photodiode Carrier Sub-Assembly Section View

Pin-hole 
locator Photodiode 

ceramic sleeve

Photodiode 
(BPX65)

Photodiode PEEK 
retainer

Machined flat

•
 

Initial LIGO OSEM design issues 
to overcome:-

–

 

Tricky assembly
–

 

High failure rate
–

 

Non-intuitive alignment and 
adjustment

•
 

BOSEM Design Specification [1]:-
–

 

Overall dimensions 62x45x66 mm
–

 

Mass 170 g
–

 

Adjustment range ~11 mm

[1] S. Aston. BOSEM Design Document and Test Report. LIGO-T050111-04-K. 2009.
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Evolution of OSEMs

Advanced LIGO
Controls Prototype (Hybrid OSEM)

Initial LIGO
(OSEM)

Advanced LIGO
Noise Prototype & 

Production article (BOSEM)

1st Generation 
Observatories

2nd Generation Observatories
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BOSEM Fabrication Summary

Pre-assembly bake out & RGA scan Dedicated clean-room assembly facility Assembled BOSEMS at testing station

•
 

88 NPOSEMs
 

completed in total
–

 

32 units (D060218-A) shipped in December 2007
–

 

56 units (D060218-B) shipped in January 2009
•

 
700 production BOSEMs

 
(D060218-C) completed in total by September 2009 

–

 

16 units sent to ANU (including 8 for tip-tilt suspensions and 8 PEEK prototypes)

•
 

All units tested using in-house Automated Test Equipment (ATE) [1]

•
 

Full capacity at Birmingham clean-room facilities ~100 units/month
•

 
Shipped in batches UHV-clean to Caltech on an agreed schedule

[1] S. Aston. BOSEM Test Specification. LIGO-T070107-06-K. 2011.
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•
 

Prior to shipping the assembled and tested units a request was received to 
provide noise measurements for every

 
channel / unit

–

 

Noise performance is not

 

measured by our ATE
–

 

Intensive process, not a straightforward activity to undertake in a clean-room 
–

 

Agreed to test a small random sample of 10 units

•
 

For full noise characterisation the aim is to conduct a realistic end-to-end test
–

 

Use a Satellite Box (developed by D. Hoyland, R. Culter

 

and J. Heefner) which 
incorporates:-

•

 

Stable 35mA supply (1 of 4 channels used)
•

 

Low-noise photodiode amplifier front-end (1 of 4 channels used)
–

 

BOSEM + Flag mounted on linear translation stage and damped optical bench

BOSEM End-to-End Testing 

UoB Satellite Box (#007) BOSEM + Flag on Optical Bench
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•
 

First determine BOSEM operating range:-
–

 

Measure open-light voltage (ideally 20 V) i.e. with flag fully withdrawn
–

 

Measure closed-light voltage (ideally 0 V) i.e. with flag fully inserted
–

 

Determine responsivity (typically around 25 kV m-1)
–

 

Determine mid-point of operating range (ideally 10 V) and take noise measurement 

BOSEM Responsivity
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•
 

The results observed [1]

 

were somewhat disappointing!
–

 

Only ≈10% of units appeared to meet the noise requirement
–

 

Not observed previously

BOSEM Noise Characterisation

[1] S. Aston. Advanced LIGO BOSEM Noise Measurements. LIGO-T0900496-v4, 2011.
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•
 

A thorough investigation followed into the source of the excess noise
–

 

First established if it could be due to the cleaning or baking processes
–

 

Reconstituted 5 ‘dirty’

 

NPOSEMs for noise testing and found the same excess noise
⇒ Nothing to do with cleaning or baking

BOSEM Noise Investigation (1)
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•
 

After confirming repeatability of all of these measurements, it was possible to 
eliminate many other potential causes, such as:-

–

 

Photodiode (variation in responsivity etc) 
–

 

Collimating lens (geometry, placement, back reflections and coatings)
–

 

Flexi-circuit (bending changing the track resistance, distribution of solder flux etc)
–

 

Mechanical carrier assemblies (tolerances, debris, MACOR part failures)

•
 

All the measurements pointed towards the IRLED
–

 

Alignment (axial orientation) issue?
–

 

A consequence of the burn-in procedure? (thermally induced degradation)
–

 

Package tolerance, geometry and placement of the integral lens?
⇒ None of the above

•
 

Concluded that the excess noise is intrinsic
 

to the IRLED

•
 

Statements made above cover the highlights of the investigation,
 

but a more 
detailed blow-by-blow account is also available [1]

BOSEM Noise Investigation (2)

[1] S. Aston. Advanced LIGO BOSEM Noise Measurements. LIGO-T0900496-v4, 2011.
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•
 

Thermal anchorage of IRLED, i.e. conductive link to environment
–

 

Potential device-to-device inconsistency
⇒ Could also be discounted

BOSEM Noise Investigation (3)
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•
 

Screening of IRLEDs is carried out in a simple fixture
–

 

Parameters measured include
•

 

Forward Voltage
•

 

Distance to Focal Plane
•

 

Open-light photo-current noise

–

 

Noise spectra taken on DSA
•

 

10 spectra averaged over 0 to 50Hz
•

 

Takes ≈

 

3 minutes per device

•
 

Observed significant device-to-
device variation of intrinsic noise
in off-the-shelf devices

•
 

Typical ≈10% ‘pass’
 

rate for
OPTEK OP232

–

 

Not all units shown
–

 

Black line illustrates the approximate 
requirement

BOSEM IRLED Screening

IRLED Screening Fixture
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•
 

Selected best and worse case examples of screened OP232’s to retro-fit
–

 

Exhibited lowest photo-current noise IRLED (#013)
–

 

Exhibited highest photo-current noise IRLED (#037)
⇒

 

Can be up to a magnitude difference between extremes
⇒

 

Has the potential to be present in existing sensors

BOSEM Screening Verification
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•
 

Digital microscope images of section through IRLED active area

BOSEM IRLED Dissection

OP232 #020 (High Photo-current Noise) OP232 #013 (Very Low Photo-current Noise)

Scrap OP232 (Unknown Photo-current Noise) TSTS7100 #004 (Low Photo-current Noise)
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•
 

During testing I identified a promising alternative candidate (Vishay TSTS7100)
–

 

Represents a more recent ‘state-of-the-art’

 

device
–

 

Opto-mechanical properties of TSTS7100 and OP232 are virtually identical
–

 

Pin-outs reversed and TSTS7100 larger forward current capability (up-to 250mA)

•
 

1st

 

batch open-light photo-current noise test results (54 units)
–

 

Not all units shown
–

 

Black line illustrates approximate requirement, i.e. 100% Pass!

BOSEM Alternative IRLED
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•
 

However, for subsequent batches we purchased the pass rate has fallen:-
–

 

2nd

 

batch (940) ~50% pass rate (11 tested)
–

 

3rd

 

batch (001) ~80% pass rate (10 tested)
⇒

 

Indication of significant batch-to-batch variation

•
 

Manufacture acknowledged the issue
–

 

But notes this is not something that they can measure
–

 

Not within their control i.e. used same process/parameters for each of above batches
•

 
Screening offers the only solution
–

 

Willing to hold a batch of 2,000 devices and send us a sample of

 

20 for characterisation
–

 

We can then decide to accept or reject the batch depending upon results

BOSEM IRLED Batch-to-Batch Variation
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•
 

(1) Stick with existing OPTEK OP232 device
–

 

Screen a sufficiently large quantity of devices to retro-fit into BOSEMs
–

 

Observed a ~10% pass across batches, but there is no guarantee that this will hold for 
future batches procured

–

 

Implies we would need at least 7,000 devices
–

 

Would take at least ~10 weeks of screening effort! (challenging screening ‘continuum’)

BOSEM IRLED Mitigation Options

•
 

(2) Switch to the alternative
Vishay TSTS7100 device 

–

 

Again screen all devices 
•

 

Worst case this could be1,400
•

 

Best case this could be 700

–

 

Other obstacles had to be 
overcome

•

 

Burn-in testing complete
•

 

Seeking UHV approval
•

 

Obtain MTBF data from 
manufacturer

•

 

Identify fix for reverse polarity 
issue (electronic or mechanical)

•
 

Option 2 proposed and approved
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•
 

Generated IRLED screening procedure [1] following which, compliant 
parts are burned-in, cleaned baked and retro-fitted into BOSEMs

•
 

A random sample of ~12% from each batch of completed BOSEMs
 have been noise characterised with no failures observed [2]

•
 

Retro-fitting of production
BOSEMs

 
completed and

shipped to Caltech by
March 2011

•
 

Official end of UoB
 

ALUK
 STFC Grant

•
 

Still supporting ATE set-up
at the aLIGO

 
sites

Production BOSEM IRLED Retro-fitting

[1] S. Aston. Advanced LIGO BOSEM Noise Measurements. LIGO-T0900496-v4, 2011.

[2] S. Aston. BOSEM Production Summary. LIGO-T1100108-v2. 2011.
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Evolution of OSEMs

Advanced LIGO
Controls Prototype (Hybrid OSEM)

Initial LIGO
(OSEM)

LIGO2, 2.5 or 3?
Interferometric Sensor (EUCLID)

Advanced LIGO
Noise Prototype & Final 

Production (BOSEM)

•
 

Next generation observatories will place 
higher demands on sensor performance 

–

 

BOSEMs

 

offer the best sensitivity you can 
readily achieve with  shadow sensor 
technology

–

 

Therefore need to adopt a different 
approach!
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EUCLID Prototype Design Motivation

Optical Layout [1]

•
 

To ensure good low frequency stability
 

need to avoid active parts that can age, 
thermally expand, generate heat, exhibit hysteresis, e.g. piezos, AOMs, EOMs 
etc. 

•
 

Required to be, easy to use, compact, portable and robust against misalignment, 
led to the development of a homodyne interferometric sensor (EUCLID)

[1] C. C. Speake and S. M. Aston “An interferometric sensor for satellite drag-free control”. IOP, Class. Quantum Grav. 22 (2005)

Key to Optical Components: 

A1, 2 – Polarising beam-splitter
B1 – Non-Polarising beam-splitter
Q1, 2, 3 –Plate
H1 –Plate
P1, 2 – Polariser
L1, 2 – Lens
M1, 2, 3 – Mirror
PD1, 2, 3 – Photodiode

Q1

B1 A2

P1

H1

PD3

M2

M1

δx

PD1
M3

L2

L1

VCSEL Diode

P2

Q2

Q3

PD2

FP

FP
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EUCLID Fringe Interpolation

•
 

Two fringe intensities I2
 

, I3
 

are 90o

 

out of phase (PD2 and PD3)

•
 

Target mirror motion (Mirror 2) generates a circular Lissajous
 

figure with I2
 

, I3
plotted as vx

 

, vy

•
 

Phase calculation:-

•
 

Displacement calculation:-
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EUCLID Final Design Motivation

•
 

To eliminate optical feedback into the VCSEL, the optical axis has been offset
•

 
A third photodiode output, corresponding to –cosθ

 
has been implemented

•
 

Cats eye configuration has been further optimised

Key to Optical Components: 

A1, 2, 3 – Polarising beam-splitter
B1 – Non-Polarising beam-splitter
Q1, 2, 3 –Plate
H1 –Plate
L1, 2, 3 – Lens
M1, 2, 3 – Mirror
PD1, 2, 3 – Photodiode

A1

Q1

H1

PD1

M2
δx

PD2

L2

VCSEL Diode

Q2

M1M3

L3

L1
PD3

A3

B1

A2

Q3

FP FP

FP

Optical Layout
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EUCLID Optical Development

OPTO CAD Model

•
 

Optimisation of the lens shape 
with Zemax

 
(developed by Fabián

 Peña
 

Arellano) [1]

•
 

The effect of aberrations on the 
wavefront

 
is minimised

•
 

The parameters are also adjusted 
using other configurations in 
order to achieve the best mirror 
tilt immunity possible

•
 

Enabling calculation of the fringe 
visibility

[1] F. E. Peña-Arellano and C. C. Speake. Mirror tilt immunity interferometry

 

with a cat’s eye retroreflector. Applied Optics, Vol. 
50, No. 7. 2011.
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EUCLID Specification and Design Goals

3D CAD Model Engineering Drawing 

•
 

Compact
 

dimensions of 60x56x22.5 mm, Mass = 131 g
•

 
Robust against misalignment +/-

 
1°

•
 

Resolution of up to 1 pm/√Hz  over a large working range > 2mm
•

 
Can be constructed to be LIGO UHV compliant (using alternative UV adhesive)

•
 

Incorporates VCSEL with known high MTBF 

56mm 60mm

22.5 
mm
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EUCLID Laser Selection

Typical VCSEL emission spectra characterisation results

•
 

Require a polarisation stable, mono-mode device
–

 

Laser Diodes, 665 to 850nm few mW

 

output
–

 

VCSEL Diodes, 665 to 850nm few mW

 

output and with integrated TEC option
–

 

DFB Lasers, 1550nm with ten’s of mW

 

output

•
 

Various laser sources have been characterised for EUCLID suitability
–

 

Using Optical Spectrum Analyser to observe suppression of secondary modes
–

 

Measuring device-to-device threshold currents
–

 

Indentifying optimal drive current regime (each device requires to be screened)
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EUCLID Fabrication Summary

UV curing optical 
adhesive

•
 

4 EUCLIDs
 

have been fabricated so far:-
–

 

2 for evaluation at MIT (contact R. Mittleman)
–

 

1 for evaluation by ONERA
–

 

Processing further orders…

•
 

New Electronics Module (developed by D. Hoyland)
–

 

Phase calculation determined via on-board FPGA (CORDIC engine)
–

 

1 MHz, 18-bit analogue-to-digital converter 
–

 

Enables tracking rates of upto

 

~10 cm s-1

EUCLID Electronics Module

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Volts

V
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ts
First-light fringe visibility
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EUCLID Characterisation (1)

•
 

All 4 units produced were first characterised at Birmingham
–

 

Can be seen to exceeded original design goals

•
 

To assist with measurements, the following conventions have been
 

defined [1]

EUCLID in Operation

WD

Sweet-spot

Sensing aperture

WR

Mirror

Measurement
mirror

EUCLID

EUCLID # Fringe Amplitude/V Tilt Immunity/θ Working Range/mm Working Distance/mm

1 ≈

 

10 ±

 

1 ≈

 

6 6

2 ≈

 

7 ±

 

1 ≈

 

4 6

3 ≈

 

9 ±

 

0.5 ≈

 

10 6

4 ≈

 

9 ±

 

1 ≈

 

6 6

EUCLID Naming Conventions

[1] S. Aston, D. Hoyland

 

and C. Speake. EUCLID User Guide (version 2.2). 2011. 
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EUCLID Characterisation (2)

•
 

Misalignment measurements
–

 

Working range ≈

 

6 mm
–

 

Tilt-immunity ≈

 

±1 degree
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EUCLID Characterisation (3)

•
 

In Vacuum sensitivity measurements
–

 

Achieve a vacuum level of ≈

 

10 milliTor

 

(10-2

 

millibar)
–

 

Reaches shot-noise limited sensitivity at ≈

 

1 kHz 
–

 

Sensitivity at 1 Hz ≈

 

50 pm Hz-1/2

 

and at 10 Hz ≈

 

4 pm Hz-1/2
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EUCLID Characterisation (4)

•
 

Replace internal VCSEL with an external He-Ne 633 nm laser
–

 

Reaches shot-noise limited sensitivity at ≈

 

50 Hz 
–

 

High frequency sensitivity has improved
–

 

Worse at very low frequencies than VCSEL
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EUCLID and BOSEM Comparison

•
 

EUCLID provides approximately 2 orders of magnitude sensitivity improvement 
over the BOSEM across the band and extends it towards lower frequencies

•
 

Also offers almost 1 order of magnitude in working range from 0.7 mm to ~6 mm
•

 
Achieved for a modest factor of ~5 increase in cost per unit
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EUCLID Future Development

Ultra stable reference arm Silicate bonded mirrors and 
PBS

Aluminium structure

Temperature 
stabilised 
VCSEL

Improved cats eye assembly

3 fringe outputs

Offset optical paths

Bench-top Prototype

•
 

Optimise working distance of cats eye configuration
•

 
Migrate away from visible to near infrared VCSEL diodes

•
 

Alternative rotational sensor version developed known as ILIAD
–

 

Cryogenic version being tested in ISL superconducting torsion balance experiment 
•

 
Aim to push down the sensitivity at low frequencies

–

 

Sensitivity goal of 10-11 m Hz-1/2

 

over an extended LISA sensitivity band
–

 

Sensitivity goal for 3rd

 

generation ground based GW observatories is unknown(?)

3D CAD Model
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BOSEM Future Development

•
 

Key lessons learned from the BOSEM experience
–

 

To be confident that all

 

items meet the requirements it is absolutely necessary to 
rigorously characterise every single channel / unit

–

 

No surprise, that were pushing the boundaries of what technically feasible and can be 
duplicated on a large scale 

•
 

Possible scope for improvement in any future optical shadow sensors
–

 

Some super low photo-
current noise devices
were identified during the
IRLED screening process,
providing up to a factor ~3
improvement across the
band

–

 

However, the amount of 
screening effort required 
would likely make this

 
option unattractive  
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Thank you for your attention
 

I wish to acknowledge the support of collaborators both at Birmingham and further 
afield. I have tried to give credit where it is due during this presentation, but I 

apologies if you have been accidently left out!
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