

Stray Light Control & Viewports Michael Smith

aLIGO NSF Review

LIGO Livingston Observatory

25-27 April 2011

LIGO-G1100451-v3

Stray Light Control Functions

- Control stray light scatter in the interferometer using baffles, beam dumps, and attenuators
- Reduce scattered light apparent displacement noise

Ghost beams

LIGO-G1100451-v3

LIGO Stray Light Control Requirements

• Total apparent stray light displacement noise <1/10 thermal noise limit

LIGO Stray Light Control Design Concept

- Porcelainized enamel coatings to reduce scattered light power
- Small, Core Optic wedge angles simplify/consolidate many baffles and beam dumps in the recycling cavities
 - » Cavity Mirror Wedge angles
 - ITM, 0.07 deg vertical wedge angle causes ghost beams to separate from the main beam in the vicinity of PR2 and SR2 for interception with beam dumps
 - BS, 0.07 deg horizontal wedge angle provides the ITM pickoff beam in vicinity of SR2
- Variety of suspended baffle surfaces reduce apparent scattered light displacement noise
 - » Arm Cavity Baffle (ACB), ITM Elliptical Baffle, Manifold/Cryopump Baffle
 - » Output Faraday Isolator
- New ACB catches narrow and wide-angle scatter from ITM and ETM
- New ACB photodetectors aid initial alignment; measure scattered light
- New Mode Cleaner Tube Baffle mitigates recycling cavity scatter and errant beams

LIGO Scattered Light Control Development Accomplishments - I

- Scattered light displacement noise models with real suspensions meet SLC requirement
- Developed porcelainized coating for baffles and beam dumps
- Tested Output Faraday Isolator (OFI) and Arm Cavity Baffle (ACB) suspension designs with eddy current-damping at Caltech and LASTI
 - » Suspension model matches experimental data
- Shipped OFI 1st Article to LHO for squeezer test
- Completed vibration test --Manifold/Cryopump Baffle 1st Article
 - » Ready for one-arm integration at LHO
- Developed new ACB design to mitigate wide-angle scatter from Test Mass
- Created new Mode Cleaner Tube baffles for recycling cavity, based on eLIGO experience

Stray Light Control (SLC)

LIGO

LIGO Scattered Light Control Development Accomplishments – II

- 1st Articles Complete
 - » Manifold/Cryopump Baffle
 - » Output Faraday Isolator
- Suspensions Tested
 - » Arm Cavity Baffle
 - » Manifold/Cryopump Baffle
 - » Output Faraday Isolator

Manifold/Cryopump Baffle 1st Article suspended inside manifold tube mock-up

Optical test of OFI at Caltech

LIGO Stray Light Control Development Status

- Completed Output Faraday Isolator Final Design Review Oct 2010
- Completed Arm Cavity Baffle Final Design Review April 2011
- Most designs and drawings are complete
- All other SLC baffles and beam dumps Final Design Review June 2011

LIGO Stray Light Control Project Plans and Reorganization

- Project Plans
 - » Output Faraday Isolator 1st Article at LHO– April 2011
 - » Baffles and Beam Dumps for One-arm Integration ready July 2011
 - » Baffles and Beam Dumps for Michelson Integration ready August 2011
 - » All other baffles and beam Dumps for aLIGO Installation Nov. 2011
- Project Organization Caltech
 - » Team Leader/Optical Engineer Michael Smith
 - » Coordinator Lisa Austin
 - » Suspensions Testing Virginio Sannibale
 - » Mechanical Designer Heidy Kelman
 - » Mechanical Designer Niem Nguyen
 - » Mechanical Designer Manuel Ruiz
 - » Draftspersons Pool

LIGO Scattered Light Control Challenges, Risks, and Mitigations

- Delivering SLC in time for the One-arm & Michelson Integration?
 » On track to meet Installation Schedule
- Adequate seismic attenuation achieved?
 - » All suspended baffles and attenuators tested at CIT and LASTI, and meet SLC requirements
 - » Porcelainization of baffles is now a standard process
- On-time delivery of procurements?
 - » Continuous monitoring of manufacturing progress
- No remaining risks!!

Stray Light Control Near Term Activities

- Shipped 1st Article OFI to LHO for Squeezer Test
- Shipped 1st Article Manifold/Cryopump Baffle to LHO for One-arm Integration
- Completing procurement of Arm Cavity Baffle 1st Article
- Completing Final Design Review
 - » Manifold/Cryopump Baffle and Mode Cleaner Tube Baffle May, 2011
 - » All Other SLC baffles and beam dumps June, 2011
- Procuring all remaining baffles and beam dumps
- Developing installation procedures and tooling

Viewport Functions

- Provide optical viewports for the passage of optical beams in and out of the vacuum region(s) of the Interferometer.
 - » optical lever beams
 - » chamber illumination beams
 - » video camera beams
 - » optical beams for interferometer sensing and control
 - » Hartmann Sensor beams
 - » Photon Calibrator beams
- Provide safety covers for all installed viewports

Viewport Requirements

- Video camera Viewport (VP)—transmit visible light spectrum
- Chamber illumination VP—uncoated viewports
- OpLev VP—similar to iLIGO

LIGO

- Septum Plate (to isolate input and output HAM chambers) VP similar to eLIGO
- ISC and Hartmann VP—super-polished, low scattering, < 1/10 wave, special AR coatings
 - » Hartmann AR coating: 800nm 1080nm
 - » ISC AR coating: 532nm and 1064nm
- Safety covers to protect viewports during installation and commissioning

Viewport Design Concept

- Reuse iLIGO VP wherever possible
- New O-ring-sealed 6.0 inch VP for Interferometer Sensing and Control, and Hartmann beams
- Septum VP similar to eLIGO design
- Additional iLIGO style VPs needed for new Mode Cleaner Tube VPs

Viewport Development Accomplishments

Analyzed VP scattered light

LIGO

- Determined viewport locations using ZEMAX beam layout
- Established proper names for all viewports according to LIGO naming convention
- Created a catalog of VP requirements and part numbers for all subsystems
- Completed VP Final Design Review
- Developed new specification for 6.0 inch ISC/Hartmann VP

Viewport Development Status

- Drawings for 6.0 inch VP and Septum VPs are in progress
- Final Design Review Complete April 2011

LIGO

Viewport Project Plans and Reorganization

- Project Plans
 - » On schedule for installation One-arm Integration– June 2011
 - » On schedule for deployment for Michelson Integration– July 2011
 - » On schedule for deployment of three aLIGO IFOs August 2011
- Project Organization
 - » Cognizant Engineer and Leader Michael Smith Caltech
 - » Coordinator Lisa Austin Caltech
 - » Installation Leads –

Gerardo Moreno – Hanford Chris Guido– Livingston

LIGO Viewport Challenges, Risks, and Mitigations

- On-time procurement of 6.0 inch VP and Septum VP?
 - » Monitoring of procurement and manufacturing progress
- Other VPs mostly catalog items
 - » No known technical or schedule risks