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1 Introduction

How exactly should an r-mode search be carried out—what intervals in the
mode frequency and its time derivatives should be searched over? To lead-
ing order, the mode frequency (which is the same as the gravitational wave
frequency) is given by

|fmode| =
4

3
fstar. (1)

However, this comes from modelling the star as a slowly-rotating barotropic
Newtonian perfect fluid. There are a number of additional pieces of physics
that might shift this frequency, with the shift depending upon the stellar
mass and equation of state. Given we won’t know the exact size of this
shift, we will need to identify bands in frequency (and presumably its time
derivatives) to search over. At the very least, we need to worry about the
following:

• The effects of General Relativity

• The effect of the crust

• The effects of rapid rotation

• The effects of stratification (i.e. going beyond the barotropic approxi-
mation)

• The effect of the magnetic field

• The effects of a possible superfluid component

We should eventually look at each of these in tern to see which has the largest
effect on the mode frequency, and what the corresponding uncertainties say
about the frequency band to be searched over.

2 Frequency conventions

We will need to be careful in converting from the rotating frame mode fre-
quency σR (given in several references) to the inertial frame mode frequency
σI (the relevant one for gravitational wave searches). Following the standard
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convention, if perturbations are proportional to ei(σIt+mφ), the conversion for-
mula is

σI = σR −mΩ. (2)

In fact many authors give their results in terms of a dimensionless rotating
frame frequency κ, defined by

κ =
σR
Ω

=
σI +mΩ

Ω
. (3)

The gravitational wave frequency itself, in cycles per unit time, is

fmode =
σI
2π
. (4)

This implies
fmode

fstar
= κ−m (5)

For r-modes, in the slow rotation limit, the inertial frame frequency is
given by

σNewt, slow
I = −(m− 1)(m+ 2)

m+ 1
Ω = −4

3
Ω for m = 2 (6)

The corresponding rotating frame mode frequency is

σNewt, slow
R =

2

m+ 1
Ω =

2

3
Ω for m = 2 (7)

In terms of the κ parameter this becomes

κNewt, slow ≡ κ0 =
2

m+ 1
=

2

3
for m = 2. (8)

According to Greenspan (1990), page 52, the inertial modes have mode
frequencies, as measured in the rotating frame, of −2Ω < σR < 2Ω, which
translates into inertial frame frequencies in the interval −4Ω < σI < 0. (This
result holds for an incompressible fluid in a container; I am not sure if the
result extends to a self-gravitating compressible fluid; certainly, all the results
in Lockitch & Friedman (1999) paper described below are consistent with
this). Physically, this means the mode propagates backwards with respect to
the inertial frame, but this sign is of no relevance to the gravitational wave
search frequency, which only depends upon |fmode|.
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3 Estimating numbers of templates

If we model the GW signal as a Taylor series:

ΦGW = 2π

∫ Tobs

0

f + f1t+
1

2!
f2t

2 + . . .
1

n!
fnt

n + . . . , (9)

then the resolution on the parameterfn, corresponding to a phase error of
one cycle, is given by:

δfn =
(n+ 1)!

T n+1
obs

. (10)

Parameterising in terms of a one year observation the resolution in f and its
first two time derivatives are:

δf = 3.16× 10−8 Hz

(
1 yr

Tobs

)
, (11)

δf1 = 2.00× 10−15 Hz/s

(
1 yr

Tobs

)2

, (12)

δf2 = 1.90× 10−22 Hz/s2
(

1 yr

Tobs

)3

. (13)

The number of templates required for parameter fn is then

Nfn =
∆fn
δfn

, (14)

where ∆fn is the interval in fn to be searched over. Once we have estimates
of the uncertainty in the r-mode frequency and its time derivatives we will
use these formulae to estimates template numbers required for a search.

4 Stellar parameters

The uncertainties in the equation of state and in the mass of any particular
star are crucial, as it is these uncertainties that lead to our uncertainty in
the gravitational wave frequency. Typically, in the papers cited below, the
frequency shifts depend upon some combination of mass M and radius R. In
fact, the compactness M/R and average density ρ̄0 will be needed. We need
to identify extreme values for the combinations in question (i.e. for M/R
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and M/R3). In particular, we can make use of constraints on the mass-
radius M(R) relationship that come from simple theoretical arguments, as
described in Lattimer & Prakash (2007).

The most useful limit concerns the stellar compactness M/R. As de-
scribed in Lattimer & Prakash (2007), there is an upper bound on this quan-
tity that follows from insisting the equation of state is causal:

M

R
. 0.35 (15)

Parameterising:
M

M�
. 2.33

(
R

106 cm

)
(16)

The region in the M verses R plane excluded by this constraint is labelled
as ‘causality’ in Figure 2 of Lattimer & Prakash (2007).

Some use can also be made of the spin frequency of the fastest observed
pulsar, PSR J1748-2446ad, which has a spin frequency fJ1748 = 716 Hz. This
spin frequency can be related to this pulsar’s mass and radius by equation
(12) of Lattimer & Prakash (2007):

716 Hz

fJ1748
& 0.69

(
M�

MJ1748

)1/2(
RJ1748

106 cm

)3/2

(17)

In terms of the minimum mass:

MJ1748

M�
& 0.472

(
RJ1748

106 cm

)3(
fJ1748
716 Hz

)2

(18)

or, in terms of minimum average density ρ̄0:

ρ̄J1748 & 2.25× 1014 g cm−3

(
fJ1748
716 Hz

)2

(19)

These inequalities should be applied only to PSR J1748-2446ad; other more
slowly spinning stars would lead to weaker lower bounds. However, if we
make the assumption that all pulsars are sufficiently dense that they would,
if given the angular momentum, be capable of spinning this fast, we can
extend this bound to all stars:

ρ̄ & 2.25× 1014 g cm−3 (20)
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Making this assumption, the region excluded by this constraint in the M
verses R plane is labelled as ‘rotation’ in Figure 2 of Lattimer & Prakash
(2007). This is quite a weak bound, as this is less than nuclear density
ρnuc = 2.8 × 1014 g cm−3; such a low density star would be all crust, no
neutron fluid!

We are therefore restricting all neutron stars to lie in the grey shaded area
of Figure 2 of Lattimer & Prakash (2007), bounded above by the causality
bound on the compactness, and bounded below by the minimum density of
the fastest observed pulsar. We have an upper limit on M/R, and a lower
limit on ρ̄0. However, we still need a lower limit on M/R and an upper limit
on ρ̄0.

To obtain these bounds we can also exploit the fact that neutron star
masses are likely to all be greater than some minimum value Mmin. Perusal
of Figure 1 of Lattimer & Prakash (2010) suggest taking the following value:

Mmin = 1M� (21)

The assumed value forMmin is pretty conservative, as nature probably doesn’t
supply a means of making lighter neutron stars by this, as less massive stellar
cores probably wouldn’t collapse.

To obtain a lower bound on the compactness M/R, we can combine equa-
tion (18) with our guess as to the minimum allowed neutron star mass to
give

M

R
> 0.115

(
Mmin

1M�

)1/2(
ffastest
716 Hz

)2/3

(22)

Combining with equation (15) we therefore have

0.115

(
Mmin

1M�

)1/2(
ffastest
716 Hz

)2/3

<
M

R
< 0.35 (23)

To obtain an upper bound on the average density ρ̄0, we can combine the
causality bound on M/R of equation (15) with our guess as to the minimum
allowed neutron star mass to give

ρ̄0 .Mmin

[
4

3
π

(
GMmin

0.35c2

)3
]−1

(24)

We therefore obtain the bounds

2.25× 1014 g cm−3

(
fJ1748
716 Hz

)
.

ρ̄0
g cm−3

. 6.29× 1015

(
1M�

Mmin

)2

(25)
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Quantity Crab J0537-6019 J1748-2446ad
fstar/ Hz 30.2 62.0 716.4

ḟstar / Hz s−1 −3.86× 10−10 −1.99× 10−10 < 3× 10−13

f̈star / Hz s−2 1.24× 10−20 6.1× 10−21

Table 1: Useful pulsar data

Suppressing factors of Mmin and fJ1748, we therefore have

0.115 .
M

R
. 0.35 (26)

2.25× 1014 g cm−3 .
ρ̄0

g cm−3
. 6.29× 1015 (27)

For the record, the spin frequency data for a few interesting pulsars is
given in Table 1.

5 Inclusion of various physical factors

5.1 The effects of General relativity

A key reference is Lockitch et al. (2003), who look at relativistic barotropes
within the slow rotation approximation. The relevant dimensionless number
which parameterises the strength of relativistic effects is the compactness
parameter defined above:

M

R
= 0.21

(
M

1.4M�

)(
10 km

R

)
. (28)

Their key results are shown in their Figures 1 and 2. They find that relativity
increases the inertial frame mode frequency, and that for small M/R, the
change in the dimensionless mode frequency fmode/fstar is linear in M/R,
but non-linear effects are important for M/R & 0.1. The authors don’t give
results for realistic equations of state, but do look at different polytropic
indices n. They find that the effect on the mode frequency of varying M/R
at fixed n is much bigger than the effect of varying n at fixed M/R, so
the compactness parameter really is the key factor at play. For this reason,
we will use the right hand panel of their Figure 1 to extract the value of the
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frequency shift as a function of M/R, even though this is valid only for n = 0
(incompressible stars).

The frequency shift is given in Lockitch et al. (2003) in terms of the
quantity κ/κ0, with κ and κ0 defined in equations (3) and (8). The connection
with the mode frequency is

fmode

fstar
= −4

3

[
1 +

1

2

(
1− κ

κ0

)]
(29)

Using the right hand panel of Figure 1 of Lockitch et al. (2003) we can read-
off the values of κ/κ0 corresponding to our extremal values of M/R as given
by equation (26):

M

R
= 0.115⇒ κ

κ0
≈ 0.92 (30)

M

R
= 0.35⇒ κ

κ0
≈ 0.62 (31)

Inserting these into equation (29) gives

4

3
(1 + 0.04) <

∣∣∣∣fmode

fstar

∣∣∣∣ < 4

3
(1 + 0.19) (32)

This shows that relativistic effects increase the r-mode GW frequency, prob-
ably by somewhere between 4% and 19%. For the Crab, this corresponds
to

42.3 Hz < |fmode| < 48.4 Hz (33)

For J0537-6910:
86.0 Hz < |fmode| < 98.4 Hz (34)

In addition to the mode frequency, Lockitch et al revisit the question of
the gravitational wave signal produced by the various inertial modes. They
find that the perturbed metric component h2 is very small outside of the
star for all but the r-modes, again indicating that the r-modes are the most
efficient gravitational wave emitters. They also find that the l = m = 2
r-mode has a shorter CFS growth time than any other inertial mode. Both
results show that the l = m = 2 r-mode remains an interesting mode to look
for in gravitational wave searches, even when relativistic effects are taken
into account.
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5.2 The effects of the crust

The presence of the crust is very important for mode damping, as was shown
by Bildsten & Ushomirsky (2000) and Levin & Ushomirsky (2001). The
crust can have an affect on the mode frequency too. Basically, adding a
crust changes things as now in addition to Coriolis restoring forces acting
throughout the star, there are also elastic restoring forces in the crust. A
useful dimensionless number to parameterise the important of the crust for
r-modes is the ratio of the elastic sounds speed to the rotational equatorial
speed:

velastic
vrotation

∼ 1

ΩR

√
µ

ρcrust
(35)

where µ denotes the shear modulus of the crust. Parameterising

velastic
vrotation

∼ 0.159

(
100 Hz

fstar

)(
µ

1030 erg cm−3

)1/2(
1014 g cm−3

ρcrust

)1/2

(36)

This shows that the crust is something to worry about.
Information on how this influences the r-mode frequency can be extracted

from Figure 1 of Levin & Ushomirsky (2001). The basic picture is as fol-
lows. For sufficiently slow rotation rates, the mode frequency is close to the
standard κ = 2/3 result, with the fluid core but not the solid crust partici-
pating in the motion. For sufficiently high rotation rates the mode frequency
is again close to κ = 2/3, but now the whole star, crust plus core, partic-
ipates in the motion. For intermediate spin rates, where the dimensionless
ratio given above is of order unity, there is an avoided crossing, which means
that whatever passes as the ‘r-mode’ is really a hybrid inertial–elastic mode.
From Figure 1 of Levin & Ushomirsky (2001) is seems that the departure
from the κ = 2/3 result is significant (i.e. more than a few percent and can
be discerned by eye) over the spin frequency interval

0.05 .
Ω

ΩK

. 0.1 (37)

The Keplerian spin rate is not well constrained. Assuming fK = ΩK/(2π) =
1000 Hz, this corresponds to the spin interval

50 Hz . fstar . 100 Hz (38)

9



while for fK = 2000 Hz the interval becomes

100 Hz . fstar . 200 Hz (39)

These are clearly spin frequencies of potential interest, so we cannot rule out
the possibility of the mode frequency being affected by the avoided crossing.
Looking at the right hand panel of Figure 1 of Levin & Ushomirsky (2001),
we see that departures from κ = 2/3 of ∼ ±20% are possible:

1− 0.2 . κ . 1 + 0.2 (40)

Converting to the mode frequency using equation (5) gives a 10% uncertainty:

4

3
(1− 0.1) .

∣∣∣∣fmode

fstar

∣∣∣∣ . 4

3
(1 + 0.1) (41)

This is smaller than the likely GR shift of section 5.1, but is double-sided,
i.e. the mode frequency might be shifted up or down.

5.3 The effects of rapid rotation

A key reference is Lindblom et al. (1999). The relevant dimensionless number
that parameterises the importance of rotation is

Ω2

πGρ̄0
= 2.82× 10−7

(
fstar
Hz

)2(
R

106 cm

)3(
1.4M�

M

)
, (42)

where ρ̄0 is the average density of the non-rotating member of the stellar
sequence. The numerical prefactor is equal to 2.6× 10−4 when the frequency
is set equal to the Crab rotation rate of 30.2 Hz.

The authors find that the leading order correction to the dimensionless
mode frequency is quadratic in Ω, and so they write the dimensionless rotat-
ing frame mode frequency κ = σR/Ω as

κ = κ0 + κ2
Ω2

πGρ̄0
, (43)

where κ0 = 2/(m+ 1) and κ2 parameterises the equation-of-state-dependent
shift in frequency caused by the rotational corrections. Converting to the
mode frequency as measured in the inertial frame:

|fmode| =
4

3
fstar

[
1− 3κ2

4

(
Ω2

πGρ̄

)]
. (44)
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They find positive values for κ2, i.e. the effects of rapid rotation serve to
decrease the inertial frame mode frequency; their results are given in their
Table 1 for polytropes, and in their Figure 1 for realistic equations of state.
For a 1.4M� star, their Figure 1 shows that κ2 is only weakly equation of
state dependent, varying over the interval 0.26 to 0.32 for the equations of
state they examine, with κ2 = 0.29 being a typical value. However, according
to equation (43), the magnitude of the frequency shift depends not only upon
κ2, but also on the average density ρ̄0, which, for a given stellar mass, does
vary significantly between different equations of state. We will therefore
slightly inconsistently set κ2 = 0.29, and make use of the upper and lower
bounds on ρ̄0 of our equation (27) to give:

4

3

[
1− 1.82× 10−7

(
fstar
1 Hz

)2
]
.

∣∣∣∣fmode

fstar

∣∣∣∣ . 4

3

[
1− 6.51× 10−9

(
fstar
1 Hz

)2
]

(45)
For the Crab this becomes

4

3

[
1− 1.64× 10−4

]
.

∣∣∣∣fmode

fstar

∣∣∣∣ . 4

3

[
1− 5.94× 10−6

]
(46)

i.e. the effects of rotation on the mode frequency are negligible.
For the fastest observed pulsar, PSR J1748-2446ad:

4

3
[1− 0.093] .

∣∣∣∣fmode

fstar

∣∣∣∣ . 4

3

[
1− 3.3× 10−3

]
(47)

which translates into

866 Hz . |fmode| . 952 Hz (48)

Comparing with equation (32), we see that the effects of rotation on the
mode frequency are likely to be smaller than those of General Relativity for
young pulsars, but could be comparable for millisecond pulsars.

5.4 The effects of stratification

A key reference is Yoshida & Lee (2000), who consider the effect of the
perturbations obeying a slight different equation of state from the background
star. This introduces buoyancy forces that modify the mode frequencies.
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The relevant dimensionless number that parameterises the importance of
stratification is γ, defined by

γ = Γ−1 − (1 + 1/n)−1, (49)

where Γ is the adiabatic exponent governing the perturbations and n the
polytropic index of the background star.

They find that while the majority of the inertial modes are significantly
affected by stratification, the nodeless l = m r-modes are relatively unaf-
fected; see Fig. 4 of their paper. The figure shows that for |γ| < 0.1 at least,
the effects of stratification are much less important that those of General
Relativity.

The affect of stratification on inertial modes was also investigated by Pas-
samonti et al. (2009), who also found the the r-mode frequency was affected
only very slightly. This was shown to be true even for very rapidly rotating
stars; see Figure 12 of Passamonti et al. (2009).

5.5 The effects of the magnetic field

Magnetic fields will alter the r-mode frequency slightly (Morsink & Rezania,
2002). A useful number that parameterised this affect is the ratio of the
star’s magnetic energy to its rotational energy:

Emagnetic

Erotation

∼ B2R3

IΩ2
∼ 2.5× 10−5

(
B

1012 G

)2(
1 Hz

fstar

)2

(50)

Clearly, this is very small for all stars aside from magnetars, and magnetars
are of no interest as r-mode sources. So, magnetic corrections are unimpor-
tant. Physically this corresponds to the magnetic restoring forces being small
compared the Coriolis restoring forces.

This is consistent with more detailed calculations, e.g. the numerical
simulations of Lander et al. (2010). From their Figure 6 it can be seen that
the avoided crossing between the l = m = 2 Alfvén mode and the l = m = 2
r-mode occurs for Ω/ΩK ∼ 0.1, for a magnetic field B ∼ 3× 1016 G. Scaling
down to B ∼ 3 × 1012 G, the avoided crossing will occur for Ω/ΩK ∼ 10−5,
which implies a stellar spin frequency of fstar ∼ 0.01 Hz. This is consistent
with magnetic restoring forces being unimportant for r-modes in all stars of
GW interest.
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5.6 The effects of a possible superfluid component

Need to think about this.

6 Putting it all together: search parameters

The l = m = 2 r-mode seems to be a good mode to look for in a gravitational
wave search: it has a shorter CFS instability growth time than other inertial
modes, and is an efficient gravitational wave emitter. Another nice feature
is that for a Newtonian single fluid slowly-rotating star, the mode frequency
is simply related to the spin frequency: |fmode| = 4fstar/3.

However, we have found that more realistic models, incorporating more
physics alters this frequency relationship. The single largest effect came
from including General Relativity, as described in section 5.1. Writing the
fractional correction as εGR:

|fmode| =
4

3
fstar(1 + εGR) (51)

where the uncertainty in stellar compactness translated into an uncertainty
in εGR:

0.04 . εGR . 0.19 (52)

Differentiating with respect to time, we obtain the corresponding variation in
|ḟmode|, the mode frequency derivative. The parameter εGR will be (nearly)
time-independent, so we have

|ḟmode| =
4

3
|ḟstar|(1 + εGR) (53)

i.e. the fractional shift in mode frequency derivative is the same as the
fractional shift in mode frequency. If GR corrections were the only ones
we had to worry about, we would therefore search over a whole range of
εGR values, but for each mode frequency there would be a single frequency
derivative.

The other potentially important contributions come from the crust and
from rapid rotation. The effects of the crust can be large, comparable to those
of GR, but only over a certain range of spin frequencies. Let us therefore
next consider rotation. In section (5.3) we found

|fmode| =
4

3
fstar(1 + εrot) (54)
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where the rotational correction is given by

εrot = −3πκ2f
2
star

Gρ̄0
(55)

Inserting κ = 0.29 and (to maximise this effect) the lower bound on density
of equation (27) gives

εrot = −1.82× 10−7
( κ2

0.29

)( fstar
1 Hz

)2(
2.25× 1014 g cm−3

ρ̄0

)
(56)

Clearly, this is a small effect in all but the most rapidly spinning stars.
Differentiating to obtain the mode frequency derivative, we need to be careful,
as εrot ∼ f 2

star. Taking this into account we obtain

|ḟmode| =
4

3
|ḟstar|(1 + 3εrot) (57)

i.e. the fractional shift in frequency derivative is three times the fractional
shift in mode frequency. As for the GR case above, for each mode frequency
shift there is a unique frequency derivative shift.

Now consider combining the effects of GR and rotation. Assuming we
can simply multiply the correction factors [DIJ: Is this the right thing
to do?] we have

|fmode| =
4

3
fstar(1 + εGR)(1 + εrot) (58)

We therefore have

|fmode| =
4

3
fstar(1 + εGR + εrot +O(εGRεrot)) (59)

Differentiating gives the corresponding |ḟmode|. Assembling these two results
in a convenient form we have:

|fmode| =
4

3
fstar(1 + εGR + εrot) (60)

|ḟmode| =
4

3
|ḟstar|[(1 + εGR + εrot) + 2εrot] (61)

where fractional corrections of order O(εGRεrot) have been suppressed. In this
case of combined GR plus rotation, the fractional change in mode frequency
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differs form that in mode frequency derivative, by an amount of order εrot
that isn’t known a priori. Given that for all but the fastest stars εGR � εrot
we can set εGR + εrot ≈ εGR. The following strategy then suggests itself. A
range in fmode is searched over, with fractional variation given by the εGR

of equation (52). For each mode frequency, the corresponding frequency
derivative would then be offset by an additional amount 2εrot. As is made
explicit in equation (56), the value of 2εrot is proportional to ρ̄−1

0 . This can
take a range of values, generating a range of values in |ḟmode| to be searched
over for each |fmode|.

We can then make some simple estimates of the ranges in fmode and ḟmode

to be searched over. Given equation (52) we will consider a range in mode
frequencies of

|∆fmode| =
4

3
fstar × 0.2 (62)

Given the difference between equations (60) and (61) we will, for each mode
frequency fmode, consider a range of frequency derivatives of width

|∆ḟmode| =
4

3
fstar × (2εrot) (63)

and will evaluate εrot for the lower bound in density identified in equation
(27). These can then be used to estimate the corresponding number of tem-
plates to be searched over.

For the Crab:

∆fmode = 8.05 Hz ⇒ ∆fmode

δf
= 2.6× 108

(
Tobs
1 yr

)
(64)

∆ḟmode = 1.7× 10−13 Hz s−1 ⇒ ∆ḟmode

δf1
= 85

(
Tobs
1 yr

)2

(65)

For J0537-6910:

∆fmode = 16.5 Hz ⇒ ∆fmode

δf
= 5.2× 108

(
Tobs
1 yr

)
(66)

∆ḟmode = 3.7× 10−13 Hz s−1 ⇒ ∆ḟmode

δf1
= 190

(
Tobs
1 yr

)2

(67)

For J1748-2446ad:

∆fmode = 190 Hz ⇒ ∆fmode

δf
= 6.0× 109

(
Tobs
1 yr

)
(68)

∆ḟmode = 7.5× 10−14 Hz s−1 ⇒ ∆ḟmode

δf1
= 37

(
Tobs
1 yr

)2

(69)
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Adding in the crust, again assuming we can simply multiply the relevant
factors, we would have

|fmode| =
4

3
fstar(1 + εGR)(1 + εrot)(1 + εcrust) (70)

where, according to equation (41) of section 5.2,

−0.1 . εcrust . 0.1 (71)

Again neglecting high order terms, we have

|fmode| =
4

3
fstar(1 + εGR + εcrust + εrot) (72)

Combining the range in εGR of equation (52) and the range in εcrust of equation
(71), we would want to search over a frequency range given by

−0.06 . εGR + εcrust . 0.29 (73)

only a factor of order unity wider than the range to be searched over away
from resonance (compare equation (52)).

However, the influence of the crust on the mode frequency derivative may
be much greater. Rather than differentiating equation (73), we can note the
following: according to Figure 1 of Levin & Ushomirsky (2001), close to
the resonance frequencies, the mode frequency verses spin frequency curve is
close to flat. If it were exactly flat, then there would be no evolution in mode
frequency, no matter how large the stellar spin-down rate ḟstar. It follows
that, to look at a ‘worst case’ scenario (i.e. largest band to search over) we
would put

∆ḟmode = |ḟmode| (74)

which increases the number of ḟmode templates to be searched over:

Crab
∆ḟmode

δf1
= 1.9× 105

(
Tobs
1 yr

)2

(75)

J0537− 6910
∆ḟmode

δf1
= 1.0× 105

(
Tobs
1 yr

)2

(76)

J1748− 2446ad
∆ḟmode

δf1
< 150

(
Tobs
1 yr

)2

(77)

To sum up:
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• If GR and rotational effects are included, template numbers are:

Young pulsars : ∼ 108 × 102 ∼ 1010

(
Tobs
1 yr

)3

(78)

MSPs : ∼ 109 × 101 ∼ 1010

(
Tobs
1 yr

)3

(79)

• If GR, rotation and crustal effects are included template numbers are:

Young pulsars : ∼ 108 × 105 ∼ 1013

(
Tobs
1 yr

)3

(80)

MSPs : ∼ 109 × 102 ∼ 1011

(
Tobs
1 yr

)3

(81)

Either way, there see enormous numbers to me . . .
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