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Abstract

The basic physics of an optical spring is developed analytically and modeled in

Optickle.

1 Optical spring (longitudinal)

When detuned from resonance, the power circulating within a Fabry-Perot cavity varies lin-
early with small deviations from that detuning. This gives rise to a displacement-dependent
force, which can be described via a spring constant. This e�ect is called the optical spring1.

For frequencies that are slow compared to the cavity pole, we can calculate the behavior
of the spring using a quasi-static approximation, simply using the derivative of the power
buildup versus cavity detuning.

The power circulating in a cavity is:

P+

PIN
=

g2

1 + F sin2 φ
(1)

where PIN is the incident power, P+ is the forward-circulating power, g2 = (t1)
2 / (1− r1r2) is

the power buildup on resonance, F = 4r1r2/ (1− r1r2)2 is the coe�cient of �nesse2, and φ is
the one-way phase detuning of the cavity, which is related to cavity length x as φ = (2π/λ)x.

For a given power circulating in the cavity, the radiation pressure force due to the intra-
cavity power on each of the mirrors is f = 2P/c. We can �nd the spring constant by taking
the derivative:

k ≡ −∂f
∂x

= − ∂

∂x

2P

c
= −2

c

∂φ

∂x

∂P

∂φ

Working out the derivative, we �nd:

1This is the longitudinal optical spring; the angular optical spring arises due to other e�ects.
2The �nesse (F) is related to the coe�cient of �nesse (F ) via F ≈ π

2

√
F .
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∂

∂φ
P+ = −2Fg2 cos(φ) sin(φ)(

1 + F sin2 φ
)2PIN (2)

= −2Fg2PINφ+O
(
φ3
)

(3)

Putting it all together, we get:

k = 2Fg2
(
2PIN
c

)(
2π

λ

)
cos(φ) sin(φ)(
1 + F sin2 φ

)2 (4)

≈ 2Fg2
(
2PIN
c

)(
2π

λ

)
φ

(1 + Fφ2)2
(5)

≈ 2Fg2
(
2PIN
c

)(
2π

λ

)
φ+O

(
φ3
)

(6)

where, of course, φ = (2π/λ)δx, where x is the (one-way) detuning length. If a mirror is
displaced by (δx), the spring constant is:

k ≈ 64F2g2PIN
cλ2

(δx)

Putting in some numbers for the Enhanced LIGO arms:

F = 220

g2 = 137

PIN = 400 Watts

λ = 1064 nm

δx = 5 pm
k ≈ 2500 N/m

For comparison, the mechanical restoring force has a spring constant of approximately

km = mω2 ≈ (10.5 kg) (2π · 0.75 Hz)2 ≈ 230
N

m

It can also be handy to put Eq. 5 into terms of the unitless detuning parameter δγ =
√
Fφ,

where δγ ≡ δ
γ
, where δ is the cavity detuning (in radians/sec), and γ is the line-width (cavity

pole) in the same units. If we further assume that the cavity is strongly-overcoupled, we can
use the relations g2 =

√
F = 2

π
F = 4/T1. With these substitutions (and λ = 2πc/w0), we

recover expression (3.14) given in Thomas Corbitt's thesis [1]:

K0 ≈
64PINw0

T 2c2
δγ(

1 + δ2γ
)2 (7)
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2 Coupled oscillators

Consider a system of two masses, connected to each other via a spring with spring constant
k1 and each connected to the wall via a spring of spring constant k0. (Later, k0 will represent
the pendula by which the optics are suspended, and k1 will represent the optical spring.)

↦ ↦

By inspection, the equations of motion are:

mẍ1 = −k0x1 + k1(x2 − x1) (8)

mẍ2 = −k0x2 − k1(x2 − x1) (9)

which may be written in matrix form as

ẍ =
1

m

[
−(k0 + k1) k1

k1 −(k0 + k1)

]
x (10)

Because of the form of the matrix3, we can immediately see that it has eigenvectors corre-
sponding to common and di�erential motion, with eigenvalues {−k0,−(k0 + 2k1)}.

Applying this diagonalization, we �nd:

ẍ′ =
1

m

[
−k0 0
0 −(k0 + 2k1)

]
x′ where x′ =

[
1 1
1 −1

]
x

The presence of the coupling k1 only a�ects the di�erential mode.

3 Damped oscillators

Now consider a mass connected to the wall via a spring with spring constant k and a velocity
damper with damping constant γ:

↦

3The matrix

[
a b
b a

]
has eigenvectors

(
1
1

)
and

(
1
−1

)
with eigenvalues (a+ b) and (a− b).
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The equation of motion of the mass is:

mẍ = −kx− γẋ+ fexternal (11)

with Laplace transform
ms2X = −kX − γsX + Fexternal (12)

giving rise to a transfer function of

X

F
=

1

ms2 + γs+ k

=

(
1

m

)
1

(s− s+) (s− s−)
with s± = −1

2

γ

m
± 1

2

√( γ
m

)2
− 4

k

m

4 Optickle

In the attached Matlab code, I construct a very simple model in Optickle[2] consisting of
only a laser and two mirrors, forming a resonant cavity. Optickle is also supplied with the
mechanical (force to position) transfer functions of each optic (in isolation). Together these
transfer functions compose the reaction matrix, which is diagonal in the sense that force
applied to one optic only a�ects the position of that same optic.

After constructing the model, we call Optickle via the tickle function:

[fDC, sigDC, sigAC, mMech, noiseAC, noiseMech] = tickle(opt, pos, f);

The output we are interested in here is �mMech,� which gives the modi�cations to the me-
chanical transfer functions due to the radiation pressure couplings. Its units are �meters per
meter��a bit perplexing at �rst but some intuition may be gained by considering it as (meters
in the presense of radiation pressure)/(meters in the absense of radiation pressure). A more
sensible approach is to multiply mMech with the reaction matrix, which gives the mechanical
transfer functions (from force applied at some optic to displacement of every other optic)
including all optomechanical couplings.

To extract the optical spring transfer function, I further transform mMech to the basis of
common and di�erential degrees of freedom.

Because we know the mass, resonant frequency, and damping coe�cient (and thus also
the equivalent spring constant) of the mechanical transfer functions supplied to Optickle, we
can compute the expected di�erential mode transfer function in the presence of radiation
pressure by adjusting the spring constant from k to k + 2kopt where kopt is the calculated
optical spring constant, or simply shifting the resonance to w′ = w − 2kopt/m.

This approach shows good agreement (see Figure 1 on the following page) with the results
returned by Optickle with the caveat that I've omitted that factor of two and am instead
using k′ = k + kopt. I currently believe this is an error in Optickle.
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Figure 1: Comparison of the Optickle model with the analytically-derived results. Note:

the excellent agreement only occurs when an unphysical factor of two is put into the analytic
form of the optical spring constant! The units of the y-axis are 20 log10(displacement/force);
the x-axis is Hz; color indicates cavity detuning in picometers.
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