

Building a Global Gravitational Wave Telescope

Stan Whitcomb
LIGO/Caltech and University of Western Australia
UC Santa Cruz

19 May 2011

Gravitational Waves

- Einstein in 1916 and 1918
 recognized gravitational waves in his theory of General Relativity
- Necessary consequence of Special Relativity with its finite speed for information transfer

gravitational radiation binary inspiral of compact objects (blackholes or neutron stars)

Gravitational Wave Physics

- Time-dependent distortion of space-time created by the acceleration of masses
 - » Most distinctive departure from Newtonian theory
- Analogous to electro-magnetic waves
 - » Propagate away from the sources at the speed of light
 - » Pure transverse waves
 - » Two orthogonal polarizations

$$h = \Delta L / L$$

Evidence for Gravitational Waves

Binary Neutron Star System

PSR 1913 + 16

- Discovered by Hulse and Taylor in 1975
- Unprecedented laboratory for studying gravity
 - » Extremely stable spin rate
- Possible to repeat classical tests of relativity (Shapiro delay, advance of "perihelion", etc.

Binary Pulsar Timing Results

- After correcting for all known relativistic effects, observe steady loss of orbital energy
- Advance of periastron by an extra 25 sec from 1975-98
- Measured to ~50 msec accuracy
- Deviation grows quadratically with time

=> <u>emission</u>
<u>of</u>
<u>gravitational waves</u>

Astrophysical Sources for Terrestrial GW Detectors

- Compact binary inspiral: "chirps"
 - » NS-NS, NS-BH, BH-BH

- Supernovas or long GRBs: "bursts"
 - » GW signals observed in coincidence with EM or neutrino detectors

- Pulsars in our galaxy: "periodic waves"
 - » Rapidly rotating neutron stars
 - » Modes of NS vibration

» Probe back to the Planck time (10⁻⁴³ s)

Using GWs to Learn about the Sources: an Example

Chirp Signal from binary inspiral as system nears merger

Can determine

- Masses of the two bodies
- Orbital eccentricity e and orbital inclination i
- Distance from the earth r

Breadth of Science with Compact Binary Inspirals

Fundamental Physics

- » Waveforms from black hole black hole mergers are a pure test of General Relativity in its most non-linear regime
- » Mass-radius relationship for neutron star tests equation of state of nuclear matter

Astronomy

- » Neutron star neutron star mergers likely source of short hard gamma ray bursts
 - Masses of GRB progenitors
 - Geometry of jets: opening angle, opening angle versus mass, ...
- » Population census of double black hole binaries

Cosmology

» Independent luminosity distance scale for confirming redshiftdistance relationship

Detecting GWs with Interferometry

Suspended mirrors act as "freely-falling" test masses in horizontal plane for frequencies f >> f_{pend}

Terrestrial detector, L ~ 4 km For $h \sim 10^{-22} - 10^{-21}$ (Initial LIGO) $\Delta L \sim 10^{-18}$ m Useful bandwidth 10 Hz to 10 kHz, determined by "unavoidable" noise (at low frequencies) and expected maximum source frequencies (high frequencies)

$$h = \Delta L / L$$

Laser Interferometer Gravitational-wave Observatory (LIGO)

LIGO-G1100568

10

LIGO Optical Configuration

Initial LIGO Sensitivity Goal

- Strain sensitivity
 <3x10⁻²³ 1/Hz^{1/2}
 - at 200 Hz
- Sensing Noise
 - » Photon Shot Noise
 - » Residual Gas
- Displacement Noise
 - » Seismic motion
 - » Thermal Noise
 - » Radiation Pressure

LIGO Sensitivity

Strain Sensitivity for the LIGO Hanford 4km Interferometer

Anatomy of a Noise Curve

Initial LIGO Observations

- 25+ years of R&D, design, construction and commissioning led to Initial LIGO design sensitivity in 2005
- Two extended science data-taking runs
- S5 (2005-2007)
 - » Two years calendar time for one year of coincidence data
- S6 (2009-2010)
 - » 15 months calendar time for ~6 months coincidence data
- No gravitational waves found (so far)
- Some useful upper limits on gravitational wave strengths and rates

Facility Limits to Sensitivity

- Designed with second phase in mind
- Facility limits leave lots of room for future improvements

Advanced LIGO

- Take advantage of new technologies and on-going R&D
 - » Active anti-seismic system operating to lower frequencies
 - » Lower thermal noise suspensions and optics
 - » Higher laser power
 - » More sensitive and more flexible optical configuration

x10 better amplitude sensitivity

 \Rightarrow x1000 rate=(reach)³

⇒ 1 day of Advanced LIGO

» 1 year of Initial LIGO!

Project start 2008, installation beginning 2011

Advanced LIGO Performance

What makes Advanced LIGO so "Advanced"

Initial LIGO Laser

Custom-built 10 W Nd:YAG Laser

Stabilization cavities for frequency and beam shape

Advanced LIGO Laser

- Designed and contributed by Albert Einstein Institute
- Higher power
 - » 10W -> 180W
- Better stability
 - » 10x improvement in intensity and frequency stability

LIGO

Initial LIGO Mirrors

- Substrates: SiO₂
 - » 25 cm Diameter, 10 cm thick
 - » Homogeneity $< 5 \times 10^{-7}$
 - » Internal mode Q's > 2 x 10⁶

Polishing

- » Surface uniformity < 1 nm rms $(\lambda / 1000)$
- » Radii of curvature matched < 3%

Coating

- » Scatter < 50 ppm</p>
- » Absorption < 2 ppm</pre>
- » Uniformity <10⁻³

LIGO

Advanced LIGO Mirrors

- Larger size
 - » 11 kg -> 40 kg
- Smaller figure error
 - » 1 nm -> 0.35 nm
- Lower absorption
 - » 2 ppm -> 0.5 ppm
- Lower coating thermal noise

- Polishing underway
- Reflective Coating process starting up

Initial LIGO Vibration Isolation

Advanced LIGO Seismic Isolation

- Two-stage six-degree-of-freedom active isolation
 - » Low noise sensors, Low noise actuators
 - » Digital control system to blend outputs of multiple sensors, tailor loop for maximum performance
 - » Low frequency cut-off: 40 Hz -> 10 Hz

Initial LIGO Test Mass Suspension

- Simple single-loop pendulum suspension
- Low loss steel wire
 - » Adequate thermal noise performance, but little margin
- Magnetic actuators for control

LIGO-G1100568-v1

UC Santa Cruz Colloquium

Advanced LIGO Suspensions

40 kg silica test mass LIGO-G1100568-v1

- UK designed and contributed test mass suspensions
- Silicate bonds create quasi-monolithic pendulums using ultra-low loss fused silica fibers to suspend interferometer optics
 - » Pendulum Q $\sim 10^5 -> \sim 10^8$

Advanced LIGO Status

Construction of components started 2008

Installation began October 2010

UC Santa Cruz

Using GWs to Learn about the Sources: an Example

Chirp Signal from binary inspiral as system nears merger

Can determine

- Masses of the two bodies
- Orbital eccentricity e and orbital inclination i
- Distance from the earth r

Directionality and Polarization Sensitivity

Event Localization with Array of Detectors ("Aperture Synthesis")

UC Santa Cruz Colloquium

A Global Network of GW Detectors (2009)

Gravitational Wave Interferometers Around the World

Virgo

Virgo

- » Italian, French, Dutch collaboration, located near Pisa
- » Single 3 km interferometer, similar to LIGO in design and specification
- » Advanced seismic isolation system ("Super-attenuator")
- » Operation in coincidence with LIGO since May 2007

Future Improvements

» Advanced Virgo (similar in scope and time to Advanced LIGO)

LIGO-Virgo Agreement

- LIGO-Virgo signed data-sharing MOU in May 2007
 - » Not a merging of the two collaborations, but....
 - » All analyses, all observational publications to be joint after signing
 - » Joint run planning
 - » Hardware collaborations encouraged but not mandated
 - » Joint collaboration meetings
 - » LIGO-Virgo MOU explicitly invites other detectors to join when they reach a "useful" sensitivity

LIGO and Virgo Alone

Three detector
"network" has good
directional sensitivity
perpendicular to plane
of the detectors,
but limited ability to
locate sources near
the plane

Completing the Global Network (Step 1)

New development in Japan:

Large Cryogenic gravitational Telescope (LCGT)

Large Cryogenic Gravitational-wave Telescope (LCGT)

LCGT Project

- Institute for Cosmic Ray Research lead institution
- National

Key Design Parameters

» Promised initial sensitivity similar to Advanced LIGO

LIGO, Virgo, LCGT

Dramatic
Improvement in source localization

Still a troublesome band of poorer localization near the equator

LIGO and Virgo Alone

Three detector
"network" has good
directional sensitivity
perpendicular to plane
of the detectors,
but limited ability to
locate sources near
the plane

LIGO, Virgo, LCGT

Dramatic
Improvement in source localization

Still a troublesome band of poorer localization near the equator

Completing the Global Network (Step 2)

Add a Southern Hemisphere detector

LIGO-Australia

- Proposed as a direct partnership between LIGO Laboratory and our Australian collaborators
 - » LIGO Lab provides components for one Advanced LIGO interferometer
 - » Australia provides the infrastructure (site, roads, building, vacuum system), installation & commissioning, operating costs
- The interferometer, the third Advanced LIGO instrument, would be operated as part of LIGO to maximize the scientific impact of LIGO-Australia
- Key deadline: LIGO needs a commitment from Australia by October 2011

LIGO, Virgo, LCGT Plus LIGO-Australia

Adding LIGO-Australia to existing network gives nearly all-sky coverage

LIGO, Virgo, LCGT

Dramatic
Improvement in source localization

Still a troublesome band of poorer localization near the equator

LIGO, Virgo, LCGT Plus LIGO-Australia

Adding LIGO-Australia to existing network gives nearly all-sky coverage

Cumulative Improvement due to LCGT and LIGO-Australia

 To first order, LIGO-Australia improves N-S localization, while LCGT improved E-W localization

Progress toward LIGO-Australia

- Australian population and economy ~7% of US
 => Project >\$100M is a REALLY BIG project
- LIGO Laboratory proposed it to NSF
 - » Reviewed by NSF panel—strong endorsement
 - » NSF informed National Science Board and received approved
- Five Australian universities have signed MOU for project
 - » Five of the "Group of Eight" major research universities
- Indian Collaboration (IndIGO) proposed for ~\$20M from Indian government to participate

Indications from Australian government not encouraging

Building a Global Collaboration is More than Building a Network of Detectors

- LIGO-scale projects involve hundreds of scientists with different backgrounds, different goals, different scientific traditions, and different personalities
 - » Sense of competition is strong among scientists
 - » Scientists like to invent their own ways of doing things
- Governments and funding agencies can have their own goals and needs, not always parallel to those of the scientists

Looking to the Future

- Five years from now
 Expect to see first observations
 with Advanced Detectors
- Ten years

Expect to see a rudimentary gravitational wave telescope spanning the globe