Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors

Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Massachusetts Institute of Technology

ACC 2011 - G1100750-v2

Gravitational Waves

- Supernovae
 - Asymmetry required
- Coalescing Binaries
 - Black Holes or Neutron Stars Mergers
 ACC 2011 - G1100750

- Pulsars
 - Asymmetry required
- Stochastic Background (Big bang, etc.)

LIGO The Laser Interferometer Gravitational-wave Observatory (LIGO)

4

Quadruple Pendulum

ACC 2011 - G1100750

Quadruple Pendulum (Quad) Isolation

Advanced LIGO Sensitivity

Quad Pendulum Actuators

Outline

- Gravitational Waves and LIGO
- Quadruple Pendulum
- Control of the Quad Pendulum
- Actuator Sizing
- Conclusion

Optical Arm Cavity Control

Optical Arm Cavity Control

10

Disturbance Spectrum

Amplitude Spectum of R

Arm Control Block Diagram

+ -> Moore-Penrose pseudoinverse

ACC 2011 - G1100750

Minimum SISO Actuation

Actuator	RMS (V)	Saturation Probability (p)	
1 st	3.05 X 10 ⁹	1	
2 nd	1.27 X 10 ¹²	1	
3 rd	6.29 X 10 ⁶	1	
4 th	3.82	0.0087766	

Minimum Least Squares Actuation

Actuator	RMS (V, 10 V max)	Saturation Probability (p)
1 st	3.29 X 10 ⁻³	0
2 nd	1.00 X 10 ⁻⁴	0
3 rd	2.09 X 10 ⁻⁶	0
4 th	0.569	3.3 X 10 ⁻⁶⁹

Conclusions

- The pseudoinverse of the combined plant TF shows the actuators have enough range with reasonable margin.
- Also shows which actuator is most effective at each frequency.
- No feedback design is required.
- The pseudoinverse can guide feedback design.

Back Ups

Example Feedback Loop Gains

Crossover Frequencies 1st: 5 Hz 2nd: NA 3rd: 50 Hz 4th: 500 Hz

Actuator	Feedforward RMS (V)	Feedback RMS (V)	Saturation Probability (p)
1 st	3.29 X 10 ⁻³	3.7 X 10^-3	0
2 nd	1.00 X 10 ⁻⁴	0	0
3 rd	2.09 X 10 ⁻⁶	2 X 10^-2	0
4 th	0.569	8 X 10^-5	0

Location of Quadruple Pendulums

ACC 2011 - G1100750

Seismic Noise

• Tides - ≈ 10⁻⁵ Hz

• Microseismic peak - ≈ 0.1 to 0.3 Hz

• Anthropogenic Noise - \approx 1 to 10 Hz

20

Thermal Noise

System in thermal equilibrium

b = dissipation factor (damping)
T = Temperature (Kelvin)
k_b = Boltzmann's Constant

Mean energy: (equipartition function)

Quantized Optical Noise

Discrete Photons in laser beam

Laser light consists of a finite (and uncertain) numbers of photons.

The momentum transfer onto the test mass from a random distribution of photons produces *radiation pressure noise*.

The random distribution of photons arriving at the photodetector produces *shot noise*.

Actuators

Advanced LIGO Schedule

• Other observatories around the world collecting data during this time.

ACC 2011 - G1100750

Advanced LIGO

- Quantum noise limited in much of band
- Thermal noise in most sensitive region
- About factor of 10 better sensitivity
- Expected sensitivity
 - Neutron star inspirals to about 200 Mpc, ~40/yr
 - 10 M_o black hole inspirals to 775 Mpc, ~30/y

Advanced LIGO Astronomical Reach

LIGO infrastructure designed for a progression of instruments

Nominal 30 year lifetime

All subsystems to be replaced and upgraded

- More powerful laser from 10W to 180 W
- Larger test masses from 10 kg to 40 kg
- More aggressive seismic isolation
- Acc 201 Owerothermal noise coatings

Seismic Isolation

ISI and Quad in LIGO Vacuum Chamber

Prototype ISI and Quad at MIT

Overall Isolation 9 to 10 orders of magnitude at 10 Hz.

- 7 cascaded stages of seismic isolation
 - External Hydraulic Pre-Isolator (HEPI). Active isolation up to 10 Hz.
 - 2 stage Internal Seismic Isolation (ISI). Active isolation up to 30 Hz, passive above.
 - 4 stage Quadruple Pendulum (Quad). Mirror is the final stage. Passive isolation above 1 Hz.

LIGO **Mirrors Suspend from Glass Fibers**

Developed by the University of Glasgow

 Suspension thermal noise suppressed by suspending low loss fused silica test masses from fused silica fibers.

• 0.6m long, 400 μm diameter silica fibers pulled from 3 mm diameter stock and laser welded between the two silica lower stages of the quadruple pendulum.

Figure 3.2: The Pound-Drever-Hall error signal for a Fabry-Perot cavity. The cavity parameters are similar to those of the LIGO 1 arm cavities. $(r_{IT} = 0.986, r_{ET} = 1, \text{ and } \lambda_0 = 1064 \text{ nm.})$ The "linear region" in S_{PDH} is centered at $\Delta = 0$ and approximately 1 nm wide. In this region a standard linear controller can be used to hold the cavity on resonance. The carrier power in the cavity, $|A_{IT_0}^{f_0}|^2$, is also shown for reference. Note that the key is given along with the axis labels.

Cavity Error Signal

Notes

- GW calibration
- Find more up to date solid works model
- References

Notes

- Move actuators sooner
- Concise way to explain 10^-15
- Move quad before sensitivity
- Maybe 1 BD
- Write out notes for each slide

- Use lighter background
- Put on flashdisk
- Clarify LIGO figure
- Expand mirror to quad for transition

ACC 2011 - G1100750