
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T080188-v2 ADVANCED LIGO 6 January 2012

Models of the
Advanced LIGO Suspensions

in MATLAB™

Mark Barton, Calum Torrie, Ken Strain, Norna Robertson

Distribution of this document:

DCC

This is an internal working note
of the LIGO Project.

California Institute of Technology

LIGO Project – MS 18-34
1200 E. California Blvd.

Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project – NW22-295

185 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

LIGO Hanford Observatory
P.O. Box 1970

Mail Stop S9-02
Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

LIGO Livingston Observatory

P.O. Box 940
Livingston, LA 70754

Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

Advanced LIGO LIGO-T080188-v2

 2

Table of Contents
1	 Introduction .. 3	

1.1	 Purpose and Scope ... 3	
1.2	 References ... 3	
1.3	 Version history ... 3	

2	 History .. 3	
2.1	 Initial triple model by Calum Torrie ... 3	
2.2	 Initial quad model by Ken Strain et al. .. 6	
2.3	 Numerical validation against the Mathematica models ... 9	
2.4	 Symbolic validation against the Mathematica models ... 9	
2.5	 Incorporation of Mathematica-derived code .. 9	
2.6	 Additional features developed in Mathematica and transplanted 10	

2.6.1	 Explicit support for wire bending stiffness ... 10	
2.6.2	 Support for blade lateral compliance .. 11	
2.6.3	 Dual blade triple model ... 11	
2.6.4	 “Full” versions .. 12	
2.6.5	 Double pendulum models ... 12	
2.6.6	 Other models ... 12	

3	 Code Archive .. 12	
3.1.1	 Calum Torrie Thesis Triple ... 13	
3.1.2	 Second Generation Triple ... 13	
3.1.3	 Second Generation Quad .. 13	
3.1.4	 Third Generation Triple .. 13	
3.1.5	 Third Generation Quad ... 13	
3.1.6	 Second Generation Double ... 13	
3.1.7	 Third Generation Double .. 13	

4	 Tables .. 13	

Advanced LIGO LIGO-T080188-v2

 3

1 Introduction

1.1 Purpose and Scope
This document explains the physical assumptions, internal structure and usage of the models of the
Advanced LIGO suspensions originally written in MATLAB by Calum Torrie, Ken Strain et al.,
and now maintained by Mark Barton.

1.2 References
P000039-00, Matthew Husman, PhD Thesis, 1999, University of Glasgow.

P000040-v1, Calum Torrie, PhD Thesis, 2000, University of Glasgow
T050255-07, Investigation into blade torsion, blade lateral flexibility, and the effect they have on
blade and wire performance, I. Wilmut et al.
T020205-02, Suspension models in Mathematica, M.A. Barton

T020011-00, Suspension model comparisons, M.A. Barton.
T070101-00, Dissipation dilution, M.A. Barton.

T080096-00, Flexure corrections, M.A. Barton.
T010103-05, Advanced LIGO Suspension System Conceptual Design, N. Robertson, et al.

1.3 Version history
8/11/08: First draft, as T080188-00.

6/24/11: Second draft, as T080188-v1draft

7/28/11: -v1.
1/6/12: -v2. Upgraded symbexport3latfull.m in associated code archive from placeholder to
substantive version.

2 History

2.1 Initial triple model by Calum Torrie
For his PhD thesis, Calum Torrie created a Matlab model of the GEO triple suspension. The
suspension to be modeled consisted of (from the top down):

• Two blade springs

• Two wires (one per blade)

• A top mass with four blade springs

• Four wires (one per blade)

• An intermediate mass

• Four wires

Advanced LIGO LIGO-T080188-v2

 4

• The optic
This is the same generic structure as the aLIGO BS/FM, HSTS and HLTS. It is pictured in Figure
1, taken from the suspension conceptual design, T080187, and Figure 2, taken from the output of
the equivalent Mathematica model. To make this tractable for a hand derivation, a number of
approximations were made:

• The 18 DOFs of the three masses were partitioned into four subsystems, which for
symmetrical designs should be orthogonal: longitudinal/pitch (6 DOFs), transverse/roll (6),
yaw (3), and vertical (3).

• The blades were allowed for by adding the compliance of the blades to that of the
associated wires. This is an essentially perfect approximation if the working direction of the
blades is aligned with that of the wires, and was still quite workable for the GEO design,
which had the blade tips moving vertically but the wires at a modest diagonal.

• Four wires were assumed at each level in the derivation to maximize the similarity between
the stages, and the fact that there are only two wires at the top level was allowed for by
setting the front/back separation to zero there (Su=0).

• The wire bending stiffness was neglected in the Matlab model, but allowed for later by
making corrections to the “d” values en route to manufacture (see T080096-00).

• The blade lateral compliance (see T050255-07, T080096-00) was not included, but
fortunately was not significant for the parameters settled on.

Advanced LIGO LIGO-T080188-v2

 5

• Figure 1: Geometry of triple pendulum models – front and side views (from T080187)

Advanced LIGO LIGO-T080188-v2

 6

Figure 2: More realistic schematic of the triple (output of eigenplot[] in the Mathematica
model). The blade spring tips are represented by small boxes.

2.2 Initial quad model by Ken Strain et al.
Ken Strain et al. later generalized the triple model to an aLIGO-style quad (Figure 3) by strategic
copying, pasting and renaming of matrix elements and parameters to add a “new” top mass:

• Two blade springs

• Two wires (one per blade)

• A top mass with two blade springs (mn)

• Four wires (two per blade)

• An “upper-intermediate” mass with two blade springs (m1 – cf. triple top mass)

• Four wires (two per blade)

Advanced LIGO LIGO-T080188-v2

 7

• A “penultimate” mass (m2– cf. triple intermediate mass)

• Four wires

• The optic (m3– cf. triple optic)

The above generic structure is pictured in Figure 3, taken from the suspension conceptual design,
T010103-05, and Figure 4, taken from the output of the Mathematica model. As with the initial
version of the triple model, the blades were allowed for by corrections to the wire compliances and
do not appear explicitly. A fuller listing of parameters is given in Table 1.

Because in the quad it is no longer the case that there is one wire per blade in all cases, the strategy
for including the effect of the blades had to be adjusted. In the transverse/roll, yaw, and vertical
subsytems the blade and wire compliances were added as previously. However in
longitudinal/pitch there are several modes crucially involving differential stretching of the two
wires on a single blade tip. Fortunately none of the longitudinal/pitch modes have significant
excursion of the blades themselves, so a good approximation was to take the blades to have zero
compliance for this subsystem only.
Figure 3: Geometry of quad pendulum models (from T010103).

Advanced LIGO LIGO-T080188-v2

 8

Figure 4: More realistic schematic of the quad (output of eigenplot[] from the Mathematica
model). The blade spring tips are represented by small boxes.

Advanced LIGO LIGO-T080188-v2

 9

2.3 Numerical validation against the Mathematica models
As a check on the Matlab, equivalent models were created in Mathematica using a pendulum
modeling toolkit developed by Mark Barton (T020205). Parameter names were chosen to match as
far as convenient, the main exception being in the stiffness of the wires and blades. As noted above,
the Matlab models had adopted a convention of specifying these per side (whether there were two
or four wires per side). Since wires and springs had to be modeled individually and explicitly in
Mathematica, this was no longer natural. Rather than having different interpretations of identically
named symbols, the names for wire and blade stiffness were deliberately chosen not to match. See
Table 1 for the correspondences.
The Matlab models were initially validated numerically against the Mathematica models as
described in T020211.
The Mathematica models explicitly included blades from the beginning, and the code included a
switch to make the working direction of the blades either vertical (as in the physical system) or in
line with the associated wires, as assumed for convenience in the Matlab. With the angled blades,
the agreement with the Matlab was essentially perfect (three-figure or better agreement in the mode
frequencies and shapes), validating both code bases.

2.4 Symbolic validation against the Mathematica models
Later (2005) the validation was redone exactly, by generating symbolic versions of the matrix
elements in Mathematica, importing the ones from from Matlab and comparing them using
Mathematica’s symbolic algebra features. Calum’s original code was shown to be exactly correct
relative to the assumptions and approximations used to derive it, but some minor errors had crept
into the working version of the triple and into the quad, and these were corrected.

2.5 Incorporation of Mathematica-derived code
Since the Mathematica could just as easily generate matrix elements for the improved blade model
with the working direction vertical and export them as Matlab code, the opportunity was taken to
swap these in. The implementation for the triple is as follows (the quad is very similar):

• The equivalent Mathematica model (TripleLite2) is intercepted at the point where numerical
partial derivatives of the kinetic and potential energies are taken to produce the kinetic
(mass) and potential (stiffness) matrices, and diverted to produce symbolic results instead.

• Substitutions are made for a few symbols that have different names or interpretations in the
Matlab (see Table 2). (Because reckoning the elasticity per side was unnatural in the
Mathematica where each wire and blade is specified individually, the elasticities were
deliberately given different names rather than having quantities with the same name but
different interpretations.)

• Symbolic versions of the kinetic matrix (km) and key sub-blocks of the master potential
matrix (qm, xm, cqsm, cqxm, cxsm) are exported in Matlab syntax to a file with a name like
symbexport3.m. (See Section 2.2, especially 2.2.2ff of T020205-v2 for the significance of
these matrices.)

• In Matlab, the command file ssmake3MB.m loads triplep.m to define numerical values
of parameters as fields of a structure pend and then runs symbexport3.m to get

Advanced LIGO LIGO-T080188-v2

 10

numerical versions of km, qm, xm, etc. It assembles these into state space matrices,
permuting rows and columns in some cases where the canonical order in the Mathematica
(x/y/z/yaw/pitch/roll/…) differs from that in the Matlab. The reason for this division of
labour is that the final steps involve taking some matrix inverses which could in principle
be done symbolically on the Mathematica side but which would create inconveniently large
expressions.

• The state space matrices are used to calculate the eigenmodes and eigenfrequencies, and to
do time-domain simulation with Simulink, as with the old code.

Since this reworking, the Matlab code for both the quad and triple models has been dependent on
the Mathematica, and has inherited all major improvements made on the Mathematica side. The
only feature of the older Matlab models not supported in new ones is that the number of wires at
the top level (nwn for quad and nw1 for triple) is hardwired to two. The front-to-back wire
separation at the top level (sn or su) is ignored.

Most of the models used to derive matrix elements as well as the actual derivations are published
on the aLIGO SUS SVN repository at

https://redoubt.ligo-wa.caltech.edu/websvn/listing.php?repname=sus& .

See the associated wiki for instructions:
https://awiki.ligo-wa.caltech.edu/aLIGO/Suspensions/MathematicaModels .

Within each model (TripleLite2 or the like), the derivation of the matrix elements is done in a
pseudo-case MatrixElementExport in the mark.barton folder, e.g.,

^/trunk/Common/MathematicaModels/TripleLite2/mark.barton/MatrixElementExport
where “^” is the repository root. For all of the published models there is provision for exporting the
parameter set that defines a case of the Mathematica model as a Matlab command file usable with
the associated Matlab model. The default case of each model comes with sample code, e.g.,

^/trunk/Common/MathematicaModels/TripleLite2/default/stdcalc/ASUS3L2ModelCalcExport.nb
generates

^/trunk/Common/MathematicaModels/TripleLite2/default/stdcalc/TripleLite2_default_triplep.m

2.6 Additional features developed in Mathematica and transplanted

2.6.1 Explicit support for wire bending stiffness
Early versions of the Matlab code ignored the bending stiffness of the wires. This was known from
the beginning to be a significant effect, which particularly affects the lower pitch frequencies. It
was allowed for by designing in terms of an ideal pendulum with flexible wires and then making
corrections in the detailed mechanical design. Since the effective flexure point of the wire is a
calculable distance inset from the attachment points, the required correction is to move the wire
attachment points out by this amount at each end to make the effective flexure point correspond to
the ideal model.

Because the effect of the wires amounts to a simple change of position of the wire attachment
points, it turns out to be fairly simple to include this in the Matlab. The approach was developed in

Advanced LIGO LIGO-T080188-v2

 11

Mathematica and tested against the “Stage 2” calculation which includes wire bending potential
terms. The “d” and “n” distances (vertical and horizontal wire attachment positions) are adjusted to
move the wire attachment points in along the direction of the wires by a flexure length at each end.
The “l” values (wire lengths) are shortened to compensate for the inset attachment points and keep
the overall dimensions the same, but the wire stretching elasticities are calculated from the
unadjusted lengths. With these few subtleties ironed out, the agreement is essentially perfect -
typically four significant figures or better in the mode frequencies. See T080096.
A switch pend.stage2 enables this. If it is defined and non-zero, the geometry defined in the
parameter file is interpreted as physical attachment points and transformed to effective values for
ideally flexible wire as above before the matrix elements are evaluated.
Note however that there is a very slight known error in the B matrices generated with
pend.stage2. Because there is no d value corresponding to the attachment point on the top
blades, there is nothing to increase to reflect the fact that the effective flexure point is a few mm
below the top blades. For the sake of discussion let us consider the quad and retrospectively call
this quantity dl (since we are adding it before dm and dn). It makes exactly no difference to the A
matrix (which describes the pendulum internal dynamics and determines the mode frequencies)
because not changing it along with all the other dimensional changes to mimic wire stiffness is
tantamount to simply hanging the pendulum at a different height. But dl does make a difference to
the B matrix (which describes the effect of external inputs) because pitch and roll of the structure
are reckoned about the line through the blade tips. Thus the main effect is to throw away a small
cross-coupling from pitch of the structure due to the fact that the true effective flexure point is a
few mm below the pitch axis. This would be easy to fix if it ever proved important, although it
would require backwardly incompatible changes to multiple Matlab and Mathematica models. Note
that this neglected effect is not the difference between zero and non-zero coupling from pitch of the
structure – there is another coupling due to the way the top blades curl up when their working
direction is pitched and no longer in the plane of the top wires, but it is smaller again.

2.6.2 Support for blade lateral compliance
Flexure of the blades in the “lateral” direction (i.e., at right angles to the length of the blade) turns
out to be a significant effect in the quad. It is roughly equivalent to a reduced (more negative) “d”
distance at the associated wire attachment point and lowers the fundamental pitch frequency. If not
corrected, by increasing one or more of the d’s, it can easily push the system into instability.
The effect was modeled exactly in Mathematica, and an alternative set of Matlab matrix elements
was exported for each of quad and triple: symbexport4lat.m and symbexport3lat.m.
They are used if the parameter file defines values for any of the lateral compliance fields of the
pend data structure: pend.kxn, pend.kx1 or pend.kx2. See Table 3 for the correspondence
between Mathematica and Matlab names.

2.6.3 Dual blade triple model
At one point a triple design with only two blades at the top mass was considered (i.e., the blade
count was 2+2 rather than 2+4). To support this, additional sets of matrix elements for dual blades
with and without blade lateral compliance were derived: symbexport3db.m and
symbexport3dblat.m. One or other of these is activated if the switch pend.db is set to a

Advanced LIGO LIGO-T080188-v2

 12

non-zero value in the triple parameter file, depending on whether blade lateral compliances are also
defined (see above).

2.6.4 “Full” versions
In the quad, the blade springs in the top and upper intermediate masses are rather long and need to
be slightly angled to fit. The large clamps holding the blade bases are off the transverse centreline,
which creates off-diagonal terms in the MOI tensors for those masses. This in turn means that the
longitudinal/pitch and transverse/roll subsystems are no longer independent, but significantly cross-
coupled. To accommodate this, an alternative set of matrix elements symbexport4latfull.m
was prepared with all 24 DOFs in one big state space. Because the (lack of) partitioning of the
DOFs affects many of the supporting utilities in a way that the variants discussed above do not, it is
used with a separate ssmake file (ssmake4pv2eMB4f.m or the like) and a separate Simulink
model (pendf.mdl or the like). There are typically two versions of the Simulink model, one that
uses an LTI block with an enormous number of scalar inputs and outputs to encapsulate the state
space and a “vector” version (pendfv.mdl or the like) that uses a smaller number of vector
inputs and outputs to simplify the plumbing by grouping signals of the same type.
Later, for completeness, a symbexport3full.m was prepared, not because any significant
asymmetry is suspected in the triples, but so that controller code based on
symbexport4latfull.m could be more easily adapted. The files symbexport3dbfull.m
and symbexport3dblatfull.m are currently dummy versions that generate an error message
if invoked, but substantive versions could easily be made if they were ever required. The file
symbexport3latfull.m was a dummy in -v1 of this document but a substantive version was
created for -v2. See Table 3 for the names of the off-diagonal MOI terms that can be specified.

2.6.5 Double pendulum models
There are two independent versions of a Matlab model of a double pendulum (as for the aLIGO
Output Mode Cleaner suspension). One, by Chris Cueva, is a cut-down version of an older triple
model and lacks modern conveniences like explicit allowance for wire bending. It has been used to
produce results for the OMS SUS final design report, T080104-00. A second, by Mark Barton is
based on the modern code with a set of matrix elements from Mathematica exists but has not seen
production use.

2.6.6 Other models
There are many other models that exist in Mathematica form and could be converted to Matlab
with a day or two’s work. These include a iLIGO-style single pendulum without blades, and an
aLIGO TipTilt-style single pendulum with blades. Readers who would find Matlab versions of this
or other models helpful should ask Mark Barton to do a conversion.

3 Code Archive
Associated with this document in the DCC is a code archive with historically important versions of
the triple and quad models.

Advanced LIGO LIGO-T080188-v2

 13

3.1.1 Calum Torrie Thesis Triple
This is the original model from Calum Torrie's thesis (P000040-v1). To use, run one of the
parameter files, ajt.m or jbr.m.

3.1.2 Second Generation Triple
This is the original triple model as adapted by Ken Strain et al., based on Calum's matrix elements.,
with conveniences such as a Simulink wrapper model to do time domain simulation. To use, run
pend_ref.m and/or generate_simulink.m.

3.1.3 Second Generation Quad
This is a quad model parallel to the second generation triple model above, created by Ken Strain et
al., with matrix elements derived by cloning a level in Calum's triple matrix elements, and with the
same conveniences as the second generation triple. To use, run quad_ref.m and/or
generate_simulink.m.

3.1.4 Third Generation Triple
This is the triple model as reworked by Mark Barton, using matrix elements exported from
Mathematica. It supports the same conveniences as the second-generation triple but includes a
better blade model with vertically acting blades and options for explicit wire bending stiffness,
blade lateral compliance, and double (rather than four) blades at the middle level. To work with it
as four separate subsystems (longitudinal/pitch etc), run pend_ref.m and/or
generate_simulink.m. To work with it as one large system, run pend_ref_f.m and/or
generate_simulink_f.m.

3.1.5 Third Generation Quad
This is the quad model as reworked by Mark Barton, using matrix elements exported from
Mathematica. It supports the same conveniences as the second-generation quad but includes a
better blade model with vertically acting blades and options for explicit wire bending stiffness and
blade lateral compliance. To work with it as four separate subsystems (longitudinal/pitch etc), run
quad_ref.m and/or generate_simulink.m. To work with it as one large system, run
quad_ref_f.m and/or generate_simulink_f.m.

3.1.6 Second Generation Double
This has been adapted by Chris Cueva from the second generation triple. To use, run
pend_ref_doublep.m and/or generate_simulink_doublep.m.

3.1.7 Third Generation Double
This has been adapted by Mark Barton from the second generation triple. To work with it as four
separate subsystems (longitudinal/pitch etc), run double_ref.m and/or
generate_simulink.m. To work with it as one large system, run double_ref_f.m and/or
generate_simulink_f.m

4 Tables

Advanced LIGO LIGO-T080188-v2

 14

Table 1: Quad/triple pendulum nomenclature. The order within each group is always from
the top down, with quantities with “3” in the name typically referring to the optic. Quantities
in parentheses are for the quad only.

Symbol Description

(nwn), nw1, nw2, nw3 numbers of wires (NOTE: for historical reasons
these are treated as inputs, but setting them to
anything but 2,4,4,4 (quad) or 2,4,4 (triple) in
the Mathematica-derived code will give
undefined results.)

(mn), m1, m2, m3 masses

(Inx), I1x, I2x, I3x MOIs about x direction (i.e., for roll)

(Iny), I1y, I2y, I3y MOIs about y direction (i.e., for pitch)

(Inz), I1z, I2z, I3z MOIs about z direction (i.e., for yaw)

(kwn), kw1, kw2, kw3 wire stretching elasticities, per side (rather than
per wire)

(dm), d0, d2, d4 vertical distances from the COMs of the
respective masses up to the wire attachment
points for wires coming down from above

(dn), d1, d3 vertical distances from the COMs of the
respective masses up to the wire attachment
points for wires coming down from above.
(There is no d5, because nothing hangs down
from the optic.)

(nn0, nn1), n0, n1, n2, n3, n4, n5 longitudinal distances from the centre to the
wire attachment points

(sn), su, si, sl transverse distances from the centre to the wire
attachment points (NOTE: sn in the quad and su
in the triple are ignored.)

(ln), l1, l2, l3 wire lengths (under tension)

(Yn), Y1, Y2, Y3 Young’s moduli for the wires

kcn, kc1, kc2, kc3 blade stiffnesses in the working direction (per
side rather than per blade)

Additional quantities used in some references or within the code

(mn3), m13, m23 sum of all masses from the indicated stage down
to the bottom

(Ωn), Ω1, Ω2, Ω3 wire angles from the vertical as viewed face on
(+ve = wider at the bottom)

(cn), c1, c2, c3 cosines of Ωn,…Ω3

Advanced LIGO LIGO-T080188-v2

 15

sin, si1, si2, si3 sines of Ωn,…Ω3 (+ve = wider at the bottom)

(flexn), flex1, flex2, flex3 wire flexure lengths

(tln), tl1, tl2, tl3 “true lengths”, i.e, vertical distances from COM
to COM

(An), A1, A2, A3 wire cross-sectional areas

(Mn1), M11, M21, M31 wire moments of area for bending in the
longitudinal direction

(Mn2), M12, M22, M32 wire moments of area for bending in the
transverse direction

(ufcn), ufc1, ufc2 “uncoupled frequencies”, i.e., the resonant
frequencies that would be obtained if each
spring supported only its share of the stage
immediately below

Table 2: Correspondences between blade and wire quantities in Matlab vs. Mathematica.
Items in () only apply in models that include blade lateral compliance (usual for quad, but not
triple).

Matlab Mathematica

Quad

kn kwn

k1 2*kw1 (two wires per side)

k2 2*kw2 (two wires per side)

k3 2*kw3 (two wires per side)

kcn kbuz

kc1 kbiz

kc2 kblz

(kxn) (kbux)

(kx1) (kbix)

(kx2) (kblx)

Triple

k1 kw1

k2 2*kw2 (two wires per side)

k3 2*kw3 (two wires per side)

kc1 kbuz

Advanced LIGO LIGO-T080188-v2

 16

kc2 2*kblz (two blades per side)

(kx1) (kbux)

(kx2) (2*kblx) (two blades per side)

Table 3: Additional quantities used in extended versions of the models (see below)

Symbol Description

kxn, kx1, kx2, kx3 blade stiffnesses in the lateral direction (per side
rather than per blade)

(Inxy, Inyz, Inzx), I1xy, I1yz, I1zx, I2xy, I2yz,
I2zx, I3xy, I3yz, I3zx

off-diagonal components of the MOI tensors for
the masses

