ETHERCAT MODULE LABELS

Each EtherCAT terminal requires a set of labels to represent its signal and power contacts as well as its module identification. A list of available labels is presented below.

Product Number	Label	Color	Usage
BZ1210	09	orange	Module identification
BZ1211	1019	orange	Module identification
BZ1212	2029	orange	Module identification
BZ1213	3039	orange	Module identification
BZ1214	4049	orange	Module identification
BZ1215	5059	orange	Module identification
BZ1104	24V	red	24V supply voltage
BZ1100	0V	blue	Return of 24V supply voltage
BZ1102	_	blue	Negative terminal of supply voltage
BZ1106	+	red	Positive terminal of supply voltage
BZ1155	5V	red	5V supply voltage
BZ1162	GND	blue	Return of 5V supply voltage
BZ1521	СОМ	blue	Common return for converters
BZ1108	PE	green	Power earth
BZ1134	S	green	Shield connection
BZ2000		white	Blank label
BZ1451	I1	yellow	Binary and single-ended analog inputs
BZ1452	12	yellow	Binary and single-ended analog inputs
BZ1453	13	yellow	Binary and single-ended analog inputs
BZ1454	14	yellow	Binary and single-ended analog inputs
BZ1592	15 16	yellow	Binary and single-ended analog inputs
BZ1593	17 18	yellow	Binary and single-ended analog inputs
BZ1446	01	yellow	Binary and single-ended analog outputs
BZ1447	02	yellow	Binary and single-ended analog outputs
BZ1448	03	yellow	Binary and single-ended analog outputs
BZ1449	04	yellow	Binary and single-ended analog outputs
BZ1838	O5 O6	yellow	Binary and single-ended analog outputs
BZ1839	07 08	yellow	Binary and single-ended analog outputs
BZ1795	l1+ l2+	yellow	Differential analog inputs
BZ1796	13+ 14+	yellow	Differential analog inputs
BZ1797	I1- I2-	yellow	Differential analog inputs
BZ1798	13-14-	yellow	Differential analog inputs
BZ1799	Q1+ Q2+	orange	Differential outputs
BZ1800	Q3+ Q4+	orange	Differential outputs
BZ1801	Q1- Q2-	orange	Differential outputs
BZ1802	Q3-Q4-	orange	Differential outputs

BZ1360	+R1+R4	red	4-wire measurement, positive supply
BZ1361	-R1R4	blue	4-wire measurement, negative supply
BZ1481	-R1R4	yellow	4-wire measurement, differential input
BZ1482	+R1+R4	yellow	4-wire measurement, differential input
BZ1318	A1	yellow	Motor output
BZ1319	A2	yellow	Motor output
BZ1734	B1	yellow	Motor output
BZ1735	B2	yellow	Motor output
BZ1124	А	yellow	Encoder input
BZ1126	В	yellow	Encoder input
BZ1692	0047	yellow	Relay contacts

Figure 1: Available Labels.

1. General

A standard EtherCAT module has 10 locations for attaching labels. They are arranged in 2 columns and 5 rows. The top row is used to denote the module number and we only use one location. This leaves 8 locations for marking input, output and power contacts.

0		
1	2	
3	4	
5	6	
7	8	

Figure 2: Label location on standard EtherCAT module.

2. Module Number

We are using an orange number at location 0 to denote the EtherCAT module number, or its position within the stick. This is the same number referenced in the schematics.

3. Signal and Supply Contacts

We list each module and its corresponding labels. We mostly follow the examples given in the manual. Some of the communication terminals do not have label positions and stay as they are.

3.1. Coupler: EK1100, EK1101, EK1501

These are usually labeled by the factory. We use the same.

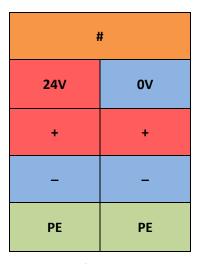


Figure 3: Labels for EtherCAT couplers.

If the terminal is not labeled, the "+" and "-" labels should be replaced by the supply voltage labels as is described for the power supply terminal EL9400.

3.2. Extension: EK1110

This terminal has no contacts. Cover empty locations with white or gray blank labels.

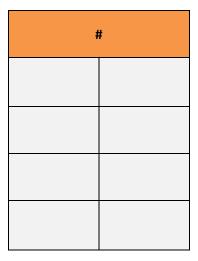


Figure 4: Labels for the extension terminal EK1110.

3.3. Power Supply Terminal: EL9400/EL9410

The power contacts can be used for different voltages. We distinguish 5V supply terminals and 24V supply terminals.

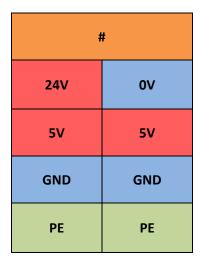


Figure 5: Labels for 5V power supply terminal.

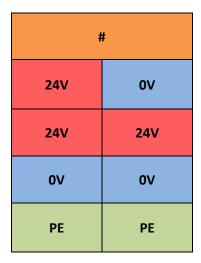


Figure 6: Labels for 24V power supply terminal.

3.4. Feed Terminal: EL9190

The power contacts can be used for different voltages. We distinguish 5V feed terminals and 24V feed terminals. Cover empty locations with white or gray blank labels.

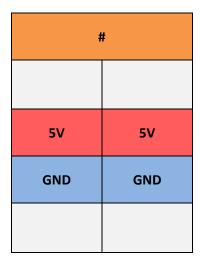


Figure 7: Labels for 5V power supply terminal.

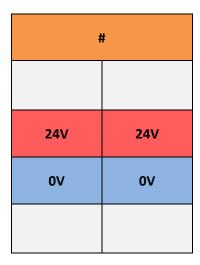


Figure 8: Labels for 24V power supply terminal.

3.5. Analog Input: EL3102

This terminal has a separate common contact to set the ground voltage of the internal converter.

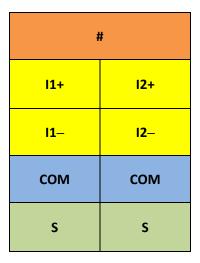


Figure 9: Labels for the 2-channel 16 bit analog input terminal EL3102.

3.6. Analog Input: EL3104

This terminal does not have a separate common contact to set the ground voltage of the internal converter. The converter ground is provided by the power contact ground (on the side).

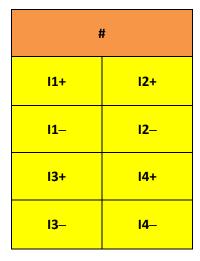


Figure 10: Labels for the 4-channel 16 bit analog input terminal EL3104.

3.7. Temperature Input PT100: EL3202-0010

This terminal uses a 4-wire hookup to accurately measure the resistance of a PT100 element. The supply voltage is provided by the red +R and blue –R contacts. The measurement is done between the yellow +R and –R contacts.

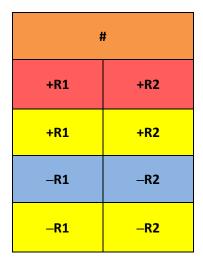


Figure 11: Labels for the 2-channel 16 bit analog input terminal EL3202-0010.

3.8. Resistance Measurement 10 m Ω ...10 M Ω , high-precision: EL3692

This terminal uses a 4-wire hookup to accurately measure the resistance. The supply voltage is provided by the red +R and blue –R contacts. The measurement is done between the yellow +R and –R contacts.

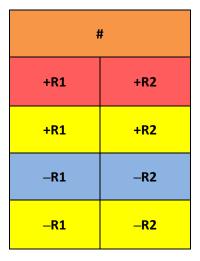


Figure 12: Labels for the 2-channel 16 bit analog input terminal EL3692.

3.9. 4...20mA Analog Input: EL3154

This terminal uses the 24V supply on the power contacts (side) to provide power to the sensors. The current loop is closed through the measurement contacts (lx).

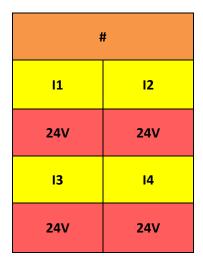


Figure 13: Labels for the 4-channel 16 bit 4...20mA analog input terminal EL3154.

3.10. Analog Output: EL4132

This terminal has a common contact that sets the ground voltage of the internal converter and is used as the ground of the signal output. It has to be wired to the ground of the connected device. Cover empty locations with white or gray blank labels.

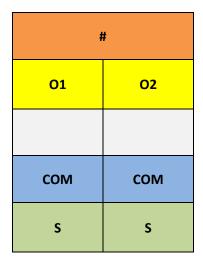


Figure 14: Labels for the 2-channel 16 bit analog output terminal EL4102.

3.11. Analog Output: EL4134

This terminal does not have a separate common contact. The converter ground is provided by the power contact ground (on the side). The output stages of the converter are powered by the power contact for 24V (on the side).

Figure 15: Labels for the 4-channel 16 bit analog output terminal EL4104.

3.12. Digital Input: EL1124

This terminal has to be supplied with 5V through the power feed side contacts.

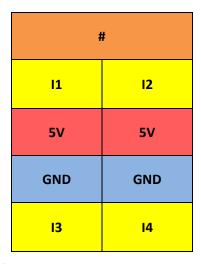


Figure 16: Labels for the 4-channel TTL digital input terminal EL1124.

3.13. Digital Input: EL1012

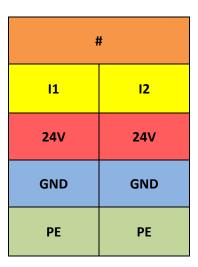


Figure 17: Labels for the 2-channel 24V digital input terminal EL1012.

3.14. Digital Input: EL1014

This terminal has to be supplied with 24V through the power feed side contacts.

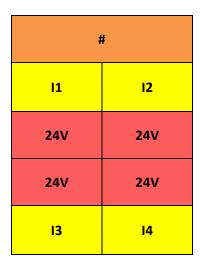


Figure 18: Labels for the 4-channel 24V digital input terminal EL1014.

3.15. Digital Input: EL1018

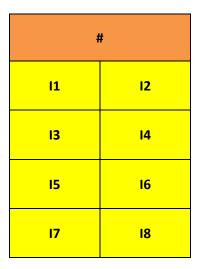


Figure 19: Labels for the 8-channel 24V digital input terminal EL1018.

3.16. Digital Input: EL1094

This terminal has to be supplied with 24V through the power feed side contacts.

#		
11	12	
GND	GND	
GND	GND	
13	14	

Figure 20: Labels for the 4-channel 24V digital input terminal EL1094 (switching to negative potential).

3.17. Digital Input: EL1098

#		
11	12	
13	14	
15	16	
17	18	

Figure 21: Labels for the 8-channel 24V digital input terminal EL1098 (switching to negative potential).

3.18. Digital Output: EL2124

This terminal has to be supplied with 5V through the power feed side contacts.

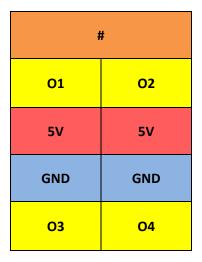


Figure 22: Labels for the 4-channel TTL digital output terminal EL2124.

3.19. Digital Output: EL2002

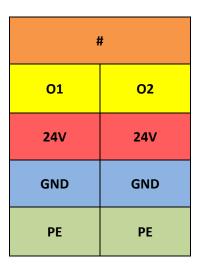


Figure 23: Labels for the 2-channel TTL digital output terminal EL2002.

3.20. Digital Output: EL2004

This terminal has to be supplied with 24V through the power feed side contacts.

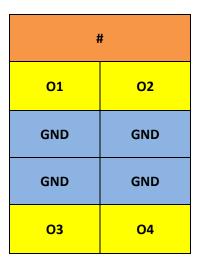


Figure 24: Labels for the 4-channel TTL digital output terminal EL2004.

3.21. Digital Output: EL2008

#		
01	O2	
О3	04	
O5	O6	
07	08	

Figure 25: Labels for the 8-channel TTL digital output terminal EL2008.

3.22. Relay Output: EL2624

This terminal does not use the power feed side contacts, but passes them through.

#		
13	23	
14	24	
33	43	
34	44	

Figure 26: Labels for the 4-channel relay digital output terminal EL2624.

3.23. Safety Digital Input: EL1904

This terminal has to be supplied with 24V through a power feed terminal.

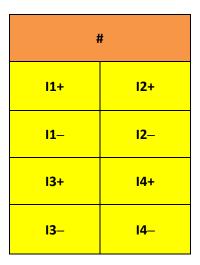


Figure 27: Labels for the 4-channel safety digital input terminal EL1904.

3.24. Safety Digital Output: EL2904

This terminal has to be supplied with 24V through a power feed terminal. Cover empty locations with white or gray blank labels.

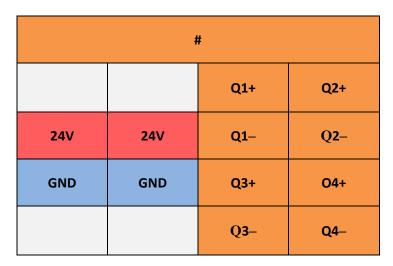


Figure 28: Labels for the 4-channel safety digital output terminal EL2904.

3.25. Safety PLC Terminal: EL6900

This terminal has no contacts. Cover empty locations with white or gray blank labels.

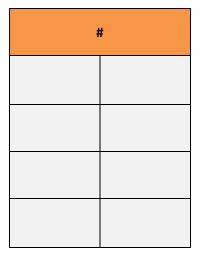


Figure 29: Labels for the safety PLC terminal EL6900.

3.26. Memory Terminal: EL6080

This terminal has no contacts. Cover empty locations with white or gray blank labels.

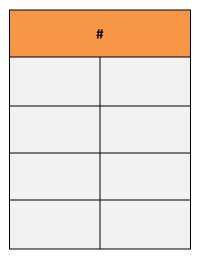


Figure 30: Labels for the memory terminal EL6080.

3.27. Motor Terminal: EL7332

This terminal requires a 24V supply.

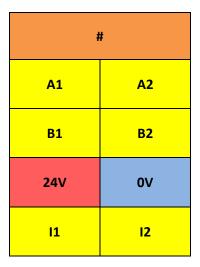


Figure 31: Labels for the motor terminal EL7332.

3.28. Motor Terminal: EL7342

This terminal has to be supplied with 24V through a power feed terminal. Cover empty locations with white or gray blank labels.

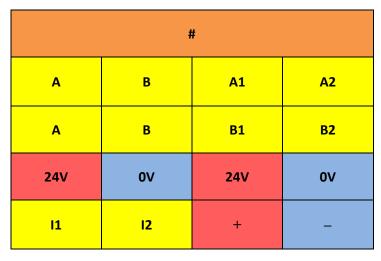


Figure 32: Labels for the 2-channel DC motor output stage 50 V DC, 3.5 A, EL7342.