aLIGO HAM-ISI, LLO Unit 3, Testing Validation

LIGO-G1100507-v2

```
April 19th, 2011
```

Céline Ramet, Michael Vargas, Adrien Le Roux, Vincent Lhuillier

References

- E1000309 - aLIGO HAM-ISI, Pre-Integration Testing Procedure, Phase I (post assembly, before storage)- Please note that v5 was used but we're now using v6
- E1000300-HAM-ISI LLO test stand: software and electronic check
- E1000327 aLIGO SEI Testing Report, HAM-ISI, LLO - Unit 3

Goals:

- Present tests performed on HAM-ISI LLO Unit 3
- Validate HAM-ISI LLO Unit 3
- Step 1 - Check torques on all bolts
- Step 2 - Check gaps under Support Posts
- Step 3 - Pitchfork/Boxwork flatness before Optical Table install

Passed

- Step 4 - Blade spring profile

Blade \#	Base (")	Tip(")	Flatness (mils)
$\mathbf{1}$.495	.491	+4
$\mathbf{2}$.501	.489	+12
$\mathbf{3}$.498	.490	+8

Acceptance Criteria : Blades must be flat within 0.020" inches

Note that all locker shims are identical at 125 mils.

- Step 5 - Gap checks on actuators

Actuator	Front Gap $\left(\mathbf{1 / 1 0 0 0}^{\prime}\right)$	Back Gap $(\mathbf{1 / 1 0 0 0}$
V1	80	90
V2	90	75
V3	$95 / 85$	$65 / 80$
H1	85	
H2	80	
H3	80	

Acceptance Criteria : Gaps must be within 0.010 " of design. Can be adjusted before install
-Step 6 - Check level of Stage 1

Acceptance Criteria: Maximum tilt of the optical table: $100 \mu \mathrm{rad}$ Max angle=(.5/64)/85.59= 91 urad

- Step 7 - Mass budget and lockers shim thickness

Optical Mass (Kg)	Wall Mass (Kg)	Keel Mass (Kg)	Total Mass (Kg)
305.00	178.58	90.08	573.66

Lockers shim thickness

Lockers	Shim thickness (mil)
A	125
B	125
C	125
D	125

Acceptance Criteria : $596.7 \mathrm{Kg}+/-25 \mathrm{Kg}$ (4\%)

- Step 8 - Lockers adjustment

D.I at Lockers	Dial indicators V	Dial indicators H
A	0.5	-1
B	2	0
C	0.25	0
D	-1.5	-1.5

Acceptance Criteria : Vertical and horizontal displacement near the lockers must be lower than 2 mils G1100507-V2

- Step 1 to 3 - Actuators, Sensors and Electronics Inventory
-Step 4 - Set up sensors gap

10 Kg masses at each corners			No mass	
Table locked	ADE boxes on		ADE boxes on	
Sensors	Offset (Mean)	Std deviation	Offset (Mean)	Std deviation
H1	-36.967	1.2	-109.44	1.5
H2	254.8	1.1	243.71	0.8
H3	-23.343	0.7	-91.761	1.1
V1	-264.62	0.6	-52.461	1.6
V2	-148.73	1.8	24.719	1.5
V3	196.35	1.4	296.66	1.2

Acceptance criteria:

- All mean values must be lower than 400 cts (a bit less than .0005").
- All standard deviations below 5 counts.

Comments: The two satellite boxes are now synchronized

- Step 5 - Measure the Sensor gap

Sensors	Gap measured on the Jig	Gap measured on the table
H1	NR	$0.080^{\prime \prime}$
H2	NR	$0.085^{\prime \prime}$
H3	NR	$0.085^{\prime \prime}$
V1	NR	$0.085^{\prime \prime}$
V2	NR	$0.085^{\prime \prime}$
V3	NR	$0.085^{\prime \prime}$

Comments:

- Difficult to measure without scratching the target
- No information of gaps measured on the Jig

Acceptance criteria:

- Measured gap must be 0.080"+/-0.002"
- Step 6 - Check Sensor gaps after the platform release

	Table locked		Table unlocked	
Sensors	Offset (Mean)	Std deviation	Offset (Mean)	Diff
H1	-274.44	0.83234	664.2	938.64
H2	-43.197	0.75333	-327.25	-284.053
H3	159.76	0.74358	-561.14	-720.9
V1	-296.64	1.0669	583.93	880.57
V2	245.48	1.4453	495.1	249.62
V3	-362.15	1.627	-1144.2	-782.05

Acceptance criteria:

- Absolute values of the difference between the unlocked and the locked table must be below 1600 cts (~ 0.002 ")
- Considering the acceptance criteria of step 4, all mean values must be lower than 2000 cts (~ 0.0025 ")
- Step 7 - Check range of motion (hand pushing)
- Step 7.1 - Test $\mathbf{N}^{\circ} 1$

	CPS read out		Calculated after calibration	
Sensors	UP (Counts)	Down (Counts)	UP (mil)	Down (mil)
V1	20269	-20331	24.0	-24.1
V2	20234	-20363	23.9	-24.1
V3	19885	-19746	23.5	-23.4

	CPS read out		Calculated after calibration	
Sensors	CW(-RZ)	CCW (+RZ)	CW (mil)	CCW (mil)
H1	18281	-22331	21.6	-26.4
H2	24413	-19937	28.9	-23.6
H3	18099	-22126	21.4	-26.2

Acceptance criteria:

- The vertical sensor readout be positive when the optic table is pushed in the +Z direction
- The horizontal sensor readout be negative when the optic table is pushed in the $+R Z$ direction
- Absolutes value of all estimated motions must be higher than 16000counts (~ 0.020 ")
- Step 7 - Check range of motion (hand pushing)
- Step 7.2 - Test No2

	Push in positive direction	Push in negative direction	Railing	Actuator Gap Check
H1	20691	-26431		X
H2	24701	-24100		X
H3	25028	-22929		X
V1	19785	-20422		X
V2	31629	-32519		X
V3	19762	-21787		\mathbf{X}

Acceptance criteria:

- No contact point on sensors
- Absolute value of sensor read out must be higher than 16000counts (~ 0.020)
- No contact point on actuators
- Note that we're not railing on V2-different from all other platforms tested so Passed far
- Step 8 - Capacitive position sensor Power Spectrum

Acceptance criteria:

- Magnitudes must lower than

	Locked		Unlocked	
	at $\mathbf{0 . 1 H z}$	at $\mathbf{1 H z}$	at $\mathbf{0 . 1 H z}$	at $\mathbf{1 H z}$
Horizontal CPS	$1 . \mathrm{E}-07$	2G-980507-V2	$5 . \mathrm{E}-07$	$8 . \mathrm{E}-08$
Vertical CPS	$4 . \mathrm{E}-07$	$5 . \mathrm{E}-08$	$8 . \mathrm{E}-07$	$4 . \mathrm{E}-07$

Passed

- Step 9 - GS13 Power Spectrum (Locked and Unlocked configuration)

	Table locked		
	at 0.1 Hz	at 1 Hz	at 10 Hz
H \& V Geophones	8.E-05	$3 . \mathrm{E}-08$	$2 . \mathrm{E}-10$

	Taeble unlocked		
	at 0.1 Hz	at 1Hz	at 10Hz
Horizontal Geophones	$3 . \mathrm{E}-04$	G1100519/0 $N 2$	$1 . \mathrm{E}-11$
Vertical Geophones	$5 . \mathrm{E}-05$	$1 . \mathrm{E}-07$	$1 . \mathrm{E}-11$

III. Tests performed after assembly

- Step 9 - GS13 Power Spectrum (Table unlocked with a mass of 20 Kg at each corner of the optic table (1 mass at the time))

Acceptance Criteria:

- To be redefined

	Unlocked (tilted with masses)		
	at 0.1 Hz	at 1 Hz	at 10 Hz
H \& V Geophones	$8 . \mathrm{E}-05$	$3 . \mathrm{E}-08100507-\mathrm{VZ}$ 2.E-10	

- Step 10 - Coil Driver, cabling and resistance check
- Step 11 - Actuators Sign and range of motion (Local drive)
- Step 11.1 - Actuators sign

Acceptance criteria: A positive offset drive on one actuator must give positive sensor readout on the collocated sensor

- Step 11.2 - Range of motion - Local drive

	Negative drive	Positive drive
H1 readout (count)	-24840	23704
H2 readout (count)	-23504	24473
H3 readout (count)	-25079	24232
V1 readout (count)	-19988	19535
V2 readout (count)	-25296	27191
V3 readout (count)	-22424	21599

Acceptance criteria: Main couplings readout must be at least +/-16000counts (~0.002")

- Step 12 - Vertical Capacitive Position Sensors Calibration (using dial indicators)

Vertical sensitivity: 845.3 count/mil 0.63% from nominal value)
Acceptance criteria: Deviation from nominal value < 2\%. (Nominal is 840 count/mil)

- Step 13 - Vertical Spring Constant

Vertical spring constant : $2.50 \mathrm{e} 5 \mathrm{~N} / \mathrm{m}$ (+3.1\% from nominal value)

Acceptance criteria:

Spring constant is within +/- 10/-1\% of $2.428 e 5 \mathrm{~N} / \mathrm{m}$ (HPD FEA Results).
-Step 14 - Static Testing (Tests in the local basis)

		Sensors (counts)					
		H1	H2	H3	V1	V2	V3
	H1	1967.669	1210.834	1224.792	-3.392	12.744	-33.92
	H2	1207.929	2017.293	1256.419	11.939	21.785	-21.05
	H3	1224.299	1259.544	2015.90	37.030	16.072	-30.849
	V1	201.7530	172.320	-313.735	1415.569	-43.636	-546.33
	V2	-276.287	261.940	230.952	-554.369	1437.609	-44.960
	V3	159.632	-385.887	142.389	44.354	-612.036	1403.71

Acceptance criteria: For a +1000 count offset drive -On Vertical actuators :

- Collocated sensors must be 1400 counts +/- 10\%
-On Horizontal actuators :
- Collocated sensors must be 20001000■its/z/-10\%
- Non-collocated horizontal sensors must be 1250 counts +/-10\%

- Step 15 - Linearity test

	Slope	Offset	Average slope	Variation from average (\%)
H1	2.077	127.6		-0.37
H2	2.102	-763		0.83
H3	2.075	-711		-0.46
V1	1.498	-282		0.74
V2	1.479	368.3	1.4872	-0.53
V3	1.484	-1024		-0.20

Acceptance criteria: Average slope Є $113 \odot \hbar 07-\mathrm{V} 2$
III. Tests performed after assembly

- Step 16 - Static tests in the general coordinate basis

Stage 1 Sensors GS-13 H and V, Stage 0-1 H Position Sensors and Actuators

- Step 16 - Static tests in the general coordinate basis

Tests (for a +1000 counts actuation in each Cartesian direction)

- Cartesian to local (CONT2ACT matrix)
- Cartesian to Cartesian (DISP2CEN matrix)

		X Drive	Y Drive	Z Drive	Rx Drive	Ry Drive	Rz Drive
	H1	263.528	-390.4432	39.232	-351.599	-234.314	-1870.593
	H2	232.73	510.05	51.46	511.84	-214.09	-1926.44
	H3	-492.32	23.53	10.56	70.06	532.44	-1901.82
	V1	-5.871	6.292	248.899	-510.236	-1619.426	11.019
	V2	-21.28	-33.566	239.421	1633.514	398.43	-57.855
	V3	2.8	-18.2	270.36	-1169.8	1208.911	29.8
	Direction read out	492.38	524.71	256.965	2516.66	2506.73	2404.763

Acceptance criteria : For a positive drive in the Cartesian basis:

- Local sensor readout must have the same sign that the reference table (CONT2ACT check)
- Cartesian sensors read out must be positive (DISP2CEN check) in the drive direction

		X Drive	Y Drive	Z Drive	Rx Drive	Ry Drive	Rz Drive
	H1	+	-				-
	H2	+	+				-
	H3	-	0				-
	V1			+	-	-	
	V2			+	+	+	
	V3			+	-	+	
	Direction read out	+	+	+	+	+	+

Passed

G1100507-V2

- Step 18 - Frequency response - Comparison with HAM6
- Step 18.1 - Local to local measurements

Acceptance criteria:

- No major difference with the reference transfer functions (LLO-HAM6)
- Phase - less than 10° - In Phase - Out of Phase
- Damping (fit by eye with HAM6 transfer functions)
- DC gain

G1100507-V2

- Eigen frequencies shift less than 5\%

- Step 18 - Frequency response - Comparison with HAM6

- Step 18.1 - Local to local measurements

Vertical sensors

Acceptance criteria:

- No difference with the reference transfer functions (HAM6 - SVN)
- Phase - less than $1 \mathbf{0}^{\circ}$ - In Phase - Out of Phase
- Damping (fit by eye with HAM6 transfer functions)
- DC gain

G1100507-V2

- Eigen frequencies shift less than 5\%
- Step 18 - Frequency response - Comparison with HAM6
- Step 18.2 - Cartesian to Cartesian measurements

X, Y, RZ direction

HAM-ISI - LLO - Unit \#3 - Cartesian to Cartesian - April 5th, 2011

Acceptance criteria:

- No difference with the reference transfer functions (HAM6 - SVN)
- Phase - less than 10° - In Phase - Out of Phase
- Damping (fit by eye with HAM6 transfer functions)
- DC gain

G1100507-V2

- Eigen frequencies shift less than 5\%
- Step 18 - Frequency response - Comparison with HAM6
- Step 18.2 - Cartesian to Cartesian measurements

HAM-ISI - LLO - Unit \#3 - Cartesian to Cartesian - April 5th, 2011

HAM-ISI - LLO - Unit \#3 - Cartesian to Cartesian - April 5th, 2011

Acceptance criteria:

- No difference with the reference transfer functions (HAM6 - SVN)
- Phase - less than 10° - In Phase - Out of Phase
- Damping (fit by eye with HAM6 transfer functions)
- DC gain

G1100507-V2

- Eigen frequencies shift less than 5%
- Step 19 - Lower Zero Moment Plan (TF between 10 mHz and 100 mHz

X Offset: 0.399 mm Y Offset: 0.738 mm

Acceptance criteria

- Both offsets should be inferior to 1 mm
- Step 20 - Damping loops
- Step 20.1 - Transfer functions - Simulations

Vertical damping loops - (HAM6 filters + new electronics compensation)

V1 : solid line
V2 : dash line
V3 : dash-dot line

Acceptance criteria: Ham 6 damping loop must implemented and stable with

- Phase margin must be at least 45° G1100507-V2
- Gain margin must be at least 20dB
- Step 20 - Damping loops
- Step 20.1 - Transfer functions - Simulations

Horizontal damping loops (HAM6 filters + new electronics compensation)

H1 : solid line
H2 : dash line
H3 : dash-dot line

Acceptance criteria: Ham 6 damping loop must implemented and stable with

- Phase margin must be at least 45° G1100507-V2
- Gain margin must be at least 20dB
III. Tests performed after assembly
- Step 20 - Damping loops
- Step 20.2 - Powerspectrum - Experimental

All damping filters engaged

Acceptance criteria: Ham 6 damping loop must implemented and stable

- Step 20 - Damping loops
- Step 20.2 - Suppression - Experimental vs simulation vs HAM6 simulation

All damping filters engaged

Blue : Measurement Red : Simulation Green : HAM6

Acceptance criteria:

- Missing information
- Some assembly measurements were done but not recorded at the time
- Actuator gaps
- Tests results
- Passed without major difficulties
- Failed tests
-Actuator gaps (1 measurement slightly over)
-Sensor gaps

Questions?

Back Up Slides

- Step 17 - Frequency response
- Step 17.1 - Local to local measurements

Horizontal sensors

HAM-ISI - LLO - Unit \#3 - Local to Local - April 6th, 2011

Acceptance criteria:

- On CPS, the phase must be 0° at $D C$
- On Geophones, the phase must be -90 at DC
III. Tests performed after assembly
- Step 17 - Frequency response
- Step 17.1 - Local to local measurements

Vertical sensors

HAM-ISI - LLO - Unit \#3 - Local to Local - April 6th, 2011

HAM-ISI - LLO - Unit \#3 - Local to Local - April 6th, 2011

Acceptance criteria:

- On CPS, the phase must be 0° at DC
- On Geophones, the phase must be -90 at DC
- Step 17 - Frequency response
- Step 17.2 - Cartesian to Cartesian measurements

X, Y, RZ direction

Passed

Acceptance criteria:

- On CPS, the phase must be 0° at $D C$
- On Geophones, the phase must be -90° at DC
- Step 17 - Frequency response
- Step 17.2 - Cartesian to Cartesian measurements

Z, RX, RY direction

- On CPS, the phase must be 0° at DC
- On Geophones, the phase must be -90° at DC

Acceptance criteria:

