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1 Introduction 

1.1 Purpose and Scope 
This document explains the physical assumptions, internal structure and usage of the models of the 
Advanced LIGO suspensions originally written in MATLAB by Calum Torrie, Ken Strain et al., 
and now maintained by Mark Barton. 

1.2 References 
P000039-00, Matthew Husman, PhD Thesis, 1999, University of Glasgow. 

P000040-v1, Calum Torrie, PhD Thesis, 2000, University of Glasgow 
T050255-07, Investigation into blade torsion, blade lateral flexibility, and the effect they have on 
blade and wire performance, I. Wilmut et al. 
T020205-02, Suspension models in Mathematica, M.A. Barton 

T020011-00, Suspension model comparisons, M.A. Barton. 
T070101-00, Dissipation dilution, M.A. Barton. 

T080096-00, Flexure corrections, M.A. Barton. 
T010103-05, Advanced LIGO Suspension System Conceptual Design, N. Robertson, et al. 

1.3 Version history 
8/11/08: First draft, as T080188-00. 

6/24/11: Second draft, as T080188-v1draft 

7/28/11: -v1. 
1/6/12:  -v2. Upgraded symbexport3latfull.m in associated code archive from placeholder to 
substantive version. 

2 History 

2.1 Initial triple model by Calum Torrie 
For his PhD thesis, Calum Torrie created a Matlab model of the GEO triple suspension. The 
suspension to be modeled consisted of (from the top down): 

• Two blade springs 

• Two wires (one per blade) 

• A top mass with four blade springs 

• Four wires (one per blade) 

• An intermediate mass 

• Four wires 
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• The optic 
This is the same generic structure as the aLIGO BS/FM, HSTS and HLTS. It is pictured in Figure 
1, taken from the suspension conceptual design, T080187, and Figure 2, taken from the output of 
the equivalent Mathematica model. To make this tractable for a hand derivation, a number of 
approximations were made: 

• The 18 DOFs of the three masses were partitioned into four subsystems, which for 
symmetrical designs should be orthogonal: longitudinal/pitch (6 DOFs), transverse/roll (6), 
yaw (3), and vertical (3). 

• The blades were allowed for by adding the compliance of the blades to that of the 
associated wires. This is an essentially perfect approximation if the working direction of the 
blades is aligned with that of the wires, and was still quite workable for the GEO design, 
which had the blade tips moving vertically but the wires at a modest diagonal. 

• Four wires were assumed at each level in the derivation to maximize the similarity between 
the stages, and the fact that there are only two wires at the top level was allowed for by 
setting the front/back separation to zero there (Su=0). 

• The wire bending stiffness was neglected in the Matlab model, but allowed for later by 
making corrections to the “d” values en route to manufacture (see T080096-00).  

• The blade lateral compliance (see T050255-07, T080096-00) was not included, but 
fortunately was not significant for the parameters settled on. 
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• Figure 1: Geometry of triple pendulum models – front and side views (from T080187)  
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Figure 2: More realistic schematic of the triple (output of eigenplot[] in the Mathematica 
model). The blade spring tips are represented by small boxes. 

 
 

2.2 Initial quad model by Ken Strain et al. 
Ken Strain et al. later generalized the triple model to an aLIGO-style quad (Figure 3) by strategic 
copying, pasting and renaming of matrix elements and parameters to add a “new” top mass: 

• Two blade springs 

• Two wires (one per blade) 

• A top mass with two blade springs (mn) 

• Four wires (two per blade) 

• An “upper-intermediate” mass with two blade springs (m1 – cf. triple top mass) 

• Four wires (two per blade) 
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• A “penultimate” mass (m2– cf. triple intermediate mass) 

• Four wires 

• The optic (m3– cf. triple optic) 

The above generic structure is pictured in Figure 3, taken from the suspension conceptual design, 
T010103-05, and Figure 4, taken from the output of the Mathematica model. As with the initial 
version of the triple model, the blades were allowed for by corrections to the wire compliances and 
do not appear explicitly. A fuller listing of parameters is given in Table 1. 

Because in the quad it is no longer the case that there is one wire per blade in all cases, the strategy 
for including the effect of the blades had to be adjusted. In the transverse/roll, yaw, and vertical 
subsytems the blade and wire compliances were added as previously. However in 
longitudinal/pitch there are several modes crucially involving differential stretching of the two 
wires on a single blade tip. Fortunately none of the longitudinal/pitch modes have significant 
excursion of the blades themselves, so a good approximation was to take the blades to have zero 
compliance for this subsystem only. 
Figure 3: Geometry of quad pendulum models (from T010103).  
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Figure 4: More realistic schematic of the quad (output of eigenplot[] from the Mathematica 
model). The blade spring tips are represented by small boxes. 
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2.3 Numerical validation against the Mathematica models 
As a check on the Matlab, equivalent models were created in Mathematica using a pendulum 
modeling toolkit developed by Mark Barton (T020205). Parameter names were chosen to match as 
far as convenient, the main exception being in the stiffness of the wires and blades. As noted above, 
the Matlab models had adopted a convention of specifying these per side (whether there were two 
or four wires per side). Since wires and springs had to be modeled individually and explicitly in 
Mathematica, this was no longer natural. Rather than having different interpretations of identically 
named symbols, the names for wire and blade stiffness were deliberately chosen not to match. See 
Table 1 for the correspondences. 
The Matlab models were initially validated numerically against the Mathematica models as 
described in T020211. 
The Mathematica models explicitly included blades from the beginning, and the code included a 
switch to make the working direction of the blades either vertical (as in the physical system) or in 
line with the associated wires, as assumed for convenience in the Matlab. With the angled blades, 
the agreement with the Matlab was essentially perfect (three-figure or better agreement in the mode 
frequencies and shapes), validating both code bases.  

2.4 Symbolic validation against the Mathematica models 
Later (2005) the validation was redone exactly, by generating symbolic versions of the matrix 
elements in Mathematica, importing the ones from from Matlab and comparing them using 
Mathematica’s symbolic algebra features. Calum’s original code was shown to be exactly correct 
relative to the assumptions and approximations used to derive it, but some minor errors had crept 
into the working version of the triple and into the quad, and these were corrected. 

2.5 Incorporation of Mathematica-derived code 
Since the Mathematica could just as easily generate matrix elements for the improved blade model 
with the working direction vertical and export them as Matlab code, the opportunity was taken to 
swap these in. The implementation for the triple is as follows (the quad is very similar): 

• The equivalent Mathematica model (TripleLite2) is intercepted at the point where numerical 
partial derivatives of the kinetic and potential energies are taken to produce the kinetic 
(mass) and potential (stiffness) matrices, and diverted to produce symbolic results instead.  

• Substitutions are made for a few symbols that have different names or interpretations in the 
Matlab (see Table 2). (Because reckoning the elasticity per side was unnatural in the 
Mathematica where each wire and blade is specified individually, the elasticities were 
deliberately given different names rather than having quantities with the same name but 
different interpretations.) 

• Symbolic versions of the kinetic matrix (km) and key sub-blocks of the master potential 
matrix (qm, xm, cqsm, cqxm, cxsm) are exported in Matlab syntax to a file with a name like 
symbexport3.m. (See Section 2.2, especially 2.2.2ff of T020205-v2 for the significance of 
these matrices.) 

•  In Matlab, the command file ssmake3MB.m loads triplep.m to define numerical values 
of parameters as fields of a structure pend and then runs symbexport3.m to get 
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numerical versions of km, qm, xm, etc. It assembles these into state space matrices, 
permuting rows and columns in some cases where the canonical order in the Mathematica 
(x/y/z/yaw/pitch/roll/…) differs from that in the Matlab. The reason for this division of 
labour is that the final steps involve taking some matrix inverses which could in principle 
be done symbolically on the Mathematica side but which would create inconveniently large 
expressions. 

• The state space matrices are used to calculate the eigenmodes and eigenfrequencies, and to 
do time-domain simulation with Simulink, as with the old code.  

Since this reworking, the Matlab code for both the quad and triple models has been dependent on 
the Mathematica, and has inherited all major improvements made on the Mathematica side. The 
only feature of the older Matlab models not supported in new ones is that the number of wires at 
the top level (nwn for quad and nw1 for triple) is hardwired to two. The front-to-back wire 
separation at the top level (sn or su) is ignored. 

Most of the models used to derive matrix elements as well as the actual derivations are published 
on the aLIGO SUS SVN repository at 

https://redoubt.ligo-wa.caltech.edu/websvn/listing.php?repname=sus& .  

See the associated wiki for instructions: 
https://awiki.ligo-wa.caltech.edu/aLIGO/Suspensions/MathematicaModels . 

Within each model (TripleLite2 or the like), the derivation of the matrix elements is done in a 
pseudo-case MatrixElementExport in the mark.barton folder, e.g.,  

^/trunk/Common/MathematicaModels/TripleLite2/mark.barton/MatrixElementExport 
where “^” is the repository root. For all of the published models there is provision for exporting the 
parameter set that defines a case  of the Mathematica model as a Matlab command file usable with 
the associated Matlab model. The default case of each model comes with sample code, e.g.,  

^/trunk/Common/MathematicaModels/TripleLite2/default/stdcalc/ASUS3L2ModelCalcExport.nb 
generates 

^/trunk/Common/MathematicaModels/TripleLite2/default/stdcalc/TripleLite2_default_triplep.m 

2.6 Additional features developed in Mathematica and transplanted 

2.6.1 Explicit support for wire bending stiffness 
Early versions of the Matlab code ignored the bending stiffness of the wires. This was known from 
the beginning to be a significant effect, which particularly affects the lower pitch frequencies. It 
was allowed for by designing in terms of an ideal pendulum with flexible wires and then making 
corrections in the detailed mechanical design. Since the effective flexure point of the wire is a 
calculable distance inset from the attachment points, the required correction is to move the wire 
attachment points out by this amount at each end to make the effective flexure point correspond to 
the ideal model. 

Because the effect of the wires amounts to a simple change of position of the wire attachment 
points, it turns out to be fairly simple to include this in the Matlab. The approach was developed in 
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Mathematica and tested against the “Stage 2” calculation which includes wire bending potential 
terms. The “d” and “n” distances (vertical and horizontal wire attachment positions) are adjusted to 
move the wire attachment points in along the direction of the wires by a flexure length at each end. 
The “l” values (wire lengths) are shortened to compensate for the inset attachment points and keep 
the overall dimensions the same, but the wire stretching elasticities are calculated from the 
unadjusted lengths. With these few subtleties ironed out, the agreement is essentially perfect - 
typically four significant figures or better in the mode frequencies. See T080096. 
A switch pend.stage2 enables this. If it is defined and non-zero, the geometry defined in the 
parameter file is interpreted as physical attachment points and transformed to effective values for 
ideally flexible wire as above before the matrix elements are evaluated.  
Note however that there is a very slight known error in the B matrices generated with 
pend.stage2. Because there is no d value corresponding to the attachment point on the top 
blades, there is nothing to increase to reflect the fact that the effective flexure point is a few mm 
below the top blades. For the sake of discussion let us consider the quad and retrospectively call 
this quantity dl (since we are adding it before dm and dn). It makes exactly no difference to the A 
matrix (which describes the pendulum internal dynamics and determines the mode frequencies) 
because not changing it along with all the other dimensional changes to mimic wire stiffness is 
tantamount to simply hanging the pendulum at a different height. But dl does make a difference to 
the B matrix (which describes the effect of external inputs) because pitch and roll of the structure 
are reckoned about the line through the blade tips. Thus the main effect is to throw away a small 
cross-coupling from pitch of the structure due to the fact that the true effective flexure point is a 
few mm below the pitch axis. This would be easy to fix if it ever proved important, although it 
would require backwardly incompatible changes to multiple Matlab and Mathematica models. Note 
that this neglected effect is not the difference between zero and non-zero coupling from pitch of the 
structure – there is another coupling due to the way the top blades curl up when their working 
direction is pitched and no longer in the plane of the top wires, but it is smaller again.  

2.6.2 Support for blade lateral compliance 
Flexure of the blades in the “lateral” direction (i.e., at right angles to the length of the blade) turns 
out to be a significant effect in the quad. It is roughly equivalent to a reduced (more negative) “d” 
distance at the associated wire attachment point and lowers the fundamental pitch frequency. If not 
corrected, by increasing one or more of the d’s, it can easily push the system into instability. 
The effect was modeled exactly in Mathematica, and an alternative set of Matlab matrix elements 
was exported for each of quad and triple: symbexport4lat.m and symbexport3lat.m. 
They are used if the parameter file defines values for any of the lateral compliance fields of the 
pend data structure: pend.kxn, pend.kx1 or pend.kx2. See Table 3 for the correspondence 
between Mathematica and Matlab names. 

2.6.3 Dual blade triple model 
At one point a triple design with only two blades at the top mass was considered (i.e., the blade 
count was 2+2 rather than 2+4). To support this, additional sets of matrix elements for dual blades 
with and without blade lateral compliance were derived: symbexport3db.m and 
symbexport3dblat.m. One or other of these is activated if the switch pend.db is set to a 
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non-zero value in the triple parameter file, depending on whether blade lateral compliances are also 
defined (see above). 

2.6.4 “Full” versions 
In the quad, the blade springs in the top and upper intermediate masses are rather long and need to 
be slightly angled to fit. The large clamps holding the blade bases are off the transverse centreline, 
which creates off-diagonal terms in the MOI tensors for those masses. This in turn means that the 
longitudinal/pitch and transverse/roll subsystems are no longer independent, but significantly cross-
coupled. To accommodate this, an alternative set of matrix elements symbexport4latfull.m 
was prepared with all 24 DOFs in one big state space. Because the (lack of) partitioning of the 
DOFs affects many of the supporting utilities in a way that the variants discussed above do not, it is 
used with a separate ssmake file (ssmake4pv2eMB4f.m or the like) and a separate Simulink 
model (pendf.mdl or the like). There are typically two versions of the Simulink model, one that 
uses an LTI block with an enormous number of scalar inputs and outputs to encapsulate the state 
space and a “vector” version (pendfv.mdl or the like) that uses a smaller number of vector 
inputs and outputs to simplify the plumbing by grouping signals of the same type. 
Later, for completeness, a symbexport3full.m was prepared, not because any significant 
asymmetry is suspected in the triples, but so that controller code based on 
symbexport4latfull.m could be more easily adapted. The files symbexport3dbfull.m 
and symbexport3dblatfull.m are currently dummy versions that generate an error message 
if invoked, but substantive versions could easily be made if they were ever required. The file 
symbexport3latfull.m was a dummy in -v1 of this document but a substantive version was 
created for -v2. See Table 3 for the names of the off-diagonal MOI terms that can be specified. 

2.6.5 Double pendulum models 
There are two independent versions of a Matlab model of a double pendulum (as for the aLIGO 
Output Mode Cleaner suspension). One, by Chris Cueva, is a cut-down version of an older triple 
model and lacks modern conveniences like explicit allowance for wire bending. It has been used to 
produce results for the OMS SUS final design report, T080104-00. A second, by Mark Barton is 
based on the modern code with a set of matrix elements from Mathematica exists but has not seen 
production use. 

2.6.6 Other models 
There are many other models that exist in Mathematica form and could be converted to Matlab 
with a day or two’s work. These include a iLIGO-style single pendulum without blades, and an 
aLIGO TipTilt-style single pendulum with blades. Readers who would find Matlab versions of this 
or other models helpful should ask Mark Barton to do a conversion. 

3 Code Archive 
Associated with this document in the DCC is a code archive with historically important versions of 
the triple and quad models. 
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3.1.1 Calum Torrie Thesis Triple 
This is the original model from Calum Torrie's thesis (P000040-v1). To use, run one of the 
parameter files, ajt.m or jbr.m. 

3.1.2 Second Generation Triple 
This is the original triple model as adapted by Ken Strain et al., based on Calum's matrix elements., 
with conveniences such as a Simulink wrapper model to do time domain simulation. To use, run 
pend_ref.m and/or generate_simulink.m. 

3.1.3 Second Generation Quad 
This is a quad model parallel to the second generation triple model above, created by Ken Strain et 
al., with matrix elements derived by cloning a level in Calum's triple matrix elements, and with the 
same conveniences as the second generation triple. To use, run quad_ref.m and/or 
generate_simulink.m. 

3.1.4 Third Generation Triple 
This is the triple model as reworked by Mark Barton, using matrix elements exported from 
Mathematica. It supports the same conveniences as the second-generation triple but includes a 
better blade model with vertically acting blades and options for explicit wire bending stiffness, 
blade lateral compliance, and double (rather than four) blades at the middle level. To work with it 
as four separate subsystems (longitudinal/pitch etc), run pend_ref.m and/or 
generate_simulink.m. To work with it as one large system, run pend_ref_f.m and/or 
generate_simulink_f.m. 

3.1.5 Third Generation Quad 
This is the quad model as reworked by Mark Barton, using matrix elements exported from 
Mathematica. It supports the same conveniences as the second-generation quad but includes a 
better blade model with vertically acting blades and options for explicit wire bending stiffness and 
blade lateral compliance. To work with it as four separate subsystems (longitudinal/pitch etc), run 
quad_ref.m and/or generate_simulink.m. To work with it as one large system, run 
quad_ref_f.m and/or generate_simulink_f.m. 

3.1.6 Second Generation Double 
This has been adapted by Chris Cueva from the second generation triple. To use, run 
pend_ref_doublep.m and/or generate_simulink_doublep.m. 

3.1.7 Third Generation Double 
This has been adapted by Mark Barton from the second generation triple. To work with it as four 
separate subsystems (longitudinal/pitch etc), run double_ref.m and/or 
generate_simulink.m. To work with it as one large system, run double_ref_f.m and/or 
generate_simulink_f.m 

4 Tables 
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Table 1: Quad/triple pendulum nomenclature. The order within each group is always from 
the top down, with quantities with “3” in the name typically referring to the optic. Quantities 
in parentheses are for the quad only. 

Symbol  Description 

(nwn), nw1, nw2, nw3 numbers of wires (NOTE: for historical reasons 
these are treated as inputs, but setting them to 
anything but 2,4,4,4 (quad) or 2,4,4 (triple) in 
the Mathematica-derived code will give 
undefined results.) 

(mn), m1, m2, m3 masses 

(Inx), I1x, I2x, I3x MOIs about x direction (i.e., for roll) 

(Iny), I1y, I2y, I3y MOIs about y direction (i.e., for pitch) 

(Inz), I1z, I2z, I3z MOIs about z direction (i.e., for yaw) 

(kwn), kw1, kw2, kw3 wire stretching elasticities, per side (rather than 
per wire) 

(dm), d0, d2, d4 vertical distances from the COMs of the 
respective masses up to the wire attachment 
points for wires coming down from above 

(dn), d1, d3 vertical distances from the COMs of the 
respective masses up to the wire attachment 
points for wires coming down from above. 
(There is no d5, because nothing hangs down 
from the optic.) 

(nn0, nn1), n0, n1, n2, n3, n4, n5 longitudinal distances from the centre to the 
wire attachment points 

(sn), su, si, sl transverse distances from the centre to the wire 
attachment points (NOTE: sn in the quad and su 
in the triple are ignored.) 

(ln), l1, l2, l3 wire lengths (under tension) 

(Yn), Y1, Y2, Y3 Young’s moduli for the wires 

kcn, kc1, kc2, kc3 blade stiffnesses in the working direction (per 
side rather than per blade) 

Additional quantities used in some references or within the code 

(mn3), m13, m23 sum of all masses from the indicated stage down 
to the bottom 

(Ωn), Ω1, Ω2, Ω3 wire angles from the vertical as viewed face on 
(+ve = wider at the bottom)  

(cn), c1, c2, c3 cosines of Ωn,…Ω3 
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sin, si1, si2, si3 sines of Ωn,…Ω3 (+ve = wider at the bottom) 

(flexn), flex1, flex2, flex3 wire flexure lengths 

(tln), tl1, tl2, tl3 “true lengths”, i.e, vertical distances from COM 
to COM 

(An), A1, A2, A3 wire cross-sectional areas 

(Mn1), M11, M21, M31 wire moments of area for bending in the 
longitudinal direction 

(Mn2), M12, M22, M32 wire moments of area for bending in the 
transverse direction 

(ufcn), ufc1, ufc2 “uncoupled frequencies”, i.e., the resonant 
frequencies that would be obtained if each 
spring supported only its share of the stage 
immediately below 

 

Table 2: Correspondences between blade and wire quantities in Matlab vs. Mathematica. 
Items in () only apply in models that include blade lateral compliance (usual for quad, but not 
triple). 

Matlab  Mathematica 

Quad 

kn kwn 

k1 2*kw1 (two wires per side) 

k2 2*kw2 (two wires per side) 

k3 2*kw3 (two wires per side) 

kcn kbuz 

kc1 kbiz 

kc2 kblz 

(kxn) (kbux) 

(kx1) (kbix) 

(kx2) (kblx) 

Triple 

k1 kw1 

k2 2*kw2 (two wires per side) 

k3 2*kw3 (two wires per side) 

kc1 kbuz 
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kc2 2*kblz (two blades per side) 

(kx1) (kbux) 

(kx2) (2*kblx) (two blades per side) 

 
Table 3: Additional quantities used in extended versions of the models (see below) 

Symbol Description 

kxn, kx1, kx2, kx3 blade stiffnesses in the lateral direction (per side 
rather than per blade) 

(Inxy, Inyz, Inzx), I1xy, I1yz, I1zx, I2xy, I2yz, 
I2zx, I3xy, I3yz, I3zx 

off-diagonal components of the MOI tensors for 
the masses 

 
 

 
 


