

aLIGO HAM-ISI, LLO Unit 3, Testing Validation

LIGO-G1100507-v2

April 19th, 2011

Céline Ramet, Michael Vargas, Adrien Le Roux, Vincent Lhuillier

References

- E1000309 - aLIGO HAM-ISI, Pre-Integration Testing Procedure, Phase I (post assembly, before storage)- Please note that v5 was used but we're now using v6

- E1000300 HAM-ISI LLO test stand: software and electronic check
- E1000327 aLIGO SEI Testing Report, HAM-ISI, LLO Unit 3

Goals:

- Present tests performed on HAM-ISI LLO Unit 3
- Validate HAM-ISI LLO Unit 3

advancedlige

- Step 1 Check torques on all bolts
- Step 2 Check gaps under Support Posts
- Step 3 Pitchfork/Boxwork flatness before Optical Table install
- Step 4 Blade spring profile

Blade #	Base (")	Tip(")	Flatness (mils)
1	.495	.491	+4
2	.501	.489	+12
3	.498	.490	+8

Acceptance Criteria : Blades must be flat within 0.020" inches

Note that all locker shims are identical at 125 mils.

Passed

Passed

Passed

advancedligo

Failed

•Step 5 - Gap checks on actuators

Actuator	Front Gap	Back Gap
	(1/1000'')	(1/1000'')
V1	80	90
V2	90	75
V 3	95/85	65/80
H1	85	
H2	80	
H3	80	

• Step 7 - Mass budget and lockers shim thickness

Optical Mass (Kg)	Wall Mass (Kg)	Keel Mass (Kg)	Total Mass (Kg)
305.00	178.58	90.08	573.66

Lockers shim thickness

Lockers	Shim thickness (mil)
Α	125
В	125
С	125
D	125

Acceptance Criteria : 596.7Kg +/-25Kg (4%)

Step 8 - Lockers adjustment

D.I at Lockers	Dial indicators V	Dial indicators H
Α	0.5	-1
В	2	0
С	0.25	0
D	-1.5	-1.5

Acceptance Criteria : Vertical and horizontal displacement near the lockers must be lower than 2 mils G1100507-V2

Passed

• Step 1 to 3 – Actuators, Sensors and Electronics Inventory

Step 4 - Set up sensors gap

Passed

	10 Kg masses a	at each corners	No r	nass
Table locked	ADE boxes on		ADE boxes on	
Sensors	Offset (Mean)	Std deviation	Offset (Mean)	Std deviation
H1	-36.967	1.2	-109.44	1.5
H2	254.8	1.1	243.71	0.8
H3	-23.343	0.7	-91.761	1.1
V1	-264.62	0.6	-52.461	1.6
V2	-148.73	1.8	24.719	1.5
V3	196.35	1.4	296.66	1.2

Acceptance criteria:

- All mean values must be lower than 400 cts (a bit less than .0005").
- All standard deviations below 5 counts.

Comments: The two satellite boxes are now synchronized

• Step 5 - Measure the Sensor gap

Sensors	Gap measured on the Jig	Gap measured on the table
H1	NR	0.080"
H2	NR	0.085"
H3	NR	0.085"
V1	NR	0.085"
V2	NR	0.085"
V3	NR	0.085"

Comments:

- Difficult to measure without scratching the target
- No information of gaps measured on the Jig

Acceptance criteria:

- Measured gap must be 0.080"+/-0.002"

Failed

• Step 6 - Check Sensor gaps after the platform release

	Table I	ocked	Table unlocked	
Sensors	Offset (Mean)	Std deviation	Offset (Mean)	Diff
H1	-274.44	0.83234	664.2	938.64
H2	-43.197	0.75333	-327.25	-284.053
H3	159.76	0.74358	-561.14	-720.9
V1	-296.64	1.0669	583.93	880.57
V2	245.48	1.4453	495.1	249.62
V3	-362.15	1.627	-1144.2	-782.05

Acceptance criteria:

- Absolute values of the difference between the unlocked and the locked table must be below 1600 cts (~0.002")
- Considering the acceptance criteria of step 4, all mean values must be lower than 2000 cts (~0.0025")

- Step 7 Check range of motion (hand pushing)
 - Step 7.1 Test Nº1

	CPS read out		Calculated after calibration	
Sensors	UP (Counts)	Down (Counts)	UP (mil)	Down (mil)
V1	20269	-20331	24.0	-24.1
V2	20234	-20363	23.9	-24.1
V3	19885	-19746	23.5	-23.4

	CPS read out		Calculated after calibration	
Sensors	CW(-RZ)	CCW (+RZ)	CW (mil)	CCW (mil)
H1	18281	-22331	21.6	-26.4
H2	24413	-19937	28.9	-23.6
H3	18099	-22126	21.4	-26.2

Acceptance criteria:

- The vertical sensor readout be positive when the optic table is pushed in the $+\!Z$ direction

- The horizontal sensor readout be negative when the optic table is pushed in the +RZ direction

- Absolutes value of all estimated motions must be higher than 16000counts (~0.020")

• Step 7 - Check range of motion (hand pushing)

• Step 7.2 – Test №2

	Push in positive direction	Push in negative direction	Railing	Actuator Gap Check
H1	20691	-26431		X
H2	24701	-24100		X
H3	25028	-22929		Х
V1	19785	-20422		Х
V2	31629	-32519		X
V3	19762	-21787		X

Acceptance criteria:

- No contact point on sensors
- Absolute value of sensor read out must be higher than 16000counts (~0.020")
- No contact point on actuators
- Note that we're not railing on V2-different from all other platforms tested so Passed far

• Step 8 - Capacitive position sensor Power Spectrum

Acceptance criteria:

- Magnitudes must lower than

[Locked		Unlocked	
	at 0.1Hz	at 1Hz	at 0.1Hz	at 1Hz
Horizontal CPS	1.E-07	2;E-100507-	V2 5.E-07	8.E-08
Vertical CPS	4.E-07	5.E-08	8.E-07	4.E-07

Passed

11

• Step 9 - GS13 Power Spectrum (Locked and Unlocked configuration)

Acceptance criteria:

- Magnitudes must be lower than

	Table locked				
	at 0.1Hz at 1Hz at 10				
H & V Geophones	8.E-05	3.E-08	2.E-10		

	Taeble unlocked					
	at 0.1Hz at 1Hz at 10Hz					
Horizontal Geophones	3.E-04	G110050±/07/2	1.E-11			
Vertical Geophones	5.E-05	1.E-07	1.E-11			

• Step 9 - GS13 Power Spectrum (Table unlocked with a mass of 20 Kg at each corner of the optic table (1 mass at the time))

Acceptance Criteria:

- To be redefined

	Unlocked (tilted with masses)					
	at 0.1Hz at 1Hz at 10					
H & V Geophones	8.E-05	3.E-08	2.E-10			

- Step 10 Coil Driver, cabling and resistance check
- Step 11 Actuators Sign and range of motion (Local drive)
 - Step 11.1 Actuators sign

Acceptance criteria: A positive offset drive on one actuator must give positive sensor readout on the collocated sensor

• Step 11.2 - Range of motion - Local drive

	Negative drive	Positive drive
H1 readout (count)	-24840	23704
H2 readout (count)	-23504	24473
H3 readout (count)	-25079	24232
V1 readout (count)	-19988	19535
V2 readout (count)	-25296	27191
V3 readout (count)	-22424	21599

Acceptance criteria: Main couplings readout must be at least +/-16000counts (~0.002") Passed

Passed

Step 12 - Vertical Capacitive Position Sensors Calibration (using dial indicators)

Vertical sensitivity: 845.3 count/mil 0.63% from nominal value)

Acceptance criteria: Deviation from nominal value < 2%. (Nominal is 840 count/mil)

Step 13 – Vertical Spring Constant

Vertical spring constant : 2.50e5N/m (+3.1% from nominal value)

Acceptance criteria:

Spring constant is within +/- 10/-1% of 2.428e5 N/m (HPD FEA Results).

		Sensors (counts)						
		H1	H2	H3	V1	V2	V3	
s)	H1	1967.669	1210.834	1224.792	-3.392	12.744	-33.92	
ors Ints)	H2	1207.929	2017.293	1256.419	11.939	21.785	-21.05	
lato	H3	1224.299	1259.544	2015.90	37.030	16.072	-30.849	
-	V1	201.7530	172.320	-313.735	1415.569	-43.636	-546.33	
	V2	-276.287	261.940	230.952	-554.369	1437.609	-44.960	
Ę	V3	159.632	-385.887	142.389	44.354	-612.036	1403.71	

•Step 14 - Static Testing (Tests in the local basis)

Passed

Passed

Acceptance criteria: For a +1000 count offset drive

-On Vertical actuators :

- Collocated sensors must be 1400 counts +/- 10%
- -On Horizontal actuators :
 - Collocated sensors must be 2000 100507ts/2/- 10%
 - Non-collocated horizontal sensors must be 1250 counts +/-10%

• Step 15 – Linearity test

Acceptance criteria: Average slope €/100507-V2

• Step 16 - Static tests in the general coordinate basis

Stage 1 Sensors GS-13 H and V, Stage 0-1 H Position Sensors and Actuators

- Step 16 Static tests in the general coordinate basis
- Tests (for a +1000 counts actuation in each Cartesian direction)
- Cartesian to local (CONT2ACT matrix)
- Cartesian to Cartesian (DISP2CEN matrix)

		X Drive	Y Drive	Z Drive	Rx Drive	Ry Drive	Rz Drive
	H1	263.528	-390.4432	39.232	-351.599	-234.314	-1870.593
out	H2	232.73	510.05	51.46	511.84	-214.09	-1926.44
ad t)	H3	-492.32	23.53	10.56	70.06	532.44	-1901.82
rea unt)	V1	-5.871	6.292	248.899	-510.236	-1619.426	11.019
ors (coi	V2	-21.28	-33.566	239.421	1633.514	398.43	-57.855
SU	V3	2.8	-18.2	270.36	-1169.8	1208.911	29.8
Sel	Direction						
	read out	492.38	524.71	256.965	2516.66	2506.73	2404.763

Acceptance criteria : For a positive drive in the Cartesian basis:

- Local sensor readout must have the same sign that the reference table (CONT2ACT check)
- Cartesian sensors read out must be positive (DISP2CEN check) in the drive direction

		X Drive	Y Drive	Z Drive	Rx Drive	Ry Drive	Rz Drive
*	H1	+	-				-
lot	H2	-	-				-
it)	H3		0				-
sors rea (count)	V1			ŧ	-		
sors (cou	V2			-	-	+	
Č,	V3			-	-	-	
Š	Direction read out	-	-	÷		÷	÷

• Step 18 – Frequency response – Comparison with HAM6

• Step 18.1 – Local to local measurements

Acceptance criteria:

- No major difference with the reference transfer functions (LLO-HAM6)
- Phase less than 10° In Phase Out of Phase
- Damping (fit by eye with HAM6 transfer functions)
- DC gain

- G1100507-V2
- Eigen frequencies shift less than 5%

- Step 18 Frequency response Comparison with HAM6
 - Step 18.1 Local to local measurements

Vertical sensors

Acceptance criteria:

- No difference with the reference transfer functions (HAM6 SVN)
- Phase less than 10° In Phase Out of Phase
- Damping (fit by eye with HAM6 transfer functions)
 - **DC gain** G1100507-V2
- Eigen frequencies shift less than 5%

Passed

20

- Step 18 Frequency response Comparison with HAM6
 - Step 18.2 Cartesian to Cartesian measurements

X, Y, RZ direction

Acceptance criteria:

- No difference with the reference transfer functions (HAM6 SVN)
- Phase less than 10° In Phase Out of Phase
- Damping (fit by eye with HAM6 transfer functions)
 - **DC gain** G1100507-V2
- Eigen frequencies shift less than 5%

• Step 18 – Frequency response – Comparison with HAM6

Acceptance criteria:

- No difference with the reference transfer functions (HAM6 SVN)
- Phase less than 10° In Phase Out of Phase
- Damping (fit by eye with HAM6 transfer functions)
 - **DC gain** G1100507-V2
- Eigen frequencies shift less than 5%

• Step 19 - Lower Zero Moment Plan (TF between 10 mHz and 100 mHz

X Offset: 0.399 mm Y Offset: 0.738 mm

Acceptance criteria

- Both offsets should be inferior to 1 mm

- Step 20 Damping loops
 - Step 20.1 Transfer functions Simulations

Vertical damping loops – (HAM6 filters + new electronics compensation)

V1 : solid line V2 : dash line V3 : dash-dot line

Acceptance criteria:

Ham 6 damping loop must implemented and stable with

- Phase margin must be at least 45° G1100507-V2
- Gain margin must be at least 20dB

- Step 20 Damping loops
 - Step 20.1 Transfer functions Simulations

Horizontal damping loops (HAM6 filters + new electronics compensation)

H1 : solid line H2 : dash line H3 : dash-dot line

Acceptance criteria:

Ham 6 damping loop must implemented and stable with

- Phase margin must be at least 45° G1100507-V2
- Gain margin must be at least 20dB

- Step 20 Damping loops
 - Step 20.2 Powerspectrum Experimental

All damping filters engaged

Acceptance criteria: Ham 6 damping loop must implemented and stable G1100507-V2

26

- Step 20 Damping loops
 - Step 20.2 Suppression Experimental vs simulation vs HAM6 simulation

All damping filters engaged

Blue : Measurement Red : Simulation Green : HAM6

Acceptance criteria: Ham 6 damping loop must implemented and stable

• Missing information

- Some assembly measurements were done but not recorded at the time
 - Actuator gaps
- Tests results
 - Passed without major difficulties
- Failed tests
 - Actuator gaps (1 measurement slightly over)
 - •Sensor gaps

Questions?

Back Up Slides

- Step 17 Frequency response
 - Step 17.1 Local to local measurements

Horizontal sensors

Acceptance criteria:

- On CPS, the phase must be 0° at DC
- On Geophones, the phase must be -90° at DC

G1100507-V2

- Step 17 Frequency response
 - Step 17.1 Local to local measurements

Vertical sensors

Acceptance criteria:

- On CPS, the phase must be 0° at DC
- On Geophones, the phase must be -90° at DC

G1100507-V2

- Step 17 Frequency response
 - Step 17.2 Cartesian to Cartesian measurements

X, Y, RZ direction

Passed

Acceptance criteria:

- On CPS, the phase must be 0° at DC
- On Geophones, the phase must be -90° at DC

- Step 17 Frequency response
 - Step 17.2 Cartesian to Cartesian measurements

Z, RX, RY direction

Acceptance criteria:

- On CPS, the phase must be 0° at DC
- On Geophones, the phase must be -90° at DC