

Interferometer Sensing & Control (ISC)

Technical Status

NSF Review of Advanced LIGO Project

April 26, 2011

Peter Fritschel Rich Abbott

ISC Functions

- □ Global sensing & control of the interferometer length degreesof-freedom
 - » LSC: Length Sensing & Control
 - » 4km arm lengths, recycling cavity lengths, Michelson
 - » Final stage of frequency control
 - » Readout of the gravitational wave channel
- Global sensing & control of the interferometer alignment
 - » ASC: Alignment Sensing & Control
 - » 4 test masses + 1 beamsplitter + 2 recycling mirrors = 7
- Lock acquisition of the interferometer
- Detection tables for all senses beams
 - » Opto-mechanical hardware; photodetectors
- RF components: sources, distribution, demodulation
- Digital controls hardware and software for all length and alignment controls

Input beam phase modulation scheme

- » Designed to interferometrically sense all degrees-of-freedom with sufficient SNR
- » Similar to initial LIGO, but different in detail due to additional cavity

Detection hardware

All beams involved in critical control loops will be detected invacuum, on vibrationally isolated tables

Custom photodetectors

- » Commercial InGaAs diodes, custom preamps
- » Single element diodes as used in iLIGO; quadrant diodes are new (used silicon in iLIGO)
- » Preamps designed to detect specific RF frequencies with high SNR
- » Vacuum packaging: electronics in a laser-welded custom box, w/ a feedthru for the photodiode (on vacuum side of box)

■ Signal conditioning electronics & controls

- » RF sources, demodulation, signal conditioning filters: concepts similar to iLIGO with engineering updates based on lessons learned and new technologies
- » Digital controls
 - 16 kHz rate for LSC loops, 2 kHz for ASC
 - Infrastructure for data converters and real-time CPUs is defined by DAQ: commercial components used throughout

GW channel: DC readout with output mode cleaner

Lock Acquisition concept

- » Start by controlling the long arms: put them at a known point offresonance, and suppress fluctuations to ~1 nm
- » Lock up vertex degrees-of-freedom using RF signals that are more robust but have lower SNR than operation signals
- » Bring the arms into resonance in a controlled fashion

□ Arm Length Stabilization system achieves the first step

- » Inject a 532 nm beam through the ETM and sense the arm cavity with Pound-Drever-Hall technique
- » TM coatings designed to give a moderate finesse arm cavity for the green beam & insensitive to the recycling cavity optics
- » Green beam is frequency locked to the main IR beam

Arm Length Stabilization design

ALS design being carried out by ANU

ETM Transmission Monitor & ALS injection table

Suspended
Transmission Monitor
Hung behind the ETM
on a double suspension

ALS laser and injection table

First unit currently being constructed at LHO

LIGO Components developed for TransMon & other In-Vac ISC detection

LIGO In-Vacuum Detection of Reflection & PRC Pick-Off beams: HAM1

In-Vacuum Detection of Antisymmetric port (main output) beam

Output Mode Cleaner

Enhanced LIGO implements the Advanced LIGO design of DC readout with Output Mode Cleaner

LIGO Steering the beam into the Output Mode Cleaner

Tip-tilt mirror mount

Vertical compliance with blade springs

Holds a 2" mirror

Developed by ANU

Custom RF photodetectors

- New transimpedance amplifier design tested in eLIGO
- aLIGO detectors are designed to read out multiple RF frequencies
 - » Single InGaAs diode element versions for length readout
 - » Quadrant InGaAs diode versions for angular alignment readout

Vacuum Side

RF oscillators and distribution

G1100462-2

RF components

RF I & Q Demodulator, 9-100 MHz

New design based on FET switches

 4-channel chassis that can service both Length
 & Alignment (WFS) sensors

ISC Development Status

☐ ISC completed its Final Design Review in June 2010

- » Length Sensing & Control design
- » Alignment Sensing & Control design
- » ETM Transmission Monitor
- » Lock Acquisition & Arm Length Stabilization
- » Output Mode Cleaner
- » Tip-Tilt mirror mounts
- » Some components had already gone through final design: RF oscillators; distribution amplifiers; demodulator boards; quad detector trans-impedance amp
- » Some components were deferred for later FDR: custom RF photodetectors; in-vacuum fast shutter for PD protection

ISC Project Status

Production of opto-mechanical components

- All custom optics have been ordered, many received: 1" and 2" superpolished, IBS coated mirrors, splitters, lenses
- » Nearly all mechanical components designed and in production
- » In-vacuum fast shutter, for PD protection, still needs more development

Production of electronics

- » Nearly all RF components have been built (remaining item is low-noise VCOs)
- » Signal conditioning electronics in production
- » Production of new version of RF detectors still pending

Subsystem Project organization

People

- » Lead scientist: Peter Fritschel (MIT)
- » Lead engineer: Rich Abbott (Caltech)
- » Collection of scientists at MIT, Caltech and the Observatories
 - Mechanical engineer added to group at the beginning of 2010 (@MIT)
- » EE tech support at Caltech; assembly support from all sites

Breakdown of responsibilities

- » Electronics: Caltech and LHO
- » Optical and opto-mechanical: MIT
- » Modeling from MIT and Caltech
- □ Foreign contribution -- Australia National University is designing and providing:
 - » Arm Length Stabilization system
 - » Tip-Tilt mirror stages

ISC Near term activities

- Assembly at LHO of Transmission Monitor and Arm Length Stabilization table for the H2 One Arm Test
 - Installation & alignment plan for the TransMon
- Cabling design for RF coaxial distribution & multiconductor cables
- In-situ testing of installed ISC equipment
 - Photons-to-ADC counts type testing
- □ Final design review of RF photodetectors & start of production
- Input Mode Cleaner controls for LLO