

Auxiliary Optical Systems - AOS

Transmission Monitoring Telescope and Suspension – TMS

Eric Gustafson

aLIGO NSF Review LIGO Livingston Observatory

April 25-27, 2011

LIGO-G1100439-v4

LIGO Auxiliary Optical System Talks Outline

- Transmission Monitoring Telescope and Suspension (TMS) Eric Gustafson
- Optical Levers (OptLev) Eric James
- Thermal Compensation System (TCS) Phil Willems
- Initial Alignment System (IAS) Doug Cook
- Photon Calibration System (PhotonCal) Rick Savage
- Stray Light Control (SLC) and Viewports (VP) Mike Smith

Transmission Monitoring Telescope and Suspension - TMS

TMS Functions

- Collects 1064 nm light transmitting through ETM and provides it for Interferometer Sensing and Control
- Transmits 532 nm light for Arm Length Stabilization
- Transmits 532 nm for intermittent Hartmann ETM monitoring
- Transmit any residual 1064 nm radiation to beam dump

LIGO-G1100439-v4

TMS Requirements

- Suspension and Noise
 - » 6 DOF of platform are isolated
 - » Suspension Eigen frequencies between 0.5-5 Hz
 - » All rigid body modes damped to Q<10
 - » Above 10 Hz isolation factor > 1000 all 6 DOF
 - Displacement noise < 1 pm/ $\sqrt{(Hz)}$]
 - Angular noise < 1 frad/ $\sqrt{(Hz)}$]
 - » Internal modes of suspension structure 150 Hz or higher
 - » At 3 Hz isolation factor >10 all DOF
- Telescope
 - » Reduce 1064 nm beam by 20x to fit 2 inch optics on optics table
 - » Alignment sensors with 90 degree Gouy phases within ± 10 deg.
 - » Handle 1064 nm, 532 nm sensor wavelengths

TMS Design Concept

- Double pendulum suspension based on upper stage of Quad Suspension
- Telescope
 - » Reflective off-axis parabolic mirrors
 - » Folded design
- Optical routing done on optical table
- High Power in vacuum beam dump

LIGO-G1100439-v4

- Compared Three Telescope Designs and selected off axis parabolic design
- Telescope modeled with Ray Tracing Program
- Modeled Suspension Transfer Functions with LIGO Software

TMS Suspension Prototype Tests

- Establish all 6 BOSEMs operational and interference free
- Measured all 12 body
 resonance frequencies
- Response Rough cut at orthogonalizing
 DOF response
- Confirm resonant frequencies assignments via TF for all DOFs
- Good agreement with prototype model
- Established good damping

٠

٠

LIGO TMS Telescope Mirror Alignment & Characterization

- Shack-Hartmann Test Facility @ Caltech
- Telescope astigmatism spec: <1/20λ @ 1064nm
 - » Requires Zernike coefficients Z4 and Z6 < 0.02 waves
 - » Zernike 5 defocus TBD

Telescope Meets Astigmatism Specification

Preliminary autocollimator alignment

Final Shack-Hartmann alignment

TMS Development Plan

- Preliminary Design Review completed May 2010 🖌
- Telescope First Article build May 2011
 - Final Design Phase
 - » Optical Table tests completed – April 2011 ✔
 - » Telescope First Article tests completed – June 2011
 - » Suspension testing completed – March 2011 ✓
 - » FDR completed June 2011
 - » Update all drawings June 2011

LIGO-G1100439-v4

TMS Project Organization and Plans

- Project Organization
 - » Team Leader/Mechanical Engineer Ken Mailand Caltech
 - » Cognizant Scientist Sam Waldman MIT
 - » Telescope Optical Design Mike Smith Caltech
 - » Mechanical Designer Mike Miller– Caltech
 - » Draftsperson Jesse Terraza Caltech
 - » Electronics Jay Heefner Caltech
 - » Suspensions Modeling Matt Evans MIT
 - » Suspensions Testing Bill Kells Caltech
 - » Optical Testing Virginio Sannibale Caltech
 - » Assembly Technician Larry Mossberger Caltech
 - » Project Engineer and Planning Lisa Austin Caltech
 - **Project Plans**
 - » Reworked First Article available for Long Arm Test June 2011
 - » Remaining production units available December 2011

TMS Challenges, Risks, and Mitigations

- Getting First Article delivered to Hanford in time for the Long Arm Test
 - » Draftsperson
 - » Assembly Technician
 - » Project Engineer and Planning
- Optical Aligning and focusing double off axis parabolic telescope
 - » Course alignment with auto collimating telescope
 - » Fine alignment with Shack-Hartmann sensor
 - » Simulation of final alignment with ray tracing simulation
 - » Incoming testing of all parabolic mirrors
- Delivery of off-axis parabolic mirrors
 - » Two suppliers
 - » First Article already Received August 2010 and second Due April 2011

TMS Near Term Activities

Build and Test First Article Telescope – June 2011

Design and procure the equipment needed for testing

- » Suspension test stand Caltech
 May 2011
- » Electronics test stand Caltech Completed ✓
- » Fixturing for Telescope testing Caltech – May 2011

Final Design Review – June 2011 Rework First Article Telescope in time for Long Arm Test

