

# Thermal Compensation System – TCS Technical Presentation

aLIGO NSF Review

LIGO Livingston Observatory

25-27 April 2010



#### TCS Functions

- Measures the thermal lens in the Input Test Mass substrate and Compensation Plate using a Hartmann Sensor
- Compensates thermal lensing in the Input Test Mass substrate and Compensation Plate using a CO<sub>2</sub> laser projector system
- Controls the radii of curvature in the Input Test Mass and End Test Mass using ring heaters
- Intermittently measures the End Test Mass with the Hartmann sensor to investigate thermal loading



### TCS Requirements

- Provide up to -5% radius of curvature change to test mass high-reflectance faces
- Maintain radiofrequency sideband gain in power recycling cavity up to 120W input power
- Maintain arm cavity power buildup to 95% of cold cavity value
- Maintain gravitational wave sideband extraction through signal recycling cavity to 95% of cold cavity value
- Maintain homodyne power at dark port to within 1mW
- Above requirements met by maintaining thermal aberrations to within  $\lambda/47$  (Core Optics requirements are  $\sim \lambda/300$ )
- Must meet these requirements without injecting noise above technical noise requirements (phase noise, magnetic noise, etc.)



### TCS Design Concept

- TCS consists of sensors to detect thermal aberrations and actuators to correct thermal aberrations
  - » Sensors:
    - Hartmann wavefront sensor to measure thermal phase profile in individual End
       Test Masses and Input Test Mass/Compensation Plate pairs
    - Phase camera and bull's-eye sensor to measure interferometer beam profiles
  - » Actuators:
    - Carbon dioxide laser projector acting upon compensation plate to correct thermal lens in recycling cavities
    - Radiant ring heaters to correct test mass mirror surface radii of curvature



## Thermal Compensation System (TCS)





# TCS Production Units Ring Heater

- The ring heater has passed final design and is now on project.
  - » PDR completed July 2010
  - » FDR completed December 2010
- University of Florida group is verifying heating pattern in vacuum of delivered heaters and developing alternative riskreduction ring heater design













### TCS Development Plan Hartmann Sensor

- Hartmann sensor camera FDR completed August 2010
- Remaining Hartmann sensor PDR completed April 2011
- Remaining FDR: October 2011
- University of Adelaide is making significant contributions to aLIGO TCS: now purchasing cameras for aLIGO as per MOU with LIGO and writing Hartmann Wavefront Sensor software.
- Hartmann sensor probe beam wavelengths have been chosen, layout is being finalized. Beamsplitter antireflection coating design optimization for Hartmann Wavefront Sensor is still being considered.



LIGO-G1100460-v5



# TCS Development Plan CO<sub>2</sub> Laser Projector

- CO<sub>2</sub> projector design operated on Enhanced LIGO with high power most noise couplings were identified and mitigated
- A search is ongoing for a stable, higher-power laser to handle aLIGO thermal lens with desired power margin
- PDR: July 2011

» Optical path layouts to be optimized for safety, facility and performance requirements

FDR: November 2011



LIGO-G1100460-v5



#### CO<sub>2</sub> Laser Procurement

- The initial vendor for the CO<sub>2</sub> laser failed to deliver a laser that met requirements
- The CO<sub>2</sub> laser choice presents no <u>technical</u> risk to the CO<sub>2</sub> laser projector design, only cost or schedule risk.
- We can adopt an off-the-shelf 30W laser presenting:
  - » No budgetary risk
  - » No schedule risk
  - » Low to moderate technical risk to initial realization of adequate power margin, to be met with higher power development if deemed necessary
- We can adopt an upgraded off-the-shelf 50W laser:
  - » High budgetary risk (+50%)
  - » Moderate schedule risk
  - » Low technical risk to realization of adequate power margin
- Other vendors also under consideration



### TCS Project Organization

- TCS Team Leader/Mechanical Engineer Mindy Jacobson Caltech
- Cognizant Scientist Phil Willems Caltech
- Electronics Engineer Steve O'Connor Caltech
- Staff scientist Aidan Brooks Caltech
- Operator/Technical support Cheryl Vorvick Hanford Observatory;
   Chris Guido Livingston Observatory
- Mechanical Engineer/Draftsperson Caltech
- Ring heater design support Guido Mueller, Giacomo Ciani, Deepak Kumar, Chris Mueller- University of Florida group
- Hartmann sensor design and material support Jesper Munch, Peter Veitch, David Ottaway, Won Kim - University of Adelaide



#### TCS Development Accomplishments

- CO<sub>2</sub> laser projector operated successfully on Enhanced LIGO; projector in-vacuum steering mirror for H2 reviewed and in fabrication, with one to be installed during H2 single-arm test; power control waveplate mount designed
- HWS probe beam wavelengths chosen and optical layout nearly finalized; HWS cameras on project and currently in procurement. Beta version of core HWS software complete.



6/02/2010 06:00:00 Avg=200 BW=0.187493

CO2 projector in-vacuum steering mirror 11



Power control waveplate mount

#### Hartmann sensor mounting plate with thermal sensor





#### TCS Development Accomplishments

 Ring heater through design phase and in fabrication for installation during H2 single-arm test- heater pattern uniformity meets requirements, current driver meets magnetic noise requirements

TCS/SYS integration: laboratory floor layout, vacuum compatibility of fabrication, interfaces with CDS,SUS,COC,ISC

red circle shows gap between ring heater segments for SUS fiber welding

Ring heater seen during prototype quad SUS assembly

#### Vacuum ring heater tester at University of Florida



LIGO-G1100460-v5



Sample ring heater temperature profile



#### TCS Fabrication Plan

- Much of the TCS optical and mechanical components are off-the-shelf
- Remaining components (e.g. ring heaters, in-vacuum mirrors, installation tooling) are being designed in-house and manufactured by local machine shops using established processes
- The University of Adelaide is procuring and delivering part of the TCS hardware (Hartmann sensor cameras) and has delivered a prototype baseline camera assembly.
  - » Procurement contribution is on the order of US\$750k



### TCS Project Phase Plans

- TCS entered the Project Phase in October 2010 to meet early need-by dates for in-vacuum TCS components integration
  - » Ring heater
  - » H2 in-vacuum steering mirror
  - » ZnSe viewports
- TCS will fully transition to Project Phase in December 2011 in order for remaining TCS components to meet later integration need-by dates.



# TCS Challenges, Risks, and Mitigations

#### Moderate TCS risks

- » Noise due to TCS power instability, which are being mitigated by prototype study (projector noise reduction on eLIGO), and by optimizing ring heater components [AOS RR-003]
- » Initial vendor for CO<sub>2</sub> laser proved unable to deliver suitable high power laser; we are currently investigating alternative vendors, and possibly installing lower power laser initially while pursuing higher power laser development [AOS RR-009]

#### Major TCS risks

» Main risk is excessive or inhomogeneous absorption in ITM coatings. As-built coating prototypes meet (even exceed) spec; in-vacuo contamination is the remaining threat. In-situ cleaning procedures are currently under study to reduce contamination. [AOS COC RR-010]



#### TCS Near Term Activities

- Fabrication and installation of ring heaters and initial testing of Hartmann sensor on H2 single arm test
- CO<sub>2</sub> laser requirements and vendor re-evaluation
- CO<sub>2</sub> laser projector component design:
  - » Upper periscope mirror/ZnSe viewport design
  - » Beam shaping optics
  - » Intensity/beam drift stabilization
  - » In-vacuum steering optics for H1/L1
- Hartmann sensor PDR closeout and begin of Final Design phase
  - » Alignment optics for sensor installation
  - » Prototype electronics for Hartmann sensor at H2 single-arm integration