LIGO Laboratory / LIGO Scientific Collaboration

Lı Go-то900231-v2Advanced LIGO UK
 26 November 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` T_TOP68P
Test Engineer ....Xen.
Date 10/3/10
```


2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Oscilloscope	ISO-TECH	ISR622	
PSU*2 $_{\text {DVM }}$ Farnell	L30-2		
Signal gen	Fluke	77III	
	Agilent	33250 A	

```
Unit.
Test Engineer ....Xen.
Date
10/3/10
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

Also replaced $\mathrm{U} 3, \mathrm{U} 1$ and C 12 on CH 3 .

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen
.10/3/10.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{l \mid}$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
	5	0V	$\sqrt{ }$	
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer . Xen.
Date 10/3/10

6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.03	1 mV	$\sqrt{ }$
+15 v TP4	14.95	1 mV	$\sqrt{ }$
-15 v TP6	-15.03	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` T_TOP68P Serial No
Test Engineer ....Xen.
Date
.10/3/10
```

8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.45	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Test Engineer . Xen.
Date 10/3/10 \qquad
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.85	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.25	3v to 3.4v	$\sqrt{ }$
Ch2	3.25	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.25	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$0.15 v$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
```

\qquad

``` T_TOP68P Serial No
Test Engineer Xen.
```

Date .10/3/10
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 3 to Pin 4	0.479	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 7 to Pin 8	0.482	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.480	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 15 to Pin 16	0.482	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP68P. Serial No
Test Engineer . Xen.
Date .10/3/10

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.4	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$	-24.5	$\sqrt{ }$
-7v	-17.0	\checkmark	-17.2	$\sqrt{ }$	-17.1	$\sqrt{ }$	-17.2	$\sqrt{ }$
-5v	-12.2	\checkmark	-12.3	$\sqrt{ }$	-12.2	\checkmark	-12.4	\checkmark
-1v	-2.41	\checkmark	-2.41	$\sqrt{ }$	-2.4	$\sqrt{ }$	-2.42	\checkmark
Ov	0	$\sqrt{ }$						
1v	2.42	\checkmark	2.42	$\sqrt{ }$	2.42	\checkmark	2.42	\checkmark
5v	12.2	$\sqrt{ }$						
7v	17.0	$\sqrt{ }$	17.1	$\sqrt{ }$	17.0	\checkmark	17.1	$\sqrt{ }$
10v	24.3	$\sqrt{ }$	24.4	$\sqrt{ }$	24.3	$\sqrt{ }$	24.3	$\sqrt{ }$

Unit.

Serial No \qquad
Test Engineer
Date

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit
                T_TOP68P
Test Engineer ....Xen.
Date
10/3/10
```


13. Dynamic Range Tests

\qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-t0900231-vı Advanced LIGO UK 6 мay 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
TOP1P
\(\qquad\)
```

Test EngineerXen.
Date
19/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline DVM & Fluke & \(77 I I I\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.
...............T_TOP1P.

```
\(\qquad\)
```

 Serial No
 Test EngineerXen
Date
19/10/09

```

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . - \(\overline{\text { Xen }}\)

Date .19/10/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
T_TOP1P
Test Engineer .Xen
Date 19/10/09

```

\section*{6. Power}
```

Check the polarity of the wiring:
3 Pin Power Connector

```

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+\boldsymbol{+}-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.13 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.95 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.07 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer .
Date 19/10/09.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

``` \(\qquad\)
``` .T_TOP1P Serial No
Test Engineer . Xen
Date
``` \(\qquad\)
``` 19/10/09
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.85	4.85	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.85	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.75	4.85	4.85	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.85	4.85	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\checkmark$
Ch2	4.8	4.7 to 5 v	$\checkmark$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\checkmark$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.3	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\checkmark$
Ch2	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch3	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\checkmark$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.45	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.45	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
T TOP1P
Test Engineer ....Xen
Date 19/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.1	3v to 3.4v	$\sqrt{ }$
Ch2	3.1	3v to 3.4v	$\sqrt{ }$
Ch3	3.1	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.15	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$

```
Unit
 T_TOP1P
Serial No
Test EngineerXen.
Date
.19/10/09
9. Monitor Outputs
Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
```

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output   across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   $\mathbf{( + / - 0 . 1 v )}$
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.488	Pin 7 to Pin 8	0.489	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.484	Pin 11 to Pin 12	0.486	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.487	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. .T_TOP1P. $\qquad$
Test .Xen.
Date 19/10/09

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2   o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.0	$\sqrt{ }$	-24.2	$\checkmark$	-24.0	$\checkmark$	-24.2	$\checkmark$
-7v	-16.9	$\sqrt{ }$	-17.0	$\checkmark$	-17.0	$\checkmark$	-17.0	$\checkmark$
-5v	-12.0	$\checkmark$	-12.0	$\checkmark$	-12.0	$\checkmark$	-12.0	$\checkmark$
-1v	-2.4	$\checkmark$	-2.4	$\sqrt{ }$	-2.4	$\checkmark$	-2.4	$\checkmark$
Ov	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.4	$\checkmark$	2.4	$\checkmark$	2.4	$\checkmark$	2.4	$\checkmark$
5v	12.0	$\sqrt{ }$	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$
7v	16.9	$\sqrt{ }$						
10v	24.0	$\checkmark$	24.0	$\checkmark$	24.0	$\checkmark$	24.0	$\checkmark$

```
Unit
 T_TOP1P
 Serial No
```

$\qquad$

```
Test EngineerXen
19/10/09
```


## 12. Crosstalk Tests

```
The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.
```


### 12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the outputs in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@ Freq
Channel 1	Channel 2	-148 dB	-111 dB	457 Hz
Channel 2	Channel 1	-143 dB	-111 dB	457 Hz
Channel 2	Channel 3	-136 dB	-112 dB	912 Hz
Channel 3	Channel 2	-137 dB	-108 dB	209 Hz
Channel 3	Channel 4	-142 dB	-111 dB	457 Hz
Channel 4	Channel 3	-142 dB	-108 dB	457 Hz

### 12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT   CHANNEL	OUTPUT   CHANNEL	Maximum   Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
 T_TOP_1P
 P.
Test Engineer . Xen.
Date 21/10/09.
```


## 13. Dynamic Range Tests

$\qquad$

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 ~ v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 ~ v}$	3.46	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 \mathbf { v }}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lıgo-t0900231-vı Advanced LIGO UK 6 мay 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
 T_TOP2P
\(\qquad\)
```

Test Engineer ....Xen.
Date
20/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

                            T_TOP2P
    ```
\(\qquad\)
```

                                    Serial No
    Test Engineer ....Xen.
Date
19/10/09

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 19/10/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
T_TOP2P
Test Engineer Xen
Date 19/10/09

```

\section*{6. Power}
```

Check the polarity of the wiring:
3 Pin Power Connector

```
\(\qquad\)

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+\boldsymbol{+}-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.08 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.85 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.08 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

``` \(\qquad\)
``` T_TOP2P Serial No
Test Engineer Xen
Date
``` \(\qquad\)
``` 19/10/09
``` \(\qquad\)

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.75 & 4.85 & 4.85 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.75 & 4.85 & 4.85 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch3 & 4.75 & 4.85 & 4.85 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.75 & 4.85 & 4.85 & \(4.7 v\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.65 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.65 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch3 & 0.60 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch4 & 0.60 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Test Engineer ..
Xen
Date 19/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & \(4.7 v\) to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & \(\mathbf{4 . 7 v}\) to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & \(\mathbf{4 . 7 v}\) to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
T_TOP2P
$\qquad$

```
Test Engineer . Xen.
Date 19/10/09.
9. Monitor Outputs
Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
```

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal	Output across   coil resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.486	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.486	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.486	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.487	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP2P $\qquad$
Test Engineer ....Xen.
Date .20/10/09.

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2   ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.2	$\checkmark$	-24.1	$\checkmark$	-24.0	$\checkmark$	-24.1	$\checkmark$
-7v	-17.0	$\checkmark$	-16.9	$\checkmark$	-16.9	$\checkmark$	-16.9	$\checkmark$
-5v	-12.0	$\sqrt{ }$	-12.0	$\sqrt{ }$	-12.0	$\checkmark$	-12.0	$\checkmark$
-1v	-2.4	$\sqrt{ }$	-2.4	$\sqrt{ }$	-2.4	$\checkmark$	-2.4	$\checkmark$
Ov	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.4	$\checkmark$	2.4	$\checkmark$	2.4	$\checkmark$	2.4	$\checkmark$
5v	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$
7v	17.0	$\checkmark$	16.9	$\checkmark$	17.0	$\checkmark$	17.0	$\checkmark$
10v	24.0	$\checkmark$	24.0	$\checkmark$	24.1	$\checkmark$	24.1	$\checkmark$

```
Unit
 T_TOP2P
 Serial No
```

$\qquad$

```
Test EngineerXen.
Date
20/10/09
```


## 12. Crosstalk Tests

```
The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.
```


### 12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Max o/p	@ Freq
Channel 1	Channel 2	-133 dB	-112 dB	827 Hz
Channel 2	Channel 1	-141 dB	-117 dB	495 Hz
Channel 2	Channel 3	-137 dB	-113 dB	832 Hz
Channel 3	Channel 2	-139 dB	-111 dB	457 Hz
Channel 3	Channel 4	-137 dB	-115 dB	478 Hz
Channel 4	Channel 3	-141 dB	-114 dB	473 Hz

### 12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT   CHANNEL	OUTPUT   CHANNEL	Maximum   Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
 T_TOP2P
Test EngineerXen.
Date
20/10/09
```


## 13. Dynamic Range Tests

                                    Serial No
    $\qquad$

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 ~ v}$	3.43	$\sqrt{ }$
Ch2	$3.3-3.5 \mathbf{v}$	3.44	$\sqrt{ }$
Ch3	$3.3-3.5 \mathbf{v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace link W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lıgo-t0900231-vı Advanced LIGO UK 6 мay 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



## Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
```

$\qquad$

``` T_TOP3P \(\qquad\)
```

Test Engineer ....Xen.
Date
20/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline DVM & Fluke & \(77 I I I\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

                            T TOP3P
    ```
\(\qquad\)

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen..
Date 20/10/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
Unit................T_TOP3P.........................Serial No
Test EngineerXen.................

Date 20/10/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}\)
\end{tabular} \\
\hline+12 v TP5 & 11.98 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.95 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.99 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

``` \(\qquad\)
``` T_TOP3P Serial No
Test Engineer ....Xen.
Date
``` \(\qquad\)
``` .20/10/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch3	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	\checkmark
Ch2	4.8	4.7 to 5 v	\checkmark
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.65	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	\checkmark
Ch3	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen
Date 20/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.1	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.44	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
                                .T_TOP3P
Serial No
Test Engineer ....Xen.
Date
20/10/09
9. Monitor Outputs
Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
```

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 7 to Pin 8	0.486	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.489	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP3P \qquad
Test EngineerXen.
Date .20/10/09.

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \mathrm{o} / \mathrm{p} \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stabl	$\begin{gathered} \text { Ch4 } \\ \text { o/p } \end{gathered}$	Ch4 stable ?
-10v	-24.2	\checkmark	-24.1	\checkmark	-24.0	\checkmark	-24.2	\checkmark
-7v	-17.0	\checkmark	-17.0	$\sqrt{ }$	-17.0	\checkmark	-17.0	\checkmark
-5v	-12.0	\checkmark	-12.0	$\sqrt{ }$	-12.0	\checkmark	-12.0	\checkmark
-1v	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark
Ov	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark
5v	12.0	\checkmark	12.0	\checkmark	12.1	\checkmark	12.0	\checkmark
7v	17.0	\checkmark	17.0	\checkmark	17.0	\checkmark	17.0	\checkmark
10v	24.1	\checkmark	24.0	\checkmark	24.1	\checkmark	24.1	\checkmark

```
Unit
T_TOP3P
Serial No
Test Engineer ....Xen
Date
20/10/09
```


12. Crosstalk Tests

```
The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.
```


12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-136 dB	-113 dB	417 Hz
Channel 2	Channel 1	-154 dB	-115 dB	363 Hz
Channel 2	Channel 3	-144 dB	-115 dB	525 Hz
Channel 3	Channel 2	-148 dB	-114 dB	462 Hz
Channel 3	Channel 4	-151 dB	-115 dB	363 Hz
Channel 4	Channel 3	-141 dB	-110 dB	692 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                                T_TOP3P
                                Serial No
```

\qquad

```
Test Engineer
    Xen.
Date
21/10/09
```


13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 ~ v}$	3.43	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 ~ v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 ~ \mathbf { ~ }}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-t0900231-vı Advanced LIGO UK 6 мay 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
                T_TOP4P
\(\qquad\)
```

Test EngineerXen.
Date
21/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```Unit
```

$\qquad$

``` T_TOP4P
``` \(\qquad\)
``` Serial No
Test Engineer .Xen.
```

Date .21/10/09.

## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen...
Date 21/10/09.

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
Unit.................T_TOP4P........................Serial No
Test Engineer ....Xen................

Test Engineer ....Xen....
Date 21/10/09

## 6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator
Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   +/- 0.5v?
+12 v TP5	11.97	1 mV	$\checkmark$
+15 v TP4	14.88	1 mV	$\sqrt{ }$
-15 v TP6	-15.06	5 mV	$\sqrt{ }$


All Outputs smooth DC, no oscillation?	$\checkmark$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit................T_TOP4P........................Serial No
Test Engineer ....Xen....................
Date ..............21/10/09............
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.85	4.85	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.85	4.85	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch3	4.75	4.85	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	4.9	4.9	$4.7 v$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\checkmark$


	Output	Specification	Pass/Fail
Ch1	3.3	3.3 v to 3.7v	$\checkmark$
Ch2	3.3	3.3 v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3 v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3 v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.64	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test Engineer ....Xen.
Date
21/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.0	3v to 3.4v	$\sqrt{ }$
Ch2	3.1	3v to 3.4v	$\sqrt{ }$
Ch3	3.1	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.44	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.44	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.44	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
 T_TOP4P
Test Engineer . Xen.
Date
``` \(\qquad\)
``` .21/10/09
9. Monitor Outputs
Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
```

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

## Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.488	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP4P. .Serial No $\qquad$
Test Engineer ....Xen.
Date .21/10/09

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	$\begin{gathered} \text { Ch1 } \\ \text { stable } \end{gathered}$ $?$	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	$\begin{gathered} \text { Ch2 } \\ \text { stable } \end{gathered}$ ?	Ch3 o/p	$\begin{gathered} \hline \text { Ch3 } \\ \text { stable } \end{gathered}$ $?$	$\begin{gathered} \text { Ch4 } \\ \text { o/p } \end{gathered}$	$\begin{gathered} \text { Ch4 } \\ \text { stable } \end{gathered}$ $?$
-10v	-24.2	$\checkmark$	-24.2	$\checkmark$	-24.1	$\checkmark$	-24.1	$\checkmark$
-7v	-17.0	$\checkmark$	-17.0	$\checkmark$	-16.9	$\checkmark$	-17.0	$\checkmark$
-5v	-12.0	$\checkmark$	-12.0	$\checkmark$	-12.0	$\checkmark$	-12.0	$\checkmark$
-1v	-2.4	$\checkmark$	-2.4	$\checkmark$	-2.4	$\checkmark$	-2.4	$\checkmark$
Ov	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.4	$\checkmark$	2.4	$\checkmark$	2.4	$\checkmark$	2.4	$\checkmark$
5v	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$
7v	17.0	$\checkmark$	17.0	$\checkmark$	17.0	$\checkmark$	16.9	$\checkmark$
10v	24.2	$\checkmark$	24.2	$\checkmark$	24.1	$\checkmark$	24.1	$\checkmark$

```
Unit
T_TOP4P
Serial No
Test EngineerXen.
Date
21/10/09
```


## 12. Crosstalk Tests

```
The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.
```


### 12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@ Freq
Channel 1	Channel 2	-134 dB	-112 dB	457 Hz
Channel 2	Channel 1	-137 dB	-114 dB	347 Hz
Channel 2	Channel 3	-136 dB	-112 dB	251 Hz
Channel 3	Channel 2	-134 dB	-112 dB	1 kHz
Channel 3	Channel 4	-134 dB	-112 dB	1 kHz
Channel 4	Channel 3	-137 dB	-110 dB	229 Hz

### 12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT   CHANNEL	OUTPUT   CHANNEL	Maximum   Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
 T_TOP4P
Test EngineerXen.
Date
.21/10/09
```


## 13. Dynamic Range Tests

                                Serial No
    $\qquad$

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lıgo-t0900231-vı Advanced LIGO UK 6 мay 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
```

$\qquad$

``` T_TOP5P \(\qquad\)
```

Test Engineer ....Xen.
21/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
Unit................T_TOP5P.......................Serial No ..
Test EngineerXen...................
Date21/10/09...........

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen..
Date 21/10/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
Unit.................T_TOP5P........................Serial No
Test EngineerXen.................

Test EngineerXen....
Date 21/10/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator
Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}\)
\end{tabular} \\
\hline+12 v TP5 & 11.98 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.93 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.92 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline All Outputs smooth DC, no oscillation? & \(\sqrt{ }\) \\
\hline
\end{tabular}

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
\(\qquad\)

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

``` \(\qquad\)
``` .T_TOP5P Serial No
Test Engineer ....Xen.
Date
``` \(\qquad\)
``` .23/10/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch3	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1 Hz			
	Output	Specification	Pass/Fail
Ch1	3.3	3.3 to 3.7v	$\sqrt{ }$
Ch2	3.3	$3.3 v$ to $3.7 v$	\checkmark
Ch3	3.3	$3.3 v$ to $3.7 v$	\checkmark
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.65	$\mathbf{0 . 4 8}$ to 0.75v	\checkmark
Ch2	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch3	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	\checkmark
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen.
Date
21/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch4	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.1	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.1	3v to 3.4v	$\sqrt{ }$
Ch4	3.1	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.44	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$

```
Unit
                T_TOP5P
\(\qquad\)
```

Test EngineerXen.
Date
.21/10/09
9. Monitor Outputs
Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

```

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 1 to Pin 2 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 5 to Pin 6 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 9 to Pin 10 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 13 to Pin 14 & 1.22 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.486 & Pin 3 to Pin 4 & 0.487 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.487 & Pin 7 to Pin 8 & 0.488 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 11 to Pin 12 & 0.487 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 15 to Pin 16 & 0.488 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit .T_TOP5P .Serial No \(\qquad\)
Test Engineer ....Xen.
Date .21/10/09

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 olp & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.1 & \(\sqrt{ }\) & -24.1 & \(\sqrt{ }\) & -24.0 & \(\checkmark\) & -24.0 & \(\checkmark\) \\
\hline -7v & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -16.9 & \(\checkmark\) \\
\hline -5v & -12.0 & \(\checkmark\) & -12.0 & \(\sqrt{ }\) & -12.0 & \(\sqrt{ }\) & -12.0 & \(\checkmark\) \\
\hline -1v & -2.4 & \(\sqrt{ }\) & -2.4 & \(\sqrt{ }\) & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) \\
\hline 1v & 2.4 & \(\sqrt{ }\) \\
\hline 5v & 12.0 & \(\sqrt{ }\) & 12.0 & \(\sqrt{ }\) & 12.0 & \(\checkmark\) & 12.0 & \(\sqrt{ }\) \\
\hline 7v & 17.0 & \(\checkmark\) & 16.9 & \(\sqrt{ }\) & 16.8 & \(\checkmark\) & 16.9 & \(\sqrt{ }\) \\
\hline 10v & 24.1 & \(\sqrt{ }\) & 24.0 & \(\sqrt{ }\) & 24.0 & \(\sqrt{ }\) & 24.0 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & -137 dB & -112 dB & 794 Hz \\
\hline Channel 2 & Channel 1 & -135 dB & -113 dB & 831 Hz \\
\hline Channel 2 & Channel 3 & -128 dB & -112 dB & 240 Hz \\
\hline Channel 3 & Channel 2 & -136 dB & -110 dB & 316 Hz \\
\hline Channel 3 & Channel 4 & -140 dB & -112 dB & 316 Hz \\
\hline Channel 4 & Channel 3 & -140 dB & -106 dB & 209 Hz \\
\hline
\end{tabular}

\subsection*{12.2 Quick Test}

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
Maximum \\
Output
\end{tabular} & @ Frequency \\
\hline Channel 1 & Channel 2 & & \\
\hline Channel 2 & Channel 1 & & \\
\hline Channel 2 & Channel 3 & & \\
\hline Channel 3 & Channel 2 & & \\
\hline Channel 3 & Channel 4 & & \\
\hline Channel 4 & Channel 3 & & \\
\hline
\end{tabular}
```

Unit.
.T_TOP5P
Test EngineerXen.
Date
.21/10/09

```

\section*{13. Dynamic Range Tests}
                                Serial No
\(\qquad\)

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(3.3-3.5 \mathbf{v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch2 & \(3.3-3.5 \mathbf{v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(3.3-3.5 \mathrm{v}\) & 3.42 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lıgo-t0900231-vı Advanced LIGO UK 6 мay 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


\section*{Contents}
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(10 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit T_TOP6P

``` \(\qquad\)
\(\qquad\)
```

Test Engineer . Xen
Date .22/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 T_TOP6P
    ```
\(\qquad\)
```

 Serial No
 Test EngineerXen.
Date
22/10/09

```

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Date
.22/10/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \multicolumn{4}{|c|}{} \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & \multicolumn{1}{l|}{ OK? } \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
Unit................T_TOP6P.........................Serial No
Test Engineer .....Xen................
Date...........22/10/09...........
6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator
Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
+/- 0.5v?
\end{tabular} \\
\hline+12 v TP5 & 12.06 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.93 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.00 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer . . \(\overline{\text { Xen }}\)
Date .22/10/09

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit. _TOP6P Serial No
Test EngineerXen
Date
22/10/09

```

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch3 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch2 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch3 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.66 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.65 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Test Engineer .....Xen
Date .22/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.1 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.45 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
T_TOP6P
\qquad

```
Test Engineer
                                .Xen
Date
.22/10/09.
```

\qquad

```
9. Monitor Outputs
Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
```

Voltage monitors

| Ch. | Nominal
 r.m.s | Output:
 TP9 to TP13
 r.m.s | Monitor Pins | Monitor
 Voltage | Pass/Fail:
 Equal?
 (+/- 0.1v) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{1 . 1 5 - 1 . 2 5 v}$ | 1.22 | Pin 1 to Pin 2 | 1.22 | $\sqrt{ }$ |
| $\mathbf{2}$ | $\mathbf{1 . 1 5 - 1 . 2 5 v}$ | 1.22 | Pin 5 to Pin 6 | 1.22 | $\sqrt{ }$ |
| $\mathbf{3}$ | $\mathbf{1 . 1 5 - 1 . 2 5 v}$ | 1.22 | Pin 9 to Pin 10 | 1.22 | $\sqrt{ }$ |
| $\mathbf{4}$ | $\mathbf{1 . 1 5 - 1 . 2 5 v}$ | 1.22 | Pin 13 to Pin 14 | 1.22 | $\sqrt{ }$ |

Current monitors

| Ch. | Nominal
 r.m.s | Output across coil
 resistor
 r.m.s | Monitor Pins | Monitor
 Voltage | Pass/Fail:
 Equal?
 (+/- 0.1v) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{0 . 4 7 - 0 . 4 9 v}$ | 0.485 | Pin 3 to Pin 4 | 0.486 | $\sqrt{ }$ |
| $\mathbf{2}$ | $\mathbf{0 . 4 7 - 0 . 4 9 v}$ | 0.486 | Pin 7 to Pin 8 | 0.487 | $\sqrt{ }$ |
| $\mathbf{3}$ | $\mathbf{0 . 4 7 - 0 . 4 9 v}$ | 0.485 | Pin 11 to Pin 12 | 0.487 | $\sqrt{ }$ |
| $\mathbf{4}$ | $\mathbf{0 . 4 7 - 0 . 4 9 v}$ | 0.486 | Pin 15 to Pin 16 | 0.488 | $\sqrt{ }$ |

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

| | Distortion Free? |
| :--- | :---: |
| Ch1 | $\sqrt{ }$ |
| Ch2 | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ |
| Ch4 | $\sqrt{ }$ |

Unit T_TOP6P \qquad
Test Engineer Xen.
.22/10/09
\qquad
Date

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

| | J3 pins 1,6 | | J3 pins 2,7 | | J3 pins 3,8 | | J3 pins 4,9 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$ | Ch1 stable ? | $\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$ | $\begin{gathered} \text { Ch2 } \\ \text { stable } \\ ? \end{gathered}$ | Ch3 o/p | $\begin{gathered} \text { Ch3 } \\ \text { stable } \end{gathered}$ $?$ | $\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$ | $\begin{gathered} \text { Ch4 } \\ \text { stable } \end{gathered}$ $?$ |
| -10v | -24.1 | \checkmark | -24.0 | \checkmark | -24.0 | \checkmark | -24.1 | \checkmark |
| -7v | -17.0 | \checkmark | -16.9 | \checkmark | -17.0 | \checkmark | -17.0 | \checkmark |
| -5v | -12.0 | \checkmark | -12.0 | \checkmark | -12.0 | \checkmark | -12.0 | \checkmark |
| -1v | -2.4 | \checkmark | -2.4 | \checkmark | -2.4 | \checkmark | -2.4 | \checkmark |
| Ov | 0 | \checkmark | 0 | \checkmark | 0 | \checkmark | 0 | \checkmark |
| 1v | 2.4 | $\sqrt{ }$ | 2.4 | $\sqrt{ }$ | 2.4 | \checkmark | 2.4 | \checkmark |
| 5v | 12.0 | \checkmark | 12.0 | \checkmark | 12.0 | \checkmark | 12.0 | \checkmark |
| 7v | 16.9 | \checkmark | 16.9 | \checkmark | 16.9 | \checkmark | 16.9 | \checkmark |
| 10v | 24.0 | \checkmark | 24.0 | \checkmark | 24.0 | \checkmark | 24.0 | \checkmark |

Unit.
.Serial No \qquad
Test Engineer
Date \qquad

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

| INPUT
 CHANNEL | OUTPUT
 CHANNEL | Output at 10Hz | Max o/p | @Freq |
| :---: | :---: | :---: | :---: | :---: |
| Channel 1 | Channel 2 | -135 dB | -111 dB | 724 Hz |
| Channel 2 | Channel 1 | -135 dB | -108 dB | 417 Hz |
| Channel 2 | Channel 3 | -133 dB | -111 dB | 692 Hz |
| Channel 3 | Channel 2 | -140 dB | -111 dB | 437 Hz |
| Channel 3 | Channel 4 | -136 dB | -115 dB | 955 Hz |
| Channel 4 | Channel 3 | -132 dB | -111 dB | 229 Hz |

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

| INPUT
 CHANNEL | OUTPUT
 CHANNEL | Maximum
 Output | @ Frequency |
| :---: | :---: | :---: | :---: |
| Channel 1 | Channel 2 | | |
| Channel 2 | Channel 1 | | |
| Channel 2 | Channel 3 | | |
| Channel 3 | Channel 2 | | |
| Channel 3 | Channel 4 | | |
| Channel 4 | Channel 3 | | |

```
Unit.
                                .T_TOP6P
Test Engineer ....Xen.
Date
.22/10/09
```


13. Dynamic Range Tests

 Serial No
 \qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

| | Ch1 | Ch2 | Ch3 | Ch4 |
| :---: | :---: | :---: | :---: | :---: |
| Not
 Clipping? | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

| | Theoretical o/p
 r.m.s | Measured | OK? |
| :--- | :---: | :---: | :---: |
| Ch1 | $\mathbf{3 . 3 - 3 . 5 v}$ | 3.32 | $\sqrt{ }$ |
| Ch2 | $\mathbf{3 . 3 - 3 . 5 v}$ | 3.33 | $\sqrt{ }$ |
| Ch3 | $3.3-3.5 \mathbf{v}$ | 3.32 | $\sqrt{ }$ |
| Ch4 | $\mathbf{3 . 3 - 3 . 5 v}$ | 3.32 | $\sqrt{ }$ |

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
```

\qquad

```
                            T_TOP7P
\(\qquad\)
```

Test EngineerXen.
Date
22/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
Unit................T_TOP7P........................Serial No ..
Test Engineer ....Xen...................
Date ..............22/10/09............

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.
Date 22/10/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
Unit.................T_TOP7P........................S.Serial No
Test Engineer ....Xen................

Date 22/10/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}\)
\end{tabular} \\
\hline+12 v TP5 & 12.03 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.91 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.14 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

``` \(\qquad\)
``` T_TOP7P Serial No
Test Engineer Xen
Date
``` \(\qquad\)
``` 22/10/09
```

$\qquad$

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch3	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\checkmark$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3.3 v$ to $3.7 v$	$\sqrt{ }$
Ch2	3.3	$3.3 v$ to $3.7 v$	$\sqrt{ }$
Ch3	3.3	$3.3 v$ to $3.7 v$	$\sqrt{ }$
Ch4	3.3	$3.3 v$ to $3.7 v$	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

Unit.
T TOP7P
Test Engineer ....Xen.
Date 23/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.1	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.15	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.44	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$

```
Unit
 .T_TOP7P
Test EngineerXen
Date
.23/10/09
9. Monitor Outputs
Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
```

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 7 to Pin 8	0.486	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 11 to Pin 12	0.488	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.488	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit
T_TOP7P $\qquad$
Test Engineer Xen.
Date 23/10/09

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.0	$\sqrt{ }$	-24.0	$\checkmark$	-24.2	$\sqrt{ }$	-24.0	$\checkmark$
-7v	-17.0	$\checkmark$	-16.9	$\checkmark$	-17.0	$\checkmark$	-16.9	$\checkmark$
-5v	-12.0	$\sqrt{ }$	-12.0	$\checkmark$	-12.1	$\checkmark$	-12.0	$\checkmark$
-1v	-2.4	$\checkmark$	-2.4	$\sqrt{ }$	-2.4	$\checkmark$	-2.4	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\sqrt{ }$	0	$\checkmark$	0	$\checkmark$
1v	2.4	$\checkmark$	2.4	$\sqrt{ }$	2.4	$\checkmark$	2.4	$\checkmark$
5v	12.0	$\sqrt{ }$	12.0	$\sqrt{ }$	12.0	$\sqrt{ }$	12.0	$\checkmark$
7v	16.9	$\checkmark$	16.8	$\sqrt{ }$	17.0	$\checkmark$	16.9	$\checkmark$
10v	24.0	$\checkmark$	24.0	$\sqrt{ }$	24.1	$\checkmark$	24.0	$\sqrt{ }$

```
Unit
T_TOP7P
Serial No
Test EngineerXen
Date
23/10/09
```


## 12. Crosstalk Tests

```
The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.
```


### 12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-133 dB	-113 dB	260 Hz
Channel 2	Channel 1	-129 dB	-110 dB	759 Hz
Channel 2	Channel 3	-127 dB	-115 dB	331 Hz
Channel 3	Channel 2	-138 dB	-112 dB	1 kHz
Channel 3	Channel 4	-130 dB	-114 dB	871 Hz
Channel 4	Channel 3	-136 dB	-109 dB	417 Hz

### 12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT   CHANNEL	OUTPUT   CHANNEL	Maximum   Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
 .T_TOP7P
Test EngineerXen.
Date
.23/10/09
```


## 13. Dynamic Range Tests

$\qquad$

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



## Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
```

$\qquad$

``` T_TOP8P \(\qquad\)
```

Test Engineer ....Xen.
Date
23/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
Unit................T_TOP8P........................Serial No ..
Test EngineerXen...................
Date23/10/09............

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen..
Date 23/10/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
Unit.................T_TOP8P........................Serial No
Test EngineerXen.................

Date 23/10/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}\)
\end{tabular} \\
\hline+12 v TP5 & 12.08 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.93 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.96 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

``` \(\qquad\)
``` T_TOP8P Serial No
Test Engineer ....Xen...
Date
``` \(\qquad\)
``` .23/10/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch2	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch3	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1 Hz			
	Output	Specification	Pass/Fail
Ch1	3.3	$\mathbf{3 . 3}$ to 3.7v	$\sqrt{ }$
Ch2	3.3	$3.3 v$ to $3.7 v$	\checkmark
Ch3	3.3	$3.3 v$ to $3.7 v$	\checkmark
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.64	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	\checkmark
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen.
Date 23/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
                                .T_TOP8P
Test Engineer ....Xen.
Date
23/10/09.
9. Monitor Outputs
Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
```

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.487	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 15 to Pin 16	0.489	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP8P .Serial No \qquad
Test EngineerXen.
Date .23/10/09.

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \mathrm{o} / \mathrm{p} \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stabl	$\begin{gathered} \text { Ch4 } \\ \text { o/p } \end{gathered}$	Ch4 stable ?
-10v	-24.2	\checkmark	-24.1	\checkmark	-24.1	\checkmark	-24.1	\checkmark
-7v	-17.0	\checkmark	-16.9	$\sqrt{ }$	-17.0	\checkmark	-16.9	\checkmark
-5v	-12.0	\checkmark	-12.0	$\sqrt{ }$	-12.0	\checkmark	-12.0	\checkmark
-1v	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark
Ov	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark
5v	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark
7v	16.9	\checkmark	17.0	\checkmark	16.9	\checkmark	16.9	\checkmark
10v	24.0	\checkmark	24.1	\checkmark	24.1	\checkmark	24.1	\checkmark

```
Unit
T_TOP8P
Serial No
Test Engineer ....Xen
Date
28/10/09
```


12. Crosstalk Tests

```
The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.
```


12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-132 dB	-113 dB	1 kHz
Channel 2	Channel 1	-130 dB	-112 dB	275 Hz
Channel 2	Channel 3	-129 dB	-112 dB	724 Hz
Channel 3	Channel 2	-135 dB	-109 dB	229 Hz
Channel 3	Channel 4	-137 dB	-111 dB	575 Hz
Channel 4	Channel 3	-143 dB	-107 dB	219 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                                .T_TOP8P
Test Engineer ....Xen.
Date
.23/10/09
```


13. Dynamic Range Tests

 Serial No
 \qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` T_TOP9P \(\qquad\)
```

Test EngineerXen.
Date
23/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.
...............T_TOP9P

```
\(\qquad\)
```

 Serial No
 Test EngineerXen.
Date23/10/09

```

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen..
Date

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & \multicolumn{2}{|l|}{Photodiode D+ 4} & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \(\sqrt{ }\) & \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J 1 pin \(9,10=+16.5 \mathrm{v}\)
\(J 1\) pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1 \(+=\mathrm{J} 4\) pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
Unit.................T_TOP9P.........................Serial No
Test Engineer ....Xen..................

Date 23/10/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator
Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(\mathbf{+ / - 0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 11.98 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.99 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.04 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline All Outputs smooth DC, no oscillation? & \(V\) \\
\hline
\end{tabular}

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
```

Unit.

``` \(\qquad\)
``` T_TOP9P
``` \(\qquad\)
``` Serial No
Test Engineer Xen.
```

Date 23/10/09

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{n}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
T TOP9P
Serial No
Test EngineerXen
Date
23/10/09
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5} \mathbf{v}$	$\sqrt{ }$
Ch3	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\checkmark$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\checkmark$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test Engineer ....Xen.
Date 23/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch2	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch3	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch4	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.1	3v to 3.4v	$\sqrt{ }$
Ch2	3.1	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.1	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch4	0.44	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\checkmark$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\checkmark$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\checkmark$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\checkmark$

Uni .T_TOP9P
Test Engineer . .Xen.
Date 23/10/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - \mathbf { 0 . 4 9 v }}$	0.485	Pin 11 to Pin 12	0.487	$V$
$\mathbf{4}$	$\mathbf{0 . 4 7 - \mathbf { - . 4 9 v }}$	0.485	Pin 15 to Pin 16	0.488	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP9P $\qquad$
Test Engineer ....Xen.
Date .23/10/09

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \mathrm{olp} \end{aligned}$	Ch1 ?	Ch2	Ch2 ?	Ch3 o/p	Ch3 ?	$\begin{gathered} \text { Ch4 } \\ \mathrm{olp} \end{gathered}$	Ch4 ?
-10v	-24.2	$\checkmark$	-24.1	$\checkmark$	-24.0	$\checkmark$	-24.1	$\checkmark$
-7v	-17.0	$\checkmark$	-17.0	$\sqrt{ }$	-17.0	$\checkmark$	-16.9	$\checkmark$
-5v	-12.0	$\checkmark$	-12.0	$\sqrt{ }$	-12.0	$\checkmark$	-12.0	$\checkmark$
-1v	-2.4	$\checkmark$	-2.4	$\checkmark$	-2.4	$\checkmark$	-2.4	$\checkmark$
Ov	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.4	$\checkmark$	2.4	$\checkmark$	2.4	$\checkmark$	2.4	$\checkmark$
5v	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$
7v	16.9	$\checkmark$	16.9	$\checkmark$	16.9	$\checkmark$	16.9	$\checkmark$
10v	24.0	$\checkmark$	24.0	$\checkmark$	24.0	$\checkmark$	24.0	$\checkmark$

```
Unit
.T_TOP9P
Serial No
Test EngineerXen.
Date
28/10/09
```


## 12. Crosstalk Tests

```
The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.
```


### 12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-133 dB	-106 dB	871 Hz
Channel 2	Channel 1	-129 dB	-108 dB	832 Hz
Channel 2	Channel 3	-132 dB	-107 dB	832 Hz
Channel 3	Channel 2	-130 dB	-107 dB	479 Hz
Channel 3	Channel 4	-129 dB	-110 dB	479 Hz
Channel 4	Channel 3	-129 dB	-111 dB	484 Hz

### 12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT   CHANNEL	OUTPUT   CHANNEL	Maximum   Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
 .T_TOP9P
Test EngineerXen.
Date
.23/10/09
```


## 13. Dynamic Range Tests

$\qquad$

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$3.3-3.5 \mathbf{v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$3.3-3.5 \mathbf{v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

```
Unit
 T TOP9P
Serial No
Test EngineerRMC
Date/3/10
```

FINAL NOISE MEASUREMENTS
Measure the noise output and noise monitor outputs of the completed unit. The extra screening provided by the enclosure protects the unit against extraneous noise, so the results will be more consistent.

If a channel exceeds the limits, replace the noisy ICs, note the work done. Re-measure and record the final result.

## Output Noise

Measure the noise output at 10 Hz .

	Spec in   dB V/ $/ \mathbf{H z}$	Measured @   $\mathbf{1 0 H z}(\mathbf{d B})$	$\mathbf{- 6 0 d B}=$	Measured in   $\mathbf{n V} / \sqrt{ } \mathbf{H z}$	OK (+/-1dB)   $\boldsymbol{?}$
Ch1	$-\mathbf{- 1 6 0 d B}$	-100.174 dB	-160.174 dB	$6.77 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	OK
Ch2	-160 dB	-101.64 dB	-161.64 dB	$5.72 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	OK
Ch3	-160 dB	-101.66 dB	-161.66 dB	$5.7 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	OK
Ch4	-160 dB	-100.94 dB	-160.94 dB	$6.2 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	OK

## Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} / \mathrm{JHz}$ on the noise monitor outputs. Correct for the pre-amplifier gain.

Ch.	Output	(Pre-amplifier   gain)	Maximum   value	Pass/Fail
$\mathbf{1}$	22.4	2.24	$\mathbf{2 . 9} \boldsymbol{\mu} \mathbf{V} / \sqrt{ } \mathbf{H z}$	OK
$\mathbf{2}$	11.6	1.16	$\mathbf{2 . 9} \boldsymbol{\mu} / \sqrt{ } \mathbf{H z}$	OK
$\mathbf{3}$	16	1.6	$\mathbf{2 . 9} \boldsymbol{\mu} \mathbf{V} / \sqrt{ } \mathbf{H z}$	OK
$\mathbf{4}$	143	1.43	$\mathbf{2 . 9} \boldsymbol{\mu} \mathbf{V} / \sqrt{ } \mathbf{H z}$	OK

Repair work (if any)
Monitors
Ch1 IC6 changed
Ch3 IC6 changed
Drive
Ch2 IC4, IC8 changed

## LIGO Laboratory / LIGO Scientific Collaboration

## Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
 T_TOP10P
```

Date 26/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.
...............T_TOP10P

```
\(\qquad\)
```

Test Engineer ....Xen.
Date ...............26/10/09

```

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer .
Date

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
T_TOP10P
Test Engineer ....Xen.

```

Date .26/10/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator
Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.07 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.98 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.00 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
``` T_TOP10P Serial No
Test Engineer ....Xen
Date 26/10/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch2	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch3	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.35	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.35	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.35	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	\checkmark
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test Engineer ..
Xen
Date .26/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.15	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$

Unit.

 T_TOP10P Serial NoTest EngineerXen.
Date 26/20/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.484	Pin 3 to Pin 4	0.485	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.486	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.484	Pin 11 to Pin 12	0.486	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.487	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit
.T_TOP10P Serial No
Test EngineerXen.
Date .26/10/09.

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \mathrm{o} / \mathrm{p} \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stabl	$\begin{gathered} \text { Ch4 } \\ \text { o/p } \end{gathered}$	Ch4 stable ?
-10v	-24.2	\checkmark	-24.1	\checkmark	-24.0	\checkmark	-24.0	\checkmark
-7v	-17.0	\checkmark	-16.9	$\sqrt{ }$	-16.9	\checkmark	-16.9	\checkmark
-5v	-12.0	\checkmark	-12.0	$\sqrt{ }$	-12.0	\checkmark	-12.0	\checkmark
-1v	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark
Ov	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark
5v	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark
7v	16.9	\checkmark	16.8	\checkmark	16.8	\checkmark	16.8	\checkmark
10v	24.0	\checkmark	24.0	\checkmark	24.0	\checkmark	24.0	\checkmark

```
Unit
T_TOP10P
Test Engineer ....Xen
Date
``` \(\qquad\)
``` .28/10/09
```


12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-139 dB	-110 dB	437 Hz
Channel 2	Channel 1	-134 dB	-110 dB	575 Hz
Channel 2	Channel 3	-133 dB	-109 dB	479 Hz
Channel 3	Channel 2	-128 dB	-108 dB	479 Hz
Channel 3	Channel 4	-128 dB	-107 dB	724 Hz
Channel 4	Channel 3	-130 dB	-110 dB	832 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                                .T_TOP10P
\(\qquad\)
```

Test EngineerXen.
Date
.26/10/09

```

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.42 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


\section*{Contents}
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(10 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
```

 T TOP11P
    ```
Date 26/10/09
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

| Unit (e.g. DVM) | Manufacturer | Model | Serial Number |
| :---: | :---: | :---: | :---: |
| DVM | Fluke | 115 | |
| V/I calibrator | Time Electronics | 1044 | |
| Signal Generator | Agilent | 33250 A | |
| Oscilloscope | Tektronix | 2225 | |
| PSU*2 | Farnell | L30-2 | |
| DVM | Fluke | 77 III | |
| Signal analyzer | Agilent | 35670 A | |
| Pre-amplifier | Stanford Systems | SR560 | |
| | | | |

```
Unit.
...............T_TOP11P
```

\qquad

3. Inspection

Workmanship

```
Inspect the general workmanship standard and comment: \(\sqrt{ }\)
```


Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen.
Date

4. Continuity Checks

J2

| PIN | SIGNAL | DESCRIPTION | To J1 PIN | OK? |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PD1P | Photodiode A+ | 1 | \checkmark |
| 2 | PD2P | Photodiode B+ | 2 | \checkmark |
| 3 | PD3P | Photodiode C+ | 3 | \checkmark |
| 4 | PD4P | Photodiode D+ | 4 | \checkmark |
| | 5 | OV | \checkmark | |
| 6 | PD1N | Photodiode A- | 14 | \checkmark |
| 7 | PD2N | Photodiode B- | 15 | \checkmark |
| 8 | PD3N | Photodiode C- | 16 | \checkmark |
| 9 | PD4N | Photodiode D- | 17 | \checkmark |

J5

| PIN | SIGNAL | | To J1 PIN | OK? |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Imon1P | | 5 | \checkmark |
| 2 | Imon2P | | 6 | \checkmark |
| 3 | Imon3P | | 7 | \checkmark |
| 4 | Imon4P | | 8 | \checkmark |
| | 5 | OV | \checkmark | |
| 6 | Imon1N | | 18 | \checkmark |
| 7 | Imon2N | | 19 | $\sqrt{ }$ |
| 8 | Imon3N | | 20 | \checkmark |
| 9 | Imon4N | | 21 | \checkmark |

Power Supply to Satellite box

J1

| PIN | SIGNAL | DESCRIPTION | OK? |
| :--- | :--- | :--- | :---: |
| 9 | V+ (TP1) | +17v Supply | \checkmark |
| 10 | V+ (TP1) | +17v Supply | $\sqrt{ }$ |
| 11 | V- (TP2) | -17v Supply | $\sqrt{ }$ |
| 12 | V- (TP2) | -17v Supply | $\sqrt{ }$ |
| 13 | OV (TP3) | | $\sqrt{ }$ |
| 22 | OV (TP3) | | $\sqrt{ }$ |
| 23 | OV (TP3) | | $\sqrt{ }$ |
| 24 | OV (TP3) | | $\sqrt{ }$ |
| 25 | OV (TP3) | | $\sqrt{ }$ |

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
                                    T_TOP11P
Test Engineer ....Xen.
```

Date 26/10/09

6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator
Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

| Regulator | Output voltage | Output noise | Nominal
 $+/-\mathbf{0 . 5 v} ?$ |
| :---: | :---: | :---: | :---: |
| +12 v TP5 | 12.09 | 1 mV | $\sqrt{ }$ |
| +15 v TP4 | 14.94 | 1 mV | $\sqrt{ }$ |
| -15 v TP6 | -15.08 | 5 mV | $\sqrt{ }$ |

All Outputs smooth DC, no oscillation? $\quad \sqrt{ }$

Record Power Supply Currents

| Supply | Current |
| :--- | :--- |
| +16.5 v | 400 mA |
| -16.5 v | 300 mA |

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

| Channel | Indicator | | OK? |
| :---: | :---: | :---: | :---: |
| | ON | OFF | |
| Ch1 | $\sqrt{2}$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch2 | $\sqrt{2}$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |

Test switches

| Channel | Indicator | | OK? |
| :---: | :---: | :---: | :---: |
| | ON | OFF | |
| Ch1 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch2 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |

```
Unit.
```

\qquad

``` T_TOP11P Serial No
Test Engineer ....Xen.
Date 26/10/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch3	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5} \mathbf{}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.35	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.65	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.64	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	\checkmark
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test Engineer ..
Xen
Date .26/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.15	3v to 3.4v	$\sqrt{ }$
Ch2	3.15	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.1	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$

Unit.

 .T_TOP11P Serial NoTest EngineerXen.
Date 26/10/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.486	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.488	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP11P. Serial No
Test EngineerXen.
Date .26/10/09

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	$\begin{gathered} \text { Ch1 } \\ \text { stable } \end{gathered}$	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	$\begin{gathered} \text { Ch2 } \\ \text { stable } \end{gathered}$ $?$	Ch3 o/p	$\begin{gathered} \text { Ch3 } \\ \text { stable } \\ ? \end{gathered}$	$\begin{gathered} \text { Ch4 } \\ \text { o/p } \end{gathered}$	$\begin{gathered} \text { Ch4 } \\ \text { stable } \end{gathered}$ $?$
-10v	-24.2	\checkmark	-24.2	\checkmark	-24.1	\checkmark	-24.2	\checkmark
-7v	-17.0	\checkmark	-17.0	\checkmark	-16.9	\checkmark	-17.0	\checkmark
-5v	-12.0	\checkmark	-12.0	\checkmark	-12.0	\checkmark	-12.0	\checkmark
-1v	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark	-2.4	$\sqrt{ }$
Ov	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark
5v	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark
7v	16.9	\checkmark	16.9	\checkmark	16.9	\checkmark	17.0	\checkmark
10v	24.1	\checkmark	24.2	\checkmark	24.0	\checkmark	24.1	\checkmark

```
Unit
                                    T_TOP11P
Test Engineer ....Xen
Date
``` \(\qquad\)
``` .28/10/09
```


12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-126 dB	-108 dB	724 Hz
Channel 2	Channel 1	-132 dB	-110 dB	525 Hz
Channel 2	Channel 3	-133 dB	-109 dB	871 Hz
Channel 3	Channel 2	-113 dB	-110 dB	363 Hz
Channel 3	Channel 4	-139 dB	-109 dB	437 Hz
Channel 4	Channel 3	-142 dB	-110 dB	437 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
.T_TOP11P
\(\qquad\)
```

Test EngineerXen.
Date
.26/10/09

```

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(10 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
```

 T_TOP12P
    ```
Date 26/10/09
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

| Unit (e.g. DVM) | Manufacturer | Model | Serial Number |
| :---: | :---: | :---: | :---: |
| DVM | Fluke | 115 | |
| V/I calibrator | Time Electronics | 1044 | |
| Signal Generator | Agilent | 33250 A | |
| Oscilloscope | Tektronix | 2225 | |
| PSU*2 $_{\text {DVM }}$ | Farnell | L30-2 | |
| Signal analyzer | Fluke | 77 III | |
| Pre-amplifier | Stanford Systems | SR560 | |
| | | | |

```
Unit.
...............T_TOP12P
```

\qquad

```
Test Engineer ....Xen.
Date ...............26/10/09
```


3. Inspection

Workmanship

```
Inspect the general workmanship standard and comment: \(\sqrt{ }\)
```


Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen.
Date 26/10/09.

4. Continuity Checks

J2

| PIN | SIGNAL | DESCRIPTION | To J1 PIN | OK? |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PD1P | Photodiode A+ | 1 | \checkmark |
| 2 | PD2P | Photodiode B+ | 2 | \checkmark |
| 3 | PD3P | Photodiode C+ | 3 | \checkmark |
| 4 | PD4P | Photodiode D+ | 4 | \checkmark |
| | 5 | OV | \checkmark | |
| 6 | PD1N | Photodiode A- | 14 | \checkmark |
| 7 | PD2N | Photodiode B- | 15 | \checkmark |
| 8 | PD3N | Photodiode C- | 16 | \checkmark |
| 9 | PD4N | Photodiode D- | 17 | \checkmark |

J5

| PIN | SIGNAL | | To J1 PIN | OK? |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Imon1P | | 5 | $\sqrt{l \mid}$ |
| 2 | Imon2P | | 6 | $\sqrt{ }$ |
| 3 | Imon3P | | 7 | $\sqrt{ }$ |
| 4 | Imon4P | | 8 | $\sqrt{ }$ |
| | 5 | 0V | $\sqrt{ }$ | |
| 6 | Imon1N | | 18 | $\sqrt{ }$ |
| 7 | Imon2N | | 19 | $\sqrt{ }$ |
| 8 | Imon3N | | 20 | $\sqrt{ }$ |
| 9 | Imon4N | | 21 | $\sqrt{ }$ |

Power Supply to Satellite box

J1

| PIN | SIGNAL | DESCRIPTION | OK? |
| :--- | :--- | :--- | :---: |
| 9 | V+ (TP1) | +17v Supply | \checkmark |
| 10 | V+ (TP1) | +17v Supply | $\sqrt{ }$ |
| 11 | V- (TP2) | -17v Supply | $\sqrt{ }$ |
| 12 | V- (TP2) | -17v Supply | $\sqrt{ }$ |
| 13 | OV (TP3) | | $\sqrt{ }$ |
| 22 | OV (TP3) | | $\sqrt{ }$ |
| 23 | OV (TP3) | | $\sqrt{ }$ |
| 24 | OV (TP3) | | $\sqrt{ }$ |
| 25 | OV (TP3) | | $\sqrt{ }$ |

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit. _TOP12P Serial No
Test Engineer ....Xen
```

Date 26/10/09

6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

| Regulator | Output voltage | Output noise | Nominal
 $+/-\mathbf{0 . 5 v} ?$ |
| :---: | :---: | :---: | :---: |
| +12 v TP5 | 12.01 | 1 mV | $\sqrt{ }$ |
| +15 v TP4 | 14.93 | 1 mV | $\sqrt{ }$ |
| -15 v TP6 | -14.96 | 5 mV | $\sqrt{ }$ |

All Outputs smooth DC, no oscillation? $\quad \sqrt{ }$

Record Power Supply Currents

| Supply | Current |
| :--- | :--- |
| +16.5 v | 400 mA |
| -16.5 v | 300 mA |

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

| Channel | Indicator | | OK? |
| :---: | :---: | :---: | :---: |
| | ON | OFF | |
| Ch1 | $\sqrt{2}$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch2 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |

Test switches

| Channel | Indicator | | OK? |
| :---: | :---: | :---: | :---: |
| | ON | OFF | |
| Ch1 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch2 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |

```
Unit
```

\qquad

``` T_TOP12P
Test Engineer ....Xen.
Date 26/10/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch2	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch3	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test Engineer .
Xen
Date .26/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch4	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.15	3v to 3.4v	$\sqrt{ }$
Ch3	3.1	3v to 3.4v	$\sqrt{ }$
Ch4	3.15	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to 0.16v	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to 0.16v	$\sqrt{ }$

Uni .T_TOP12P Serial No
Test Engineer . Xen.
Date 26/10/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.484	Pin 3 to Pin 4	0.486	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.488	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.488	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP12P Serial No
Test EngineerXen.
Date .26/10/09.

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 olp	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.2	$\sqrt{ }$	-24.2	$\sqrt{ }$	-24.1	\checkmark	-24.0	\checkmark
-7v	-17.0	\checkmark	-16.9	\checkmark	-16.9	\checkmark	-17.0	\checkmark
-5v	-12.0	\checkmark	-12.0	$\sqrt{ }$	-12.0	$\sqrt{ }$	-12.0	\checkmark
-1v	-2.4	$\sqrt{ }$	-2.4	$\sqrt{ }$	-2.4	\checkmark	-2.4	\checkmark
Ov	0	\checkmark	0	$\sqrt{ }$	0	\checkmark	0	$\sqrt{ }$
1v	2.4	$\sqrt{ }$						
5v	12.0	$\sqrt{ }$	12.0	\checkmark	11.9	\checkmark	12.0	\checkmark
7v	16.8	$\sqrt{ }$	16.9	\checkmark	16.8	\checkmark	17.0	\checkmark
10v	24.0	$\sqrt{ }$	24.1	$\sqrt{ }$	24.0	$\sqrt{ }$	24.1	$\sqrt{ }$

```
Unit
T_TOP12P
Test Engineer ....Xen
Date
``` \(\qquad\)
``` 29/10/09
```


12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-133 dB	-111 dB	437 Hz
Channel 2	Channel 1	-127 dB	-109 dB	871 Hz
Channel 2	Channel 3	-132 dB	-112 dB	550 Hz
Channel 3	Channel 2	-142 dB	-112 dB	363 Hz
Channel 3	Channel 4	-136 dB	-108 dB	871 Hz
Channel 4	Channel 3	-130 dB	-108 dB	525 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.42	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

```
                            T_TOP13P
```

Date 27/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.
...............T_TOP13P

```
\(\qquad\)
```

Test EngineerXen.
Date26/10/09

```

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.
Date

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit. TOP13P Serial No
Test EngineerXen.

```

Date 26/10/09.

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 11.99 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.92 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.02 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
``` T_TOP13P Serial No
Test EngineerXen
Date
``` \(\qquad\)
``` 26/10/09
```

$\qquad$

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.64	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.64	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\checkmark$
Ch3	0.64	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test Engineer .
Xen
Date .26/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.1	3v to 3.4v	$\sqrt{ }$
Ch2	3.1	3v to 3.4v	$\sqrt{ }$
Ch3	3.1	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

## Unit.

 .T_TOP13P Serial NoTest Engineer . Xen.
Date 27/10/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.486	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.487	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 15 to Pin 16	0.488	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP13P. Serial No
Test Engineer ....Xen.
Date $\qquad$ 27/10/09.

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.2	$\sqrt{ }$	-24.1	$\sqrt{ }$	-24.2	$\sqrt{ }$	-24.2	$\sqrt{ }$
-7v	-17.0	$\checkmark$	-17.0	$\sqrt{ }$	-17.0	$\sqrt{ }$	-17.0	$\sqrt{ }$
-5v	-12.0	$\checkmark$	-12.0	$\sqrt{ }$	-12.0	$\checkmark$	-12.0	$\checkmark$
-1v	-2.4	$\sqrt{ }$						
Ov	0	$\sqrt{ }$						
1v	2.4	$\checkmark$	2.4	$\sqrt{ }$	2.4	$\checkmark$	2.4	$\checkmark$
5v	12.0	$\sqrt{ }$						
7v	16.9	$\sqrt{ }$	16.8	$\sqrt{ }$	17.0	$\checkmark$	16.9	$\sqrt{ }$
10v	24.0	$\sqrt{ }$	24.0	$\sqrt{ }$	24.1	$\sqrt{ }$	24.0	$\sqrt{ }$

```
Unit
.T_TOP13P
Test EngineerXen
Date
```

$\qquad$

``` 29/10/09
```


## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-140 dB	-109 dB	759 Hz
Channel 2	Channel 1	-122 dB	-108 dB	479 Hz
Channel 2	Channel 3	-121 dB	-109 dB	661 Hz
Channel 3	Channel 2	-126 dB	-109 dB	437 Hz
Channel 3	Channel 4	-124 dB	-107 dB	955 Hz
Channel 4	Channel 3	-132 dB	-109 dB	944 Hz

### 12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT   CHANNEL	OUTPUT   CHANNEL	Maximum   Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
 T_TOP13P
Test EngineerXen.
Date
.27/10/09
```


## 13. Dynamic Range Tests

$\qquad$

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$3.3-3.5 \mathbf{v}$	3.43	$\sqrt{ }$
Ch2	$3.3-3.5 \mathbf{v}$	3.45	$\sqrt{ }$
Ch3	$3.3-3.5 \mathbf{v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

```
 T_TOP14P
```

Date 27/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.
...............T_TOP14P

```
\(\qquad\)
```

Test Engineer ....Xen.
Date ...............27/10/09

```

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . ..Xen.
Date 27/10/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
T_TOP14P
Test Engineer ....Xen.

```

Date .27/10/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+\boldsymbol{+}-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.06 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.95 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.03 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

``` \(\qquad\)
``` .T_TOP14P Serial No
Test Engineer Xen
Date
``` \(\qquad\)
``` 27/10/09
```

\qquad

8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch3	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch3	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch4	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.65	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch3	0.65	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

Unit.
.T_TOP14P
Test EngineerXen.
Date .27/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.1	3v to 3.4v	$\sqrt{ }$
Ch2	3.1	3v to 3.4v	$\sqrt{ }$
Ch3	3.1	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$

Unit
.T_TOP14P.
Serial No
Test Engineer . Xen.
Date 27/10/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.486	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 15 to Pin 16	0.489	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP14P. Serial No
Test EngineerXen.
Date \qquad .27/10/09

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.2	$\sqrt{ }$	-24.2	$\sqrt{ }$	-24.0	$\sqrt{ }$	-24.2	$\sqrt{ }$
-7v	-17.0	\checkmark	-17.0	$\sqrt{ }$	-16.9	$\sqrt{ }$	-17.0	$\sqrt{ }$
-5v	-12.0	\checkmark	-12.0	$\sqrt{ }$	-12.0	\checkmark	-12.0	\checkmark
-1v	-2.4	$\sqrt{ }$						
Ov	0	$\sqrt{ }$						
1v	2.4	\checkmark	2.4	$\sqrt{ }$	2.4	\checkmark	2.4	\checkmark
5v	12.0	$\sqrt{ }$						
7v	16.9	\checkmark	16.9	$\sqrt{ }$	16.9	\checkmark	16.9	$\sqrt{ }$
10v	24.0	$\sqrt{ }$						

```
Unit
                                    T_TOP14P
Test Engineer ....Xen
Date
```

\qquad

``` 29/10/09
```


12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-127 dB	-111 dB	263 Hz
Channel 2	Channel 1	-120 dB	-111 dB	832 Hz
Channel 2	Channel 3	-118 dB	-108 dB	661 Hz
Channel 3	Channel 2	-123 dB	-111 dB	550 Hz
Channel 3	Channel 4	-124 dB	-109 dB	832 Hz
Channel 4	Channel 3	-120 dB	-107 dB	347 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                                .T_TOP14P
Test Engineer ....Xen.
Date
.27/10/09
```


13. Dynamic Range Tests

\qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

```
                            T_TOP15P
```

Date 27/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.
...............T_TOP15P

```
\(\qquad\)
```

Test EngineerXen.
Date27/10/09

```

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.
Date 27/10/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
T_TOP15P
Test EngineerXen.

```

Date ................27/10/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator
Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}\)
\end{tabular} \\
\hline+12 v TP5 & 12.10 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.78 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.95 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
\(\qquad\)

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
T_TOP15P
Test EngineerXen.
Date

``` \(\qquad\)
``` 27/10/09
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch2	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch3	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\checkmark$
Ch2	4.8	4.7 to 5 v	$\checkmark$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\checkmark$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\checkmark$
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
.T_TOP15P
Test Engineer ....Xen.
Date 27/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$

## Unit.

 .T_TOP15P Serial NoTest Engineer . Xen.
Date 27/10/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.484	Pin 3 to Pin 4	0.486	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.486	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 15 to Pin 16	0.489	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP15P Serial No
Test Engineer ....Xen.
Date $\qquad$ .27/10/09

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.1	$\sqrt{ }$	-24.2	$\sqrt{ }$	-24.2	$\sqrt{ }$	-24.1	$\sqrt{ }$
-7v	-17.0	$\checkmark$	-17.0	$\checkmark$	-17.0	$\checkmark$	-17.0	$\checkmark$
-5v	-12.0	$\checkmark$	-12.0	$\sqrt{ }$	-12.0	$\checkmark$	-12.0	$\checkmark$
-1v	-2.4	$\checkmark$	-2.4	$\sqrt{ }$	-2.4	$\sqrt{ }$	-2.4	$\sqrt{ }$
Ov	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.4	$\checkmark$	2.4	$\sqrt{ }$	2.4	$\sqrt{ }$	2.4	$\checkmark$
5v	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$
7v	16.9	$\checkmark$	16.9	$\checkmark$	16.9	$\checkmark$	16.9	$\checkmark$
10v	24.0	$\sqrt{ }$	24.0	$\sqrt{ }$	24.0	$\sqrt{ }$	24.1	$\sqrt{ }$

```
Unit
T_TOP15P
Test EngineerXen
Date
```

$\qquad$

``` 29/10/09
```


## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-134 dB	-110 dB	229 Hz
Channel 2	Channel 1	-127 dB	-114 dB	417 Hz
Channel 2	Channel 3	-127 dB	-112 dB	575 Hz
Channel 3	Channel 2	-129 dB	-112 dB	275 Hz
Channel 3	Channel 4	-133 dB	-111 dB	575 Hz
Channel 4	Channel 3	-140 dB	-111 dB	933 Hz

### 12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT   CHANNEL	OUTPUT   CHANNEL	Maximum   Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
 T_TOP15P
Test EngineerXen.
Date
.27/10/09
```


## 13. Dynamic Range Tests

$\qquad$

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

```
 T_TOP16P
```

Date 28/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.
...............T_TOP16P

```
\(\qquad\)
```

Test Engineer ....Xen.
Date ................28/10/09

```

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer .
Date

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \(\sqrt{ }\) & \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
T_TOP16P
Test Engineer ....Xen.

```

Date 28/10/09.

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator
Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+\boldsymbol{+}-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.08 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.93 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.06 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

``` \(\qquad\)
``` .T_TOP16P Serial No
Test Engineer ....Xen.
Date .28/10/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch2	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch3	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	\checkmark
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
.T_TOP16P
Test EngineerXen
Date 28/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.1	3v to 3.4v	$\sqrt{ }$
Ch2	3.1	3v to 3.4v	$\sqrt{ }$
Ch3	3.1	3v to 3.4v	$\sqrt{ }$
Ch4	3.1	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.44	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$

Uni .T_TOP16P. Serial No
Test Engineer . Xen.
Date 28/10/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.487	Pin 7 to Pin 8	0.488	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.488	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP16P. Serial No
Test EngineerXen.
Date .28/10/09.

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \mathrm{o} / \mathrm{p} \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stabl	$\begin{gathered} \text { Ch4 } \\ \text { o/p } \end{gathered}$	Ch4 stable ?
-10v	-24.1	\checkmark	-24.1	\checkmark	-24.2	\checkmark	-24.2	\checkmark
-7v	-17.0	\checkmark	-17.0	$\sqrt{ }$	-16.9	\checkmark	-16.9	\checkmark
-5v	-12.0	\checkmark	-12.0	$\sqrt{ }$	-12.0	\checkmark	-12.0	\checkmark
-1v	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark
Ov	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark
5v	12.0	\checkmark	12.0	\checkmark	-12.0	\checkmark	12.0	\checkmark
7v	17.0	\checkmark	16.9	\checkmark	16.9	\checkmark	16.9	\checkmark
10v	24.1	\checkmark	24.0	\checkmark	24.1	\checkmark	24.1	\checkmark

```
Unit
.T_TOP16P
Test Engineer ....Xen
Date
``` \(\qquad\)
``` .29/10/09
```


12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-143 dB	-111 dB	832 Hz
Channel 2	Channel 1	-125 dB	-109 dB	437 Hz
Channel 2	Channel 3	-129 dB	-110 dB	437 Hz
Channel 3	Channel 2	-130 dB	-111 dB	140 Hz
Channel 3	Channel 4	-136 dB	-110 dB	724 Hz
Channel 4	Channel 3	-135 dB	-110 dB	832 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                T_TOP16P
Test Engineer ....Xen.
Date
28/10/09.
```


13. Dynamic Range Tests

\qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

```
                                    T_TOP17P
```

Date 28/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.
...............T_TOP17P

```
\(\qquad\)
```

Test EngineerXen.
Date28/10/09

```

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.
Date 28/10/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit. TOP17P Serial No
Test EngineerXen.

```

Date 28/10/09.

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.09 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.92 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.93 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
``` T_TOP17P Serial No
Test EngineerXen.
Date 28/10/09
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test Engineer ....Xen
Date 28/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.15	3v to 3.4v	$\sqrt{ }$
Ch4	3.1	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

## Unit.

 .T_TOP17P Serial NoTest Engineer ....Xen.
Date .28/10/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.487	Pin 7 to Pin 8	0.488	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 15 to Pin 16	0.488	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP17P Serial No
Test Engineer ....Xen.
Date .28/10/09.

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	$\begin{gathered} \text { Ch2 } \\ \text { stable } \end{gathered}$ $?$	Ch3 o/p	$\begin{gathered} \text { Ch3 } \\ \text { stable } \end{gathered}$ $?$	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	$\begin{gathered} \text { Ch4 } \\ \text { stable } \end{gathered}$ $?$
-10v	-24.1	$\checkmark$	-24.1	$\checkmark$	-24.1	$\checkmark$	-24.1	$\checkmark$
-7v	-17.0	$\checkmark$	-16.9	$\checkmark$	-17.0	$\checkmark$	-17.0	$\checkmark$
-5v	-12.0	$\checkmark$	-12.0	$\sqrt{ }$	-12.0	$\checkmark$	-12.0	$\sqrt{ }$
-1v	-2.4	$\checkmark$	-2.4	$\checkmark$	-2.4	$\checkmark$	-2.4	$\checkmark$
Ov	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$	0	$\checkmark$
1v	2.4	$\checkmark$	2.4	$\checkmark$	2.4	$\checkmark$	2.4	$\checkmark$
5v	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$
7v	16.9	$\checkmark$	16.9	$\checkmark$	16.9	$\checkmark$	16.9	$\checkmark$
10v	24.1	$\checkmark$	24.0	$\checkmark$	24.1	$\checkmark$	24.0	$\checkmark$

```
Unit
.T_TOP17P
Test EngineerXen
Date
``` \(\qquad\)
``` .29/10/09
```


## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-133 dB	-109 dB	331 Hz
Channel 2	Channel 1	-123 dB	-108 dB	479 Hz
Channel 2	Channel 3	-114 dB	-102 dB	479 Hz
Channel 3	Channel 2	-123 dB	-107 dB	229 Hz
Channel 3	Channel 4	-125 dB	-108 dB	724 Hz
Channel 4	Channel 3	-134 dB	-107 dB	437 Hz

### 12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT   CHANNEL	OUTPUT   CHANNEL	Maximum   Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

Test Engineer ....Xen.
Date 28/10/09.

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
 T_TOP18P
```

Date 28/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.
...............T_TOP18P

```
\(\qquad\)
```

Test Engineer ....Xen.
Date ................28/10/09

```

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 28/10/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & \multicolumn{2}{|l|}{OV} & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & \multicolumn{1}{l|}{ OK? } \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J 1 pin \(9,10=+16.5 \mathrm{v}\)
J 1 pin 11, \(12=-16.5\)
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit. TOP18P Serial No
Test Engineer ....Xen

```

Date .28/10/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.12 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.91 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.97 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

``` \(\qquad\)
``` .T_TOP18P Serial No
Test Engineer ....Xen.
Date 28/10/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch2	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch3	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.35	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	\checkmark
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen
Date .28/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit .T_TOP18P Serial No
Test Engineer . Xen.
Date 28/10/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.488	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.490	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP18P. Serial No
Test EngineerXen.
Date .29/10/09.

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \mathrm{o} / \mathrm{p} \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stabl	$\begin{gathered} \text { Ch4 } \\ \text { o/p } \end{gathered}$	Ch4 stable ?
-10v	-24.2	\checkmark	-24.2	\checkmark	-24.2	\checkmark	-24.2	\checkmark
-7v	-17.0	\checkmark	-17.0	$\sqrt{ }$	-17.0	\checkmark	-17.0	\checkmark
-5v	-12.0	\checkmark	-12.0	$\sqrt{ }$	-12.0	\checkmark	-12.0	\checkmark
-1v	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark
Ov	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark
5v	12.0	\checkmark	12.0	\checkmark	12.2	\checkmark	12.0	\checkmark
7v	16.9	\checkmark	17.0	\checkmark	17.0	\checkmark	16.9	\checkmark
10v	24.0	\checkmark	24.2	\checkmark	24.2	\checkmark	24.0	\checkmark

```
Unit
.T_TOP18P
Test Engineer ....Xen
Date
``` \(\qquad\)
``` .29/10/09
```


12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-132 dB	-110 dB	479 Hz
Channel 2	Channel 1	-127 dB	-112 dB	479 Hz
Channel 2	Channel 3	-119 dB	-111 dB	759 Hz
Channel 3	Channel 2	-116 dB	-112 dB	525 Hz
Channel 3	Channel 4	-117 dB	-110 dB	479 Hz
Channel 4	Channel 3	-121 dB	-110 dB	437 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                T_TOP18P
Test Engineer ....Xen.
Date
.29/10/09
```


13. Dynamic Range Tests

\qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.42	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
                TOP19P
```

Date 29/10/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.
...............T_TOP19P

```
\(\qquad\)
```

Test EngineerXen.
Date29/10/09

```

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.
Date 29/10/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \(\sqrt{ }\) & \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
T_TOP19P
Test EngineerXen

```

Date 29/10/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}\)
\end{tabular} \\
\hline+12 v TP5 & 11.97 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.91 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.96 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
T_TOP19P
Serial No
Test EngineerXen.
Date
29/10/09

```

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5} \mathbf{}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch2 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch3 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.66 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.65 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Test Engineer .
Xen
Date 29/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline
\end{tabular}
1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.1 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.1 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Unit.} .T_TOP19P Serial No
Test Engineer . .Xen.
Date 29/10/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 1 to Pin 2 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 5 to Pin 6 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 9 to Pin 10 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 13 to Pin 14 & 1.22 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 3 to Pin 4 & 0.487 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.488 & Pin 7 to Pin 8 & 0.489 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 11 to Pin 12 & 0.486 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 15 to Pin 16 & 0.488 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit .T_TOP19P Serial No
Test Engineer ....Xen.
Date .29/10/09.

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 olp & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.1 & \(\checkmark\) & -24.1 & \(\sqrt{ }\) & -24.2 & \(\checkmark\) & -24.1 & \(\sqrt{ }\) \\
\hline -7v & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) \\
\hline -5v & -12.0 & \(\checkmark\) & -12.0 & \(\sqrt{ }\) & -12.0 & \(\sqrt{ }\) & -12.0 & \(\checkmark\) \\
\hline -1v & -2.4 & \(\sqrt{ }\) & -2.4 & \(\sqrt{ }\) & -2.4 & \(\checkmark\) & -2.4 & \(\sqrt{ }\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) \\
\hline 1v & 2.4 & \(\sqrt{ }\) \\
\hline 5v & 12.0 & \(\sqrt{ }\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) \\
\hline 7v & 16.9 & \(\sqrt{ }\) & 16.9 & \(\checkmark\) & 17.0 & \(\checkmark\) & 16.9 & \(\checkmark\) \\
\hline 10v & 24.0 & \(\sqrt{ }\) & 24.0 & \(\sqrt{ }\) & 24.0 & \(\sqrt{ }\) & 24.0 & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
T_TOP19P

12. Crosstalk Tests

```
The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.
```


12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-135 dB	-113 dB	347 Hz
Channel 2	Channel 1	-126 dB	-108 dB	479 Hz
Channel 2	Channel 3	-131 dB	-108 dB	437 Hz
Channel 3	Channel 2	-137 dB	-106 dB	437 Hz
Channel 3	Channel 4	-131 dB	-110 dB	437 Hz
Channel 4	Channel 3	-142 dB	-107 dB	479 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                T_TOP19P
Test Engineer ....Xen.
Date
.29/10/09
```


13. Dynamic Range Tests

\qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$3.3-3.5 \mathbf{v}$	3.45	$\sqrt{ }$
Ch3	$3.3-3.5 \mathbf{v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` T_TOP20P
Test Engineer ....Xen.
Date 30/10/09
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	Tektronix	2225	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	

```
Unit.
...............T_TOP20P
```

\qquad

```
Test Engineer ....Xen.
Date ...............30/10/09
```


3. Inspection

Workmanship

```
Inspect the general workmanship standard and comment: \(\sqrt{ }\)
```


Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . .Xen.
Date .30/10/09.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{l \mid}$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
	5	0V	$\sqrt{ }$	
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit. TOP20P Serial No
Test Engineer ....Xen
```

Date 30/10/09

6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}$
+12 v TP5	11.94	1 mV	$\sqrt{ }$
+15 v TP4	14.93	1 mV	$\sqrt{ }$
-15 v TP6	-14.98	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation? $\quad \sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
TOP20P
Serial No
Test Engineer ....Xen
Date
30/10/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch2	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch3	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	\checkmark
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.65	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	\checkmark
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen.
Date 30/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.15	3v to 3.4v	$\sqrt{ }$
Ch2	3.1	3v to 3.4v	$\sqrt{ }$
Ch3	3.15	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit.

 T_TOP20P Serial NoTest Engineer . Xen.
Date .30/10/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.484	Pin 3 to Pin 4	0.486	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 7 to Pin 8	0.486	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 15 to Pin 16	0.488	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP20P. Serial No \qquad
Test EngineerXen.
Date .30/10/09

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \mathrm{o} / \mathrm{p} \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stabl	$\begin{gathered} \text { Ch4 } \\ \text { o/p } \end{gathered}$	Ch4 stable ?
-10v	-24.1	\checkmark	-24.1	\checkmark	-24.1	\checkmark	-24.1	\checkmark
-7v	-17.0	\checkmark	-16.9	$\sqrt{ }$	-17.0	\checkmark	-16.9	\checkmark
-5v	-12.0	\checkmark	-12.0	$\sqrt{ }$	-12.0	\checkmark	-12.0	\checkmark
-1v	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark
Ov	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark
5v	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark
7v	16.9	\checkmark	16.9	\checkmark	16.9	\checkmark	16.9	\checkmark
10v	24.0	\checkmark	24.0	\checkmark	24.0	\checkmark	24.1	\checkmark

```
Unit
                T_TOP20P
Test Engineer ....Xen
Date 30/10/09
```


12. Crosstalk Tests

```
The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.
```


12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-141 dB	-112 dB	479 Hz
Channel 2	Channel 1	-133 dB	-115 dB	331 Hz
Channel 2	Channel 3	-133 dB	-111 dB	437 Hz
Channel 3	Channel 2	-129 dB	-111 dB	575 Hz
Channel 3	Channel 4	-138 dB	-111 dB	240 Hz
Channel 4	Channel 3	-139 dB	-112 dB	479 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                T_TOP20P
Test Engineer ....Xen.
Date
30/10/09
```


13. Dynamic Range Tests

\qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
                                    T_TOP21P
                                    Serial No
Test Engineer Xen.
Date 30/10/09
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	Tektronix	2225	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	

```
Unit.
...............T_TOP21P
```

\qquad

```
Test Engineer ....Xen.
Date ...............30/10/09
```


3. Inspection

Workmanship

```
Inspect the general workmanship standard and comment: \(\sqrt{ }\)
```


Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen..
Date 30/10/09.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
	5	OV	\checkmark	
6	Imon1N		18	\checkmark
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit. _TOP21P
Test Engineer ....Xen.
```

Date 30/10/09.

6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.06	1 mV	\checkmark
+15 v TP4	14.94	1 mV	$\sqrt{ }$
-15 v TP6	-15.02	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?	$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
T TOP21P
Serial No
Test Engineer ....Xen
Date
```

\qquad

``` 30/10/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch3	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	\checkmark
Ch2	4.8	4.7 to 5 v	\checkmark
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen.
Date 30/10/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.15	3v to 3.4v	$\sqrt{ }$
Ch2	3.15	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.15	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit.

 T_TOP21P Serial NoTest EngineerXen.
Date 30/10/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.488	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP21P Serial No
Test EngineerXen.
Date .30/10/09

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \mathrm{o} / \mathrm{p} \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stabl	$\begin{gathered} \text { Ch4 } \\ \text { o/p } \end{gathered}$	Ch4 stable ?
-10v	-24.0	\checkmark	-24.0	\checkmark	-24.0	\checkmark	-24.1	\checkmark
-7v	-17.0	\checkmark	-16.9	$\sqrt{ }$	-16.9	\checkmark	-17.0	\checkmark
-5v	-12.0	\checkmark	-12.0	$\sqrt{ }$	-12.0	\checkmark	-12.0	\checkmark
-1v	-2.4	\checkmark	-2.3	\checkmark	-2.4	\checkmark	-2.4	\checkmark
Ov	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark
5v	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark
7v	17.0	\checkmark	17.0	\checkmark	17.0	\checkmark	16.9	\checkmark
10v	24.1	\checkmark	24.2	\checkmark	24.1	\checkmark	24.1	\checkmark

```
Unit
T_TOP21P
Serial No
Test Engineer ....Xen.
Date ...............2/11/09.
```


12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-118 dB	-110 dB	860 Hz
Channel 2	Channel 1	-135 dB	-107 dB	525 Hz
Channel 2	Channel 3	-139 dB	-111 dB	631 Hz
Channel 3	Channel 2	-133 dB	-108 dB	479 Hz
Channel 3	Channel 4	-127 dB	-86 dB	347 Hz
Channel 4	Channel 3	-135 dB	-111 dB	479 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                T_TOP21P
Test Engineer ....Xen.
Date
30/10/09.
```


13. Dynamic Range Tests

\qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$3.3-3.5 \mathbf{v}$	3.43	$\sqrt{ }$
Ch2	$3.3-3.5 \mathbf{v}$	3.43	$\sqrt{ }$
Ch3	$3.3-3.5 \mathrm{v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

```
Unit
```

\qquad

``` T TOP22P
Test Engineer Xen. Date 2/11/09
```


Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

```
                T_TOP22P
``` 2/11/09
```

$\qquad$

```正
```

$\qquad$

```
Date 2/11/09.
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	Tektronix	2225	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	

```
Unit
```

$\qquad$

``` T_TOP22P
```

Date .................2/11/09

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen..
Date 2/11/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \(\sqrt{ }\) & \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & \multicolumn{1}{l|}{ OK? } \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit. TOP22P
Test Engineer ....Xen

```

Date2/11/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}\)
\end{tabular} \\
\hline+12 v TP5 & 12.08 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.92 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.98 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
\(\qquad\)

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
T_TOP22P
Serial No
Test Engineer ....Xen
Date

```
\(\qquad\)
```

.2//11/09

```

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.66 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.65 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Test EngineerXen.
Date 2/11/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & \(4.7 v\) to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & \(\mathbf{4 . 7 v}\) to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & \(\mathbf{4 . 7 v}\) to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.15 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.49 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.45 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_TOP22P
Serial No
Test Engineer . Xen..
Date .2/11/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c}
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 1 to Pin 2 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 5 to Pin 6 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 9 to Pin 10 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 13 to Pin 14 & 1.22 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c}
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 3 to Pin 4 & 0.486 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.487 & Pin 7 to Pin 8 & 0.487 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 11 to Pin 12 & 0.487 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.486 & Pin 15 to Pin 16 & 0.488 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit .T_TOP22P Serial No
Test EngineerXen..
Date .2/11/09

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & \[
\begin{gathered}
\text { Ch2 } \\
\text { stable }
\end{gathered}
\]
\[
?
\] & Ch3 o/p & \[
\begin{gathered}
\text { Ch3 } \\
\text { stable }
\end{gathered}
\]
\[
?
\] & \[
\begin{aligned}
& \text { Ch4 } \\
& \text { o/p }
\end{aligned}
\] & \[
\begin{gathered}
\text { Ch4 } \\
\text { stable }
\end{gathered}
\]
\[
?
\] \\
\hline -10v & -24.1 & \(\checkmark\) & -24.1 & \(\checkmark\) & -24.1 & \(\checkmark\) & -24.1 & \(\checkmark\) \\
\hline -7v & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) \\
\hline -5v & -12.0 & \(\checkmark\) & -12.0 & \(\sqrt{ }\) & -12.0 & \(\checkmark\) & -12.0 & \(\sqrt{ }\) \\
\hline -1v & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.4 & \(\checkmark\) & 2.4 & \(\checkmark\) & 2.4 & \(\checkmark\) & 2.4 & \(\checkmark\) \\
\hline 5v & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 16.9 & \(\checkmark\) & 16.9 & \(\checkmark\) & 16.9 & \(\checkmark\) \\
\hline 10v & 24.1 & \(\checkmark\) & 24.1 & \(\checkmark\) & 24.0 & \(\checkmark\) & 24.1 & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
T_TOP22P
Test Engineer ....Xen
Date ...............2/11/09

```

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & -142 dB & -107 dB & 1 kHz \\
\hline Channel 2 & Channel 1 & -126 dB & -109 dB & 955 Hz \\
\hline Channel 2 & Channel 3 & -121 dB & -108 dB & 692 Hz \\
\hline Channel 3 & Channel 2 & -124 dB & -113 dB & 631 Hz \\
\hline Channel 3 & Channel 4 & -127 dB & -112 dB & 462 Hz \\
\hline Channel 4 & Channel 3 & -130 dB & -114 dB & 331 Hz \\
\hline
\end{tabular}

\subsection*{12.2 Quick Test}

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Maximum \\
Output
\end{tabular} & @ Frequency \\
\hline Channel 1 & Channel 2 & & \\
\hline Channel 2 & Channel 1 & & \\
\hline Channel 2 & Channel 3 & & \\
\hline Channel 3 & Channel 2 & & \\
\hline Channel 3 & Channel 4 & & \\
\hline Channel 4 & Channel 3 & & \\
\hline
\end{tabular}

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c}
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(10 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
```

                            T_TOP23P
    ``` 2/11/09
```

$\qquad$

```正
```

$\qquad$

```
Date
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	Tektronix	2225	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen..
Date 2/11/09.

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\checkmark$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit. TOP23P
Test EngineerXen.
```

Date ................2/11/09.

## 6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.01	1 mV	$\sqrt{ }$
+15 v TP4	14.85	1 mV	$\sqrt{ }$
-15 v TP6	-14.99	1 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation? $\quad \sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
$\qquad$
$\qquad$

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
T TOP23P
Serial No
Test EngineerXen.
Date
```

$\qquad$

```
.2/11/09
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\checkmark$
Ch2	4.8	4.7 to 5 v	$\checkmark$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\checkmark$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.35	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.35	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.35	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test Engineer ....Xen.
Date 2/11/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch4	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.15	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.15	3v to 3.4v	$\sqrt{ }$
Ch4	3.15	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit.
.T_TOP23P
Serial No
Test Engineer . Xen..
Date .2/11/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.486	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.488	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP23P. Serial No
Test Engineer ....Xen..
Date .2/11/09

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	$\begin{gathered} \text { Ch1 } \\ \text { stable } \end{gathered}$ $?$	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	$\begin{gathered} \text { Ch2 } \\ \text { stable } \end{gathered}$ ?	Ch3 o/p	$\begin{gathered} \hline \text { Ch3 } \\ \text { stable } \end{gathered}$ $?$	$\begin{gathered} \text { Ch4 } \\ \text { o/p } \end{gathered}$	$\begin{gathered} \text { Ch4 } \\ \text { stable } \end{gathered}$ $?$
-10v	-24.2	$\checkmark$	-24.1	$\checkmark$	-24.1	$\checkmark$	-24.1	$\checkmark$
-7v	-17.0	$\checkmark$	-16.9	$\checkmark$	-17.0	$\checkmark$	-17.0	$\checkmark$
-5v	-12.0	$\checkmark$	-12.0	$\checkmark$	-12.0	$\checkmark$	-12.0	$\checkmark$
-1v	-2.4	$\checkmark$	-2.4	$\checkmark$	-2.4	$\checkmark$	-2.4	$\checkmark$
Ov	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.4	$\checkmark$	2.4	$\checkmark$	2.4	$\checkmark$	2.4	$\checkmark$
5v	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$
7v	17.0	$\checkmark$	16.9	$\checkmark$	17.0	$\checkmark$	17.0	$\checkmark$
10v	24.1	$\checkmark$	24.0	$\checkmark$	24.1	$\checkmark$	24.1	$\checkmark$

```
Unit
T_TOP23P
Test EngineerXen.
Date2/11/09
```


## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-128 dB	-113 dB	437 Hz
Channel 2	Channel 1	-129 dB	-111 dB	525 Hz
Channel 2	Channel 3	-140 dB	-112 dB	437 Hz
Channel 3	Channel 2	-144 dB	-115 dB	575 Hz
Channel 3	Channel 4	-135 dB	-113 dB	437 Hz
Channel 4	Channel 3	-130 dB	-111 dB	479 Hz

### 12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT   CHANNEL	OUTPUT   CHANNEL	Maximum   Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$3.3-3.5 \mathbf{v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` T_TOP24P
```

Date 3/11/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen.
Date 2/11/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit. TOP24P
Test Engineer ....Xen.

```

Date2/11/09.

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}\)
\end{tabular} \\
\hline+12 v TP5 & 12.04 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.81 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.95 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
\(\qquad\)

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
TOP24P
Serial No
Test Engineer ....Xen.
Date

```
\(\qquad\)
```

.3/11/09

```

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch2 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch3 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3.3 v to 3.7v & \(\checkmark\) \\
\hline Ch2 & 3.3 & 3.3 v to 3.7v & \(\checkmark\) \\
\hline Ch3 & 3.4 & 3.3 v to 3.7v & \(\checkmark\) \\
\hline Ch4 & 3.35 & 3.3 v to 3.7v & \(\checkmark\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.65 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.68 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Test EngineerXen.
Date 3/11/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.1 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.45 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Unit.} T_TOP24P Serial No
Test Engineer . .Xen.
Date .3/11/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c}
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 1 to Pin 2 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 5 to Pin 6 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 9 to Pin 10 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 13 to Pin 14 & 1.22 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c}
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.486 & Pin 3 to Pin 4 & 0.488 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.487 & Pin 7 to Pin 8 & 0.487 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 11 to Pin 12 & 0.486 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.486 & Pin 15 to Pin 16 & 0.488 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit .T_TOP24P.
Test EngineerXen..
Date .3/11/09

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & \[
\begin{gathered}
\text { Ch2 } \\
\text { stable }
\end{gathered}
\]
\[
?
\] & Ch3 o/p & \[
\begin{gathered}
\text { Ch3 } \\
\text { stable }
\end{gathered}
\]
\[
?
\] & \[
\begin{aligned}
& \text { Ch4 } \\
& \text { o/p }
\end{aligned}
\] & \[
\begin{gathered}
\text { Ch4 } \\
\text { stable }
\end{gathered}
\]
\[
?
\] \\
\hline -10v & -24.1 & \(\checkmark\) & -24.2 & \(\checkmark\) & -24.2 & \(\checkmark\) & -24.2 & \(\checkmark\) \\
\hline -7v & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) \\
\hline -5v & -12.0 & \(\checkmark\) & -12.0 & \(\sqrt{ }\) & -12.0 & \(\checkmark\) & -12.1 & \(\sqrt{ }\) \\
\hline -1v & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.4 & \(\checkmark\) & 2.4 & \(\checkmark\) & 2.4 & \(\checkmark\) & 2.4 & \(\checkmark\) \\
\hline 5v & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 16.8 & \(\checkmark\) & 16.8 & \(\checkmark\) & 16.8 & \(\checkmark\) \\
\hline 10v & 24.1 & \(\checkmark\) & 24.0 & \(\checkmark\) & 24.0 & \(\checkmark\) & 24.0 & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
T_TOP24P
Test Engineer ....Xen.
Date ...............3/11/09

```

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & -137 dB & -115 dB & 871 Hz \\
\hline Channel 2 & Channel 1 & -137 dB & -108 dB & 479 Hz \\
\hline Channel 2 & Channel 3 & -122 dB & -81 dB & 145 Hz \\
\hline Channel 3 & Channel 2 & -96 dB & -74 dB & 422 Hz \\
\hline Channel 3 & Channel 4 & -111 dB & -76 dB & 575 Hz \\
\hline Channel 4 & Channel 3 & -102 dB & -72 dB & 178 Hz \\
\hline
\end{tabular}

\subsection*{12.2 Quick Test}

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Maximum \\
Output
\end{tabular} & @ Frequency \\
\hline Channel 1 & Channel 2 & & \\
\hline Channel 2 & Channel 1 & & \\
\hline Channel 2 & Channel 3 & & \\
\hline Channel 3 & Channel 2 & & \\
\hline Channel 3 & Channel 4 & & \\
\hline Channel 4 & Channel 3 & & \\
\hline
\end{tabular}
```

Unit.
T_TOP24P
Test Engineer ....Xen.
Date
3/11/09

```

\section*{13. Dynamic Range Tests}
\(\qquad\)

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c}
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(3.3-3.5 \mathbf{v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch2 & \(3.3-3.5 \mathbf{v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(3.3-3.5 \mathrm{v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(10 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
``` T_TOP25P
```

Date 3/11/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 T_TOP25P
    ```
\(\qquad\)

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen..
Date .3/11/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit.

``` \(\qquad\)
``` .T_TOP25P
Test EngineerXen.
```

Date ................3/11/09

## 6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.10	1 mV	$\sqrt{ }$
+15 v TP4	14.89	1 mV	$\sqrt{ }$
-15 v TP6	-15.04	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation? $\quad \sqrt{ }$

Record Power Supply Currents

| Supply | Current |
| :--- | :--- | :--- |
| +16.5 v | 400 mA |
| -16.5 v | 300 mA |

If the supplies are correct, proceed to the next test.
$\qquad$
$\qquad$

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
```

$\qquad$

``` T TOP25P Serial No
Test EngineerXen.
Date .3/11/09
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.65	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\checkmark$
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.64	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test Engineer ....Xen.
Date 3/11/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch4	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.1	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

## Unit.

 T_TOP25P Serial NoTest Engineer . .Xen.
Date .3/11/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 15 to Pin 16	0.489	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP25P. Serial No $\qquad$
Test Engineer ....Xen..
Date .3/11/09

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.2	$\sqrt{ }$	-24.1	$\checkmark$	-24.2	$\sqrt{ }$	-24.2	$\checkmark$
-7v	-17.0	$\checkmark$	-16.9	$\checkmark$	-17.0	$\checkmark$	-17.0	$\checkmark$
-5v	-12.1	$\sqrt{ }$	-12.0	$\checkmark$	-12.0	$\checkmark$	-12.0	$\checkmark$
-1v	-2.4	$\checkmark$	-2.4	$\sqrt{ }$	-2.4	$\checkmark$	-2.4	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\sqrt{ }$	0	$\checkmark$	0	$\checkmark$
1v	2.4	$\checkmark$	2.4	$\sqrt{ }$	2.4	$\checkmark$	2.4	$\checkmark$
5v	12.0	$\sqrt{ }$	12.0	$\sqrt{ }$	12.0	$\sqrt{ }$	12.0	$\checkmark$
7v	16.9	$\checkmark$	17.0	$\sqrt{ }$	17.0	$\checkmark$	12.0	$\checkmark$
10v	24.1	$\checkmark$	24.1	$\sqrt{ }$	24.2	$\checkmark$	24.1	$\sqrt{ }$

```
Unit
T_TOP25P
Test EngineerXen.
Date3/11/09
```


## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-127 dB	-110 dB	437 Hz
Channel 2	Channel 1	-131 dB	-110 dB	437 Hz
Channel 2	Channel 3	-143 dB	-111 dB	229 Hz
Channel 3	Channel 2	-138 dB	-110 dB	437 Hz
Channel 3	Channel 4	-102 dB	-69 dB	166 Hz
Channel 4	Channel 3	-107 dB	-70 dB	166 Hz

### 12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT   CHANNEL	OUTPUT   CHANNEL	Maximum   Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
 T_TOP25P
Test EngineerXen.
Date
3/11/09
```


## 13. Dynamic Range Tests

$\qquad$

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` T_TOP26P
```

Date 4/11/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

                            T_TOP26P
    ```
\(\qquad\)

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen..
Date .3/11/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \(\sqrt{ }\) & \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit. T_TOP26P
Test Engineer ....Xen.

```

Date3/11/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 11.98 & \(\sqrt{ }\) & \\
\hline+15 v TP4 & 14.94 & \(\sqrt{ }\) & \\
\hline-15 v TP6 & -14.95 & \(\sqrt{ }\) & \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|ll|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
\(\qquad\)

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
``` T_TOP26P Serial No
Test Engineer ....Xen.
Date
``` \(\qquad\)
``` 3/11/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	\checkmark
Ch2	4.8	4.7 to 5 v	\checkmark
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen.
Date 3/11/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch4	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.3	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.49	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit.

 T_TOP26P Serial NoTest Engineer . .Xen.
Date .3/11/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 3 to Pin 4	0.488	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 15 to Pin 16	0.489	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP26P. \qquad
Test EngineerXen..
Date .3/11/09

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \mathrm{o} / \mathrm{p} \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stabl	$\begin{gathered} \text { Ch4 } \\ \text { o/p } \end{gathered}$	Ch4 stable ?
-10v	-24.1	\checkmark	-24.1	\checkmark	-24.1	\checkmark	-24.2	\checkmark
-7v	-17.0	\checkmark	-17.0	$\sqrt{ }$	-17.0	\checkmark	-17.0	\checkmark
-5v	-12.0	\checkmark	-12.0	$\sqrt{ }$	-12.0	\checkmark	-12.1	\checkmark
-1v	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark
Ov	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark
5v	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark
7v	17.0	\checkmark	16.9	\checkmark	17.0	\checkmark	17.0	\checkmark
10v	24.2	\checkmark	24.1	\checkmark	24.1	\checkmark	24.1	\checkmark

```
Unit
T_TOP26P
Test Engineer ....Xen.
Date .................4/11/09
```


12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-137 dB	-111 dB	473 Hz
Channel 2	Channel 1	-142 dB	-112 dB	263 Hz
Channel 2	Channel 3	-136 dB	-111 dB	275 Hz
Channel 3	Channel 2	-141 dB	-111 dB	219 Hz
Channel 3	Channel 4	-130 dB	-111 dB	266 Hz
Channel 4	Channel 3	-143 dB	-111 dB	219 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                T_TOP26P
Test Engineer ....Xen.
Date ...............4/11/09.
```


13. Dynamic Range Tests

\qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

2. Test equipment

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	Tektronix	2225	
PSU*2 $_{\text {DVM }}$	Farnell	L30-2	
Signal analyzer	Fluke	77 III	
Pre-amplifier	Stanford Systems	SR560	

```
Unit.
...............T_TOP27P
```

\qquad

```
Test Engineer ....Xen.
Date
                                    .4/11/09
```


3. Inspection

Workmanship

```
Inspect the general workmanship standard and comment: \(\sqrt{ }\)
```


Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen.
Date .4/11/09.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{l \mid}$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
	5	0V	$\sqrt{ }$	
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit. T_TOP27P
Test Engineer ....Xen.
```

Date4/11/09

6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}$
+12 v TP5	12.05	1 mV	$\sqrt{ }$
+15 v TP4	14.95	1 mV	$\sqrt{ }$
-15 v TP6	-14.99	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation? $\quad \sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
\qquad
\qquad

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
T TOP27P
Serial No
Test Engineer ....Xen.
Date
4/11/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.65	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	\checkmark
Ch3	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen.
Date
.4/11/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch4	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$

Unit. .T_TOP27P Serial No
Test Engineer . Xen.
Date .4/11/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.486	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.488	Pin 7 to Pin 8	0.488	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 11 to Pin 12	0.488	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 15 to Pin 16	0.488	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP27P. Serial No
Test EngineerXen...
Date .4/11/09.

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	$\begin{gathered} \text { Ch2 } \\ \text { stable } \end{gathered}$ $?$	Ch3 o/p	$\begin{gathered} \text { Ch3 } \\ \text { stable } \end{gathered}$ $?$	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	$\begin{gathered} \text { Ch4 } \\ \text { stable } \end{gathered}$ $?$
-10v	-24.1	\checkmark	-24.2	\checkmark	-24.1	\checkmark	-24.1	\checkmark
-7v	-17.0	\checkmark	-17.0	\checkmark	-17.0	\checkmark	-16.9	\checkmark
-5v	-12.0	\checkmark	-12.1	$\sqrt{ }$	-12.0	\checkmark	-12.0	$\sqrt{ }$
-1v	-2.4	\checkmark	2.4	\checkmark	-2.4	\checkmark	-2.4	\checkmark
Ov	0	\checkmark	0	$\sqrt{ }$	0	\checkmark	0	\checkmark
1v	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark	2.4	\checkmark
5v	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark
7v	16.9	\checkmark	17.0	\checkmark	16.9	\checkmark	16.9	\checkmark
10v	24.0	\checkmark	24.1	\checkmark	24.0	\checkmark	24.0	\checkmark

```
Unit
T_TOP27P
Test Engineer ....Xen
Date .................4/11/09
```


12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-132 dB	-115 dB	631 Hz
Channel 2	Channel 1	-136 dB	-113 dB	525 Hz
Channel 2	Channel 3	-134 dB	110 dB	750 Hz
Channel 3	Channel 2	-135 dB	-111 dB	363 Hz
Channel 3	Channel 4	-111 dB	-73 dB	166 Hz
Channel 4	Channel 3	-135 dB	-111 dB	871 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                T_TOP27P
Test Engineer ....Xen.
Date
.4/11/09
```


13. Dynamic Range Tests

\qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` T_TOP28P
```

Date 4/11/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 T_TOP28P
    ```
\(\qquad\)
```

Test EngineerXen.
Date
4/11/09

```

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.
Date .4/11/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit. T_TOP28P
Test EngineerXen.

```

Date ............... 4/11/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}\)
\end{tabular} \\
\hline+12 v TP5 & 12.10 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.91 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.98 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
T TOP28P
Test EngineerXen.
Date
4/11/09

```
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.65 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.65 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Test Engineer ....Xen.
Date
.4/11/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & \(4.7 v\) to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & \(\mathbf{4 . 7 v}\) to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & \(\mathbf{4 . 7 v}\) to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.15 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_TOP28P
Serial No
Test Engineer . .Xen...
Date .4/11/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 1 to Pin 2 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 5 to Pin 6 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 9 to Pin 10 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 13 to Pin 14 & 1.22 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 3 to Pin 4 & 0.486 & \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 7 to Pin 8 & 0.486 & \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 11 to Pin 12 & 0.487 & \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 15 to Pin 16 & 0.488 & \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP28P. \(\qquad\)
Test Engineer ....Xen..
Date .4/11/09.

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.2 & \(\checkmark\) & -24.2 & \(\sqrt{ }\) & -24.1 & \(\checkmark\) & -24.1 & \(\sqrt{ }\) \\
\hline -7v & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -16.9 & \(\checkmark\) & -16.9 & \(\checkmark\) \\
\hline -5v & -12.1 & \(\checkmark\) & -12.0 & \(\sqrt{ }\) & -12.0 & \(\checkmark\) & -12.0 & \(\checkmark\) \\
\hline -1v & -2.4 & \(\sqrt{ }\) & -2.4 & \(\sqrt{ }\) & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.4 & \(\sqrt{ }\) \\
\hline 5v & 12.0 & \(\sqrt{ }\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) \\
\hline 7v & 16.9 & \(\sqrt{ }\) & 17.0 & \(\checkmark\) & 16.9 & \(\checkmark\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.0 & \(\checkmark\) & 24.1 & \(\checkmark\) & 24.1 & \(\checkmark\) & 24.2 & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
T_TOP28P
Test EngineerXen.
Date4/11/09

```

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & -135 dB & -113 dB & 871 Hz \\
\hline Channel 2 & Channel 1 & -141 dB & -110 dB & 479 Hz \\
\hline Channel 2 & Channel 3 & -140 dB & -111 dB & 422 Hz \\
\hline Channel 3 & Channel 2 & -136 dB & -115 dB & 575 Hz \\
\hline Channel 3 & Channel 4 & -139 dB & -112 dB & 575 Hz \\
\hline Channel 4 & Channel 3 & -101 dB & -72 dB & 437 Hz \\
\hline
\end{tabular}

\subsection*{12.2 Quick Test}

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
Maximum \\
Output
\end{tabular} & @ Frequency \\
\hline Channel 1 & Channel 2 & & \\
\hline Channel 2 & Channel 1 & & \\
\hline Channel 2 & Channel 3 & & \\
\hline Channel 3 & Channel 2 & & \\
\hline Channel 3 & Channel 4 & & \\
\hline Channel 4 & Channel 3 & & \\
\hline
\end{tabular}
```

Unit.
T_TOP28P
Test EngineerXen.
Date4/11/09

```

\section*{13. Dynamic Range Tests}
\(\qquad\)

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(10 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
```

 T_TOP29P
    ``` 4/11/09
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	Tektronix	2225	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	

```
Unit.
```

\qquad

```
                            T_TOP29P
```

\qquad

```
Test Engineer ....Xen.
Date
                                    4/11/09
```


3. Inspection

Workmanship

```
Inspect the general workmanship standard and comment: \(\sqrt{ }\)
```


Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen.
Date .4/11/09.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{l \mid}$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
	5	0V	$\sqrt{ }$	
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit. T_TOP29P
Test Engineer ....Xen.
```

Date4/11/09

6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}$
+12 v TP5	12.08	1 mV	$\sqrt{ }$
+15 v TP4	14.92	1 mV	$\sqrt{ }$
-15 v TP6	-15.16	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation? $\quad \sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
\qquad
\qquad

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
T TOP29P
Serial No
Test Engineer ....Xen.
Date
4/11/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch2	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch3	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 to 5 v	$\sqrt{ }$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	\checkmark
Ch4	3.35	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	\checkmark
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen.
Date
.4/11/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.15	3v to 3.4v	$\sqrt{ }$
Ch2	3.3	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit.
.T_TOP29P.
Serial No
Test Engineer . .Xen...
Date .4/11/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.488	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.484	Pin 15 to Pin 16	0.487	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP29P. \qquad
Test EngineerXen..
Date .4/11/09.

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 olp	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.2	\checkmark	-24.0	$\sqrt{ }$	-24.1	\checkmark	-24.0	$\sqrt{ }$
-7v	-17.0	\checkmark	-16.9	\checkmark	-16.9	\checkmark	-17.0	\checkmark
-5v	-12.0	\checkmark	-12.0	\checkmark	-12.0	$\sqrt{ }$	-12.0	\checkmark
-1v	-2.4	$\sqrt{ }$						
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.4	\checkmark	2.4	$\sqrt{ }$	2.4	\checkmark	2.4	\checkmark
5v	12.0	$\sqrt{ }$	12.0	$\sqrt{ }$	12.0	\checkmark	12.0	$\sqrt{ }$
7v	16.9	$\sqrt{ }$	16.9	$\sqrt{ }$	16.9	\checkmark	16.9	\checkmark
10v	24.0	$\sqrt{ }$	24.1	$\sqrt{ }$	24.0	$\sqrt{ }$	24.0	$\sqrt{ }$

```
Unit
T_TOP29P
Test Engineer ....Xen.
Date .................4/11/09
```


12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-138 dB	-112 dB	437 Hz
Channel 2	Channel 1	-136 dB	-116 dB	275 Hz
Channel 2	Channel 3	-149 dB	-113 dB	479 Hz
Channel 3	Channel 2	-142 dB	-114 dB	479 Hz
Channel 3	Channel 4	-143 dB	-113 dB	437 Hz
Channel 4	Channel 3	-140 dB	-113 dB	923 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                T_TOP29P
Test Engineer ....Xen.
Date ..............4/11/09
```


13. Dynamic Range Tests

\qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` T_TOP30P
```

Date .5/11/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.
...............T_TOP30P

```
\(\qquad\)
```

Test EngineerXen.
Date
.4/11/09

```

\section*{3. Inspection}

\section*{Workmanship}
```

Inspect the general workmanship standard and comment: $\sqrt{ }$

```

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.
.Xen...
Date .4/11/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit. T_TOP30P
Test EngineerXen.

```

Date ............... 4/11/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.11 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.97 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.01 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
\(\qquad\)

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
T TOP30P
Test EngineerXen.
Date
4/11/09

```
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.66 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Test Engineer ....Xen.
Date 5/11/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & \(4.7 v\) to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & \(\mathbf{4 . 7 v}\) to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & \(\mathbf{4 . 7 v}\) to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_TOP30P
Test Engineer . Xen.
Date .5/11/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 1 to Pin 2 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 5 to Pin 6 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 9 to Pin 10 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 13 to Pin 14 & 1.22 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 3 to Pin 4 & 0.486 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.487 & Pin 7 to Pin 8 & 0.488 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.486 & Pin 11 to Pin 12 & 0.487 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.486 & Pin 15 to Pin 16 & 0.488 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit .T_TOP30P
Test Engineer ....Xen..
Date .5/11/09

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & \[
\begin{gathered}
\text { Ch2 } \\
\text { stable }
\end{gathered}
\]
\[
?
\] & Ch3 o/p & \[
\begin{gathered}
\text { Ch3 } \\
\text { stable }
\end{gathered}
\]
\[
?
\] & \[
\begin{aligned}
& \text { Ch4 } \\
& \text { o/p }
\end{aligned}
\] & \[
\begin{gathered}
\text { Ch4 } \\
\text { stable }
\end{gathered}
\]
\[
?
\] \\
\hline -10v & -24.1 & \(\checkmark\) & -24.1 & \(\checkmark\) & -24.2 & \(\checkmark\) & -24.1 & \(\checkmark\) \\
\hline -7v & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -16.9 & \(\checkmark\) \\
\hline -5v & -12.0 & \(\checkmark\) & -12.0 & \(\sqrt{ }\) & -12.0 & \(\checkmark\) & -12.0 & \(\sqrt{ }\) \\
\hline -1v & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.4 & \(\checkmark\) & 2.4 & \(\checkmark\) & 2.4 & \(\checkmark\) & 2.4 & \(\checkmark\) \\
\hline 5v & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) \\
\hline 7v & 16.9 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.0 & \(\checkmark\) & 24.1 & \(\checkmark\) & 24.1 & \(\checkmark\) & 24.1 & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
T_TOP30P
Test EngineerXen.
Date 5/11/09

```

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & -131 dB & -114 dB & 275 Hz \\
\hline Channel 2 & Channel 1 & -141 dB & -114 dB & 437 Hz \\
\hline Channel 2 & Channel 3 & -129 dB & -113 dB & 437 Hz \\
\hline Channel 3 & Channel 2 & -130 dB & -112 dB & 479 Hz \\
\hline Channel 3 & Channel 4 & -137 dB & -113 dB & 631 Hz \\
\hline Channel 4 & Channel 3 & -109 dB & -71 dB & 174 Hz \\
\hline
\end{tabular}

\subsection*{12.2 Quick Test}

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
Maximum \\
Output
\end{tabular} & @ Frequency \\
\hline Channel 1 & Channel 2 & & \\
\hline Channel 2 & Channel 1 & & \\
\hline Channel 2 & Channel 3 & & \\
\hline Channel 3 & Channel 2 & & \\
\hline Channel 3 & Channel 4 & & \\
\hline Channel 4 & Channel 3 & & \\
\hline
\end{tabular}

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(10 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
``` T_TOP31P
``` 5/11/09
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	Tektronix	2225	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	

Unit...............T_TOP31P.......................Serial No
Test EngineerXen..................
Date5/11/09.............

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer
Date 5/11/09

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
	5	OV	\checkmark	
6	Imon1N		18	\checkmark
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit. TOP31P Serial No
Test Engineer ....Xen.
```

Date5/11/09

6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	11.99	1 mV	\checkmark
+15 v TP4	14.98	1 mV	$\sqrt{ }$
-15 v TP6	-14.99	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation? $\quad \sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
\qquad
\qquad

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
```

\qquad

``` T TOP31P Serial No
Test Engineer . Xen.
Date
``` \(\qquad\)
``` 5/11/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch3	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	\checkmark
Ch2	4.8	4.7 to 5 v	\checkmark
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.3	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen.
Date .5/11/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit. .T_TOP31P Serial No
Test Engineer . Xen.
Date .5/11/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.488	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP31P. Serial No
Test EngineerXen...
Date .5/11/09

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 olp	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.1	\checkmark	-24.2	$\sqrt{ }$	-24.1	\checkmark	-24.1	$\sqrt{ }$
-7v	-17.0	\checkmark	-17.0	\checkmark	-16.9	\checkmark	-17.0	\checkmark
-5v	-12.0	\checkmark	-12.0	$\sqrt{ }$	-12.0	$\sqrt{ }$	-12.0	\checkmark
-1v	-2.4	$\sqrt{ }$	-2.4	$\sqrt{ }$	-2.4	\checkmark	-2.4	\checkmark
Ov	0	\checkmark	0	$\sqrt{ }$	0	\checkmark	0	$\sqrt{ }$
1v	2.4	$\sqrt{ }$						
5v	12.0	$\sqrt{ }$	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark
7v	16.9	$\sqrt{ }$	17.0	\checkmark	16.9	\checkmark	16.9	\checkmark
10v	24.0	$\sqrt{ }$	24.0	$\sqrt{ }$	24.1	$\sqrt{ }$	24.2	\checkmark

```
Unit
T_TOP31P
Test Engineer ....Xen
Date ..............5/11/09
```


12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-132 dB	-106 dB	437 Hz
Channel 2	Channel 1	-139 dB	-111 dB	417 Hz
Channel 2	Channel 3	-136 dB	-112 dB	479 Hz
Channel 3	Channel 2	-136 dB	-113 dB	479 Hz
Channel 3	Channel 4	-140 dB	-110 dB	229 Hz
Channel 4	Channel 3	-156 dB	-112 dB	661 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                T_TOP31P
Test Engineer ....Xen.
Date
5/11/09
```


13. Dynamic Range Tests

\qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$3.3-3.5 \mathbf{v}$	3.43	$\sqrt{ }$
Ch2	$3.3-3.5 \mathbf{v}$	3.44	$\sqrt{ }$
Ch3	$3.3-3.5 \mathrm{v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

```
                            T_TOP32P
``` 5/11/09
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	Tektronix	2225	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	

```
Unit
```

$\qquad$

``` T_TOP32P
``` \(\qquad\)

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen..
Date .5/11/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit.

``` \(\qquad\)
``` .T_TOP32P Serial No
Test EngineerXen.
```

Date .................5/11/09

## 6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.03	1 mV	$\sqrt{ }$
+15 v TP4	14.80	1 mV	$\sqrt{ }$
-15 v TP6	-15.01	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation? $\quad \sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
$\qquad$

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{n}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
T TOP32P
Serial No
Test EngineerXen.
Date
```

$\qquad$

```
5/11/09
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\checkmark$
Ch2	4.8	4.7 to 5 v	$\checkmark$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\checkmark$


1 Hz			
	Output	Specification	Pass/Fail
Ch1	3.3	$\mathbf{3 . 3}$ to 3.7v	$\sqrt{ }$
Ch2	3.3	$3.3 v$ to $3.7 v$	$\checkmark$
Ch3	3.3	$3.3 v$ to $3.7 v$	$\checkmark$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test Engineer ....Xen.
Date 5/11/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.15	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$

Uni
.T_TOP32P.
Test Engineer . Xen.
Date .5/11/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 15 to Pin 16	0.488	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP32P Serial No
Test Engineer ....Xen...
Date .5/11/09

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 olp	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.1	$\checkmark$	-24.0	$\sqrt{ }$	-24.2	$\checkmark$	-24.1	$\sqrt{ }$
-7v	-17.0	$\checkmark$	-16.9	$\checkmark$	-17.0	$\checkmark$	-17.0	$\checkmark$
-5v	-12.0	$\checkmark$	-12.0	$\sqrt{ }$	-12.1	$\sqrt{ }$	-12.0	$\checkmark$
-1v	-2.4	$\sqrt{ }$	-2.4	$\sqrt{ }$	2.4	$\checkmark$	-2.4	$\sqrt{ }$
Ov	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$
1v	2.4	$\sqrt{ }$						
5v	12.0	$\sqrt{ }$	12.0	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$
7v	16.9	$\sqrt{ }$	16.9	$\checkmark$	16.9	$\checkmark$	16.9	$\checkmark$
10v	24.0	$\sqrt{ }$	24.0	$\sqrt{ }$	24.0	$\sqrt{ }$	24.0	$\checkmark$

```
Unit
T_TOP32P
Test EngineerXen
Date 5/11/09
```


## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-146 dB	-107 dB	457 Hz
Channel 2	Channel 1	-132 dB	-108 dB	479 Hz
Channel 2	Channel 3	-127 dB	-111 dB	437 Hz
Channel 3	Channel 2	-137 dB	-111 dB	437 Hz
Channel 3	Channel 4	-142 dB	-112 dB	229 Hz
Channel 4	Channel 3	-131 dB	-109 dB	479 Hz

### 12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT   CHANNEL	OUTPUT   CHANNEL	Maximum   Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
 T_TOP32P
Test EngineerXen.
Date
.4/11/09
```


## 13. Dynamic Range Tests

$\qquad$

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` T_TOP33P
```

Date 6/11/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer
Date .6/11/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit. _TOP33P
Test Engineer ....Xen.

```

Date .6/11/09.

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.09 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.84 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.89 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline All Outputs smooth DC, no oscillation? & \(\sqrt{ }\) \\
\hline
\end{tabular}

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
\(\qquad\)

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
``` T TOP33P Serial No
Test Engineer . Xen.
Date
``` \(\qquad\)
``` 6/11/09
```

\qquad

8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch2	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch3	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	\checkmark
Ch2	4.8	4.7 to 5 v	\checkmark
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	\checkmark
Ch2	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch3	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	\checkmark
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen.
Date
6/11/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.15	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit. .T_TOP33P Serial No
Test Engineer Xen.
Date .6/11/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.486	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 15 to Pin 16	0.489	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. .T_TOP33P. \qquad
Test .Xen...
Date
Engineer . 6/11/09

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.0	\checkmark	-24.0	$\sqrt{ }$	-24.1	\checkmark	-24.0	$\sqrt{ }$
-7v	-17.0	\checkmark	-16.9	\checkmark	-16.9	\checkmark	-16.9	\checkmark
-5v	-12.0	\checkmark	-12.0	$\sqrt{ }$	-12.0	\checkmark	-12.0	\checkmark
-1v	-2.4	$\sqrt{ }$	-2.4	$\sqrt{ }$	-2.4	\checkmark	-2.4	\checkmark
Ov	0	$\sqrt{ }$	0	$\sqrt{ }$	0	\checkmark	0	\checkmark
1v	2.4	$\sqrt{ }$						
5v	12.0	$\sqrt{ }$	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark
7v	16.9	$\sqrt{ }$	17.0	\checkmark	16.9	\checkmark	16.9	\checkmark
10v	24.0	\checkmark	24.1	\checkmark	24.1	\checkmark	24.0	\checkmark

```
Unit
T_TOP33P
Test Engineer ....Xen
Date .................6/11/09
```


12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-138 dB	-115 dB	363 Hz
Channel 2	Channel 1	-137 dB	-114 dB	240 Hz
Channel 2	Channel 3	-135 dB	-107 dB	363 Hz
Channel 3	Channel 2	-150 dB	-110 dB	479 Hz
Channel 3	Channel 4	-116 dB	-110 dB	631 Hz
Channel 4	Channel 3	-117 dB	-111 dB	550 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

Test Engineer .
Date ..Xen... .6/11/09.

13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$3.3-3.5 \mathbf{v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` T_TOP34P
```

Date .6/11/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}


\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Date .6/11/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
T_TOP34P
Test EngineerXen.
Date6/11/09
6. Power
Check the polarity of the wiring:
3 Pin Power Connector

```
                                    Serial No

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.07 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.93 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.92 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|ll|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
\(\qquad\)

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
``` T TOP34P Serial No
Test Engineer . Xen.
Date
``` \(\qquad\)
``` 6/11/09
```

$\qquad$

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch2	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch3	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	$\checkmark$
Ch2	4.8	4.7 to 5 v	$\checkmark$
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	$\checkmark$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.3	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\checkmark$
Ch2	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\checkmark$
Ch4	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test Engineer ....Xen.
Date
6/11/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch4	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit. .T_TOP34P Serial No
Test Engineer Xen.
Date .6/11/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.486	Pin 7 to Pin 8	0.487	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.484	Pin 11 to Pin 12	0.486	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.487	Pin 15 to Pin 16	0.489	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. .T_TOP34P. $\qquad$
Test
Engineer .Xen.
Date .6/11/09

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 olp	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.2	$\checkmark$	-24.1	$\sqrt{ }$	-24.1	$\checkmark$	-24.1	$\sqrt{ }$
-7v	-17.0	$\checkmark$	-17.0	$\checkmark$	-17.0	$\checkmark$	-16.9	$\checkmark$
-5v	-12.1	$\checkmark$	-12.0	$\checkmark$	-12.0	$\sqrt{ }$	-12.0	$\checkmark$
-1v	-2.4	$\sqrt{ }$						
0v	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.4	$\checkmark$	2.4	$\sqrt{ }$	2.4	$\checkmark$	2.4	$\checkmark$
5v	12.0	$\sqrt{ }$	12.0	$\sqrt{ }$	12.0	$\checkmark$	12.0	$\sqrt{ }$
7v	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	16.9	$\checkmark$	16.9	$\checkmark$
10v	24.1	$\sqrt{ }$						

```
Unit
T_TOP34P
Test EngineerXen
Date6/11/09
```


## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-143 dB	-111 dB	417 Hz
Channel 2	Channel 1	-141 dB	-112 dB	661 Hz
Channel 2	Channel 3	-134 dB	-110 dB	479 Hz
Channel 3	Channel 2	-136 dB	-109 dB	229 Hz
Channel 3	Channel 4	-136 dB	-110 dB	275 Hz
Channel 4	Channel 3	-133 dB	-109 dB	422 Hz

### 12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT   CHANNEL	OUTPUT   CHANNEL	Maximum   Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

Test Engineer .
Date ..Xen... .6/11/09.

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

```
 T_TOP35P
``` 9/11/09
```

\qquad

``` Se
```

\qquad

```
Date
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	Tektronix	2225	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer
Date .6/11/09.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
	5	OV	\checkmark	
6	Imon1N		18	\checkmark
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
T_TOP35P
Test Engineer ....Xen.
Date ................6/11/09
```


6. Power

```
Check the polarity of the wiring:
3 Pin Power Connector
```

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+\boldsymbol{+}-\mathbf{0 . 5 v} ?$
+12 v TP5	12.08	1 mV	$\sqrt{ }$
+15 v TP4	14.94	1 mV	$\sqrt{ }$
-15 v TP6	-15.07	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation? $\quad \sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
\qquad
\qquad

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
```

\qquad

``` T_TOP35P Serial No
Test Engineer . Xen.
Date
``` \(\qquad\)
``` 6/11/09
```

\qquad6/11/09.

```

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.75 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.65 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Test Engineer ....Xen.
Date 6/11/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.15 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.15 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.15 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.15 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP35P. Serial No
Test Engineer . Xen.
Date .9/11/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 1 to Pin 2 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 5 to Pin 6 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 9 to Pin 10 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 13 to Pin 14 & 1.22 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.486 & Pin 3 to Pin 4 & 0.487 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.487 & Pin 7 to Pin 8 & 0.487 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.486 & Pin 11 to Pin 12 & 0.487 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 15 to Pin 16 & 0.487 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP35P. Serial No
Test Engineer . Xen.
Date \(\qquad\) 9/11/09

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 olp & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.1 & \(\sqrt{ }\) & -24.2 & \(\sqrt{ }\) & -24.2 & \(\checkmark\) & -24.2 & \(\checkmark\) \\
\hline -7v & -16.9 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) \\
\hline -5v & -12.0 & \(\checkmark\) & -12.0 & \(\sqrt{ }\) & -12.1 & \(\sqrt{ }\) & -12.1 & \(\checkmark\) \\
\hline -1v & -2.4 & \(\sqrt{ }\) & -2.4 & \(\sqrt{ }\) & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) \\
\hline 1v & 2.4 & \(\sqrt{ }\) \\
\hline 5v & 12.0 & \(\sqrt{ }\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) \\
\hline 7v & 16.8 & \(\checkmark\) & 16.9 & \(\sqrt{ }\) & 16.9 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.1 & \(\sqrt{ }\) & 24.2 & \(\sqrt{ }\) & 24.0 & \(\sqrt{ }\) & 24.1 & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
T_TOP35P
Test EngineerXen.
Date9/11/09

```

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & -137 dB & -112 dB & 417 Hz \\
\hline Channel 2 & Channel 1 & -130 dB & -114 dB & 871 Hz \\
\hline Channel 2 & Channel 3 & -144 dB & -113 dB & 437 Hz \\
\hline Channel 3 & Channel 2 & -136 dB & -111 dB & 692 Hz \\
\hline Channel 3 & Channel 4 & -136 dB & -111 dB & 479 Hz \\
\hline Channel 4 & Channel 3 & -140 dB & -112 dB & 661 Hz \\
\hline
\end{tabular}

\subsection*{12.2 Quick Test}

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
Maximum \\
Output
\end{tabular} & @ Frequency \\
\hline Channel 1 & Channel 2 & & \\
\hline Channel 2 & Channel 1 & & \\
\hline Channel 2 & Channel 3 & & \\
\hline Channel 3 & Channel 2 & & \\
\hline Channel 3 & Channel 4 & & \\
\hline Channel 4 & Channel 3 & & \\
\hline
\end{tabular}

Test Engineer ....Xen.
Date 9/11/09

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.45 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(10 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
```

 T_TOP36P
    ```
Date 9/11/09
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

| Unit (e.g. DVM) | Manufacturer | Model | Serial Number |
| :---: | :---: | :---: | :---: |
| DVM | Fluke | 115 | |
| V/I calibrator | Time Electronics | 1044 | |
| Signal Generator | Agilent | 33250 A | |
| Oscilloscope | Tektronix | 2225 | |
| PSU*2 | Farnell | L30-2 | |
| DVM | Fluke | 77 III | |
| Signal analyzer | Agilent | 35670 A | |
| Pre-amplifier | Stanford Systems | SR560 | |
| | | | |

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Date 9/11/09

4. Continuity Checks

J2

| PIN | SIGNAL | DESCRIPTION | To J1 PIN | OK? |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PD1P | Photodiode A+ | 1 | \checkmark |
| 2 | PD2P | Photodiode B+ | 2 | $\sqrt{ }$ |
| 3 | PD3P | Photodiode C+ | 3 | \checkmark |
| 4 | PD4P | Photodiode D+ | 4 | \checkmark |
| | 5 | OV | \checkmark | |
| 6 | PD1N | Photodiode A- | 14 | \checkmark |
| 7 | PD2N | Photodiode B- | 15 | \checkmark |
| 8 | PD3N | Photodiode C- | 16 | \checkmark |
| 9 | PD4N | Photodiode D- | 17 | \checkmark |

J5

| PIN | SIGNAL | | To J1 PIN | OK? |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Imon1P | | 5 | $\sqrt{l \mid}$ |
| 2 | Imon2P | | 6 | $\sqrt{ }$ |
| 3 | Imon3P | | 7 | $\sqrt{ }$ |
| 4 | Imon4P | | 8 | $\sqrt{ }$ |
| | 5 | 0V | $\sqrt{ }$ | |
| 6 | Imon1N | | 18 | $\sqrt{ }$ |
| 7 | Imon2N | | 19 | $\sqrt{ }$ |
| 8 | Imon3N | | 20 | $\sqrt{ }$ |
| 9 | Imon4N | | 21 | $\sqrt{ }$ |

Power Supply to Satellite box

J1

| PIN | SIGNAL | DESCRIPTION | OK? |
| :--- | :--- | :--- | :---: |
| 9 | V+ (TP1) | +17v Supply | $\sqrt{ }$ |
| 10 | V+ (TP1) | +17v Supply | $\sqrt{ }$ |
| 11 | V- (TP2) | -17v Supply | $\sqrt{ }$ |
| 12 | V- (TP2) | -17v Supply | $\sqrt{ }$ |
| 13 | OV (TP3) | | $\sqrt{ }$ |
| 22 | OV (TP3) | | $\sqrt{ }$ |
| 23 | OV (TP3) | | $\sqrt{ }$ |
| 24 | OV (TP3) | | $\sqrt{ }$ |
| 25 | OV (TP3) | | $\sqrt{ }$ |

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit. T_TOP36P
Test Engineer ....Xen.
```

Date9/11/09

6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

| Regulator | Output voltage | Output noise | Nominal
 $+/-\mathbf{0 . 5 v} ?$ |
| :---: | :---: | :---: | :---: |
| +12 v TP5 | 12.04 | 1 mV | $\sqrt{ }$ |
| +15 v TP4 | 14.92 | 1 mV | $\sqrt{ }$ |
| -15 v TP6 | -14.93 | 5 mV | $\sqrt{ }$ |

All Outputs smooth DC, no oscillation? $\quad \sqrt{ }$

Record Power Supply Currents

| Supply | Current |
| :--- | :--- |
| +16.5 v | 400 mA |
| -16.5 v | 300 mA |

If the supplies are correct, proceed to the next test.
\qquad

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

| Channel | Indicator | | OK? |
| :---: | :---: | :---: | :---: |
| | ON | OFF | |
| Ch1 | $\sqrt{2}$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch2 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |

Test switches

| Channel | Indicator | | OK? |
| :---: | :---: | :---: | :---: |
| | ON | OFF | |
| Ch1 | $\sqrt{2}$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch2 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |

```
Unit
```

\qquad

``` T TOP36P Serial No
Test Engineer . Xen.
Date
``` \(\qquad\)
``` 9/11/09
```

\qquad9/11/09.

```

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 4.9 & 4.9 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.65 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Test Engineer ....Xen.
Date 9/11/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to 0.16v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_TOP36P.
Serial No
Test Engineer . .Xen..
Date .9/11/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 1 to Pin 2 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 5 to Pin 6 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 9 to Pin 10 & 1.22 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.22 & Pin 13 to Pin 14 & 1.22 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.486 & Pin 3 to Pin 4 & 0.487 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.486 & Pin 7 to Pin 8 & 0.487 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.485 & Pin 11 to Pin 12 & 0.487 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.486 & Pin 15 to Pin 16 & 0.488 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP36P. \(\qquad\)
Test Engineer ....Xen..
Date .9/11/09

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & \[
\begin{gathered}
\text { Ch2 } \\
\text { stable }
\end{gathered}
\]
\[
?
\] & Ch3 o/p & \[
\begin{gathered}
\text { Ch3 } \\
\text { stable }
\end{gathered}
\]
\[
?
\] & \[
\begin{aligned}
& \text { Ch4 } \\
& \text { o/p }
\end{aligned}
\] & \[
\begin{gathered}
\text { Ch4 } \\
\text { stable }
\end{gathered}
\]
\[
?
\] \\
\hline -10v & -24.1 & \(\checkmark\) & -24.1 & \(\checkmark\) & -24.1 & \(\checkmark\) & -24.1 & \(\checkmark\) \\
\hline -7v & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -16.9 & \(\checkmark\) & -16.8 & \(\checkmark\) \\
\hline -5v & -12.0 & \(\checkmark\) & -12.0 & \(\sqrt{ }\) & -12.0 & \(\checkmark\) & -12.0 & \(\sqrt{ }\) \\
\hline -1v & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.4 & \(\checkmark\) & 2.4 & \(\checkmark\) & 2.4 & \(\checkmark\) & 2.4 & \(\checkmark\) \\
\hline 5v & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) & 12.0 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 16.9 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.2 & \(\checkmark\) & 24.1 & \(\checkmark\) & 24.1 & \(\checkmark\) & 24.2 & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
T_TOP36P
Test EngineerXen.
Date9/11/09

```

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & -132 dB & -110 dB & 229 Hz \\
\hline Channel 2 & Channel 1 & -145 dB & -108 dB & 219 Hz \\
\hline Channel 2 & Channel 3 & -135 dB & -113 dB & 232 Hz \\
\hline Channel 3 & Channel 2 & -118 dB & -110 dB & 525 Hz \\
\hline Channel 3 & Channel 4 & -136 dB & -110 dB & 479 Hz \\
\hline Channel 4 & Channel 3 & -131 dB & -113 dB & 871 Hz \\
\hline
\end{tabular}

\subsection*{12.2 Quick Test}

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
Maximum \\
Output
\end{tabular} & @ Frequency \\
\hline Channel 1 & Channel 2 & & \\
\hline Channel 2 & Channel 1 & & \\
\hline Channel 2 & Channel 3 & & \\
\hline Channel 3 & Channel 2 & & \\
\hline Channel 3 & Channel 4 & & \\
\hline Channel 4 & Channel 3 & & \\
\hline
\end{tabular}

Test Engineer ....Xen.
Date 9/11/09

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm , 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch2 & \(3.3-3.5 \mathbf{v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(3.3-3.5 \mathbf{v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lıgo-to900231-vı Advanced LIGO UK 6 мау 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(10 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
``` T_TOP37P
```

Date 10/11/09

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & Tektronix & 2225 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline & & & \\
\hline
\end{tabular}

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Date 9/11/09

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \(\sqrt{ }\) & \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & \multicolumn{1}{l|}{ OK? } \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit. T_TOP37P
Test Engineer ....Xen.

```

Date9/11/09

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}\)
\end{tabular} \\
\hline+12 v TP5 & 11.97 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.80 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.90 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
``` T TOP37P Serial No
Test Engineer . Xen.
Date
``` \(\qquad\)
``` 9/11/09
```

\qquad
\qquad

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.75	4.9	4.9	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	\checkmark
Ch2	4.8	4.7 to 5 v	\checkmark
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1 Hz			
	Output	Specification	Pass/Fail
Ch1	3.3	$\mathbf{3 . 3}$ to 3.7v	$\sqrt{ }$
Ch2	3.3	$3.3 v$ to $3.7 v$	\checkmark
Ch3	3.3	$3.3 v$ to $3.7 v$	\checkmark
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen.
Date .9/11/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.8	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.8	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.15	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$

Unit. .T_TOP37P. Serial No
Test Engineer .Xen
Date .9/11/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 1 to Pin 2	1.22	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 5 to Pin 6	1.22	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 9 to Pin 10	1.22	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.22	Pin 13 to Pin 14	1.22	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 3 to Pin 4	0.487	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 7 to Pin 8	0.486	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 11 to Pin 12	0.487	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.485	Pin 15 to Pin 16	0.487	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP37P. Serial No
Test Engineer . Xen.
Date .9/11/09

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 olp	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.2	\checkmark	-24.1	$\sqrt{ }$	-24.2	\checkmark	-24.2	$\sqrt{ }$
-7v	-17.0	\checkmark	-17.0	\checkmark	-17.0	\checkmark	-17.0	\checkmark
-5v	-12.1	\checkmark	-12.0	$\sqrt{ }$	-12.0	$\sqrt{ }$	-12.0	\checkmark
-1v	-2.4	$\sqrt{ }$	-2.4	$\sqrt{ }$	-2.4	\checkmark	-2.4	$\sqrt{ }$
Ov	0	\checkmark	0	$\sqrt{ }$	0	\checkmark	0	$\sqrt{ }$
1v	2.4	$\sqrt{ }$	2.3	$\sqrt{ }$	2.4	$\sqrt{ }$	2.4	$\sqrt{ }$
5v	12.0	$\sqrt{ }$	12.0	\checkmark	12.0	\checkmark	12.0	\checkmark
7v	16.9	$\sqrt{ }$	16.8	\checkmark	16.9	\checkmark	16.8	\checkmark
10v	24.0	$\sqrt{ }$	24.0	$\sqrt{ }$	24.0	$\sqrt{ }$	24.0	\checkmark

```
Unit
T_TOP37P
Test Engineer ....Xen.
Date .................9/11/09
```


12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-135 dB	-116 dB	240 Hz
Channel 2	Channel 1	-143 dB	-113 dB	275 Hz
Channel 2	Channel 3	-132 dB	-111 dB	955 Hz
Channel 3	Channel 2	-143 dB	-109 dB	437 Hz
Channel 3	Channel 4	-142 dB	-112 dB	832 Hz
Channel 4	Channel 3	-138 dB	-110 dB	437 Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                T_TOP37P
Test Engineer ....Xen.
Date
.10/11/09
```


13. Dynamic Range Tests

\qquad

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lı Go-то900231-v2Advanced LIGO UK
 26 November 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` T_TOP38P
Test Engineer .
Date Xen.. 10/12/09
2. Test equipment
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2 $_{\text {DVM }}$	Farnell	L30-2	
Fluke	77 III		
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	

```
Unit.
```

\qquad

```
                            T_TOP38P
                                    Serial No
Test Engineer ....Xen.
Date
9/12/09
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date .9/12/09

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{l \mid}$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
	5	0V	$\sqrt{ }$	
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.14	1 mV	$\sqrt{ }$
+15 v TP4	14.94	1 mV	$\sqrt{ }$
-15 v TP6	-15.10	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. .T_TOP38P Serial No
Test EngineerXen.
Date .9/12/09

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch3	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to $5 v$	$\sqrt{ }$
Ch2	4.9	4.7 to $5 v$	$\sqrt{ }$
Ch3	4.9	4.7 to $5 v$	$\sqrt{ }$
Ch4	4.9	4.7 to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch3	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch4	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch3	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

Test Engineer . Xen..
Date 9/12/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch2	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch3	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch4	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.15	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$0.15 v$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit. .T_TOP38P
Test Engineer Xen.
Date 9/12/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 3 to Pin 4	0.480	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.480	Pin 7 to Pin 8	0.481	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.480	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 15 to Pin 16	0.481	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP38P Serial No \qquad
Test Xen.
Date .10/12/09

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.8	$\sqrt{ }$	-24.8	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$
-7v	-17.2	\checkmark	-17.3	$\sqrt{ }$	-17.3	$\sqrt{ }$	-17.2	$\sqrt{ }$
-5v	-12.5	\checkmark	-12.5	$\sqrt{ }$	-12.5	\checkmark	-12.5	\checkmark
-1v	-2.4	$\sqrt{ }$						
Ov	0	$\sqrt{ }$						
1v	2.4	\checkmark	2.42	$\sqrt{ }$	2.4	\checkmark	2.4	\checkmark
5v	12.3	$\sqrt{ }$	12.3	$\sqrt{ }$	12.2	$\sqrt{ }$	12.2	$\sqrt{ }$
7v	17.2	$\sqrt{ }$	17.1	$\sqrt{ }$	17.0	\checkmark	17.0	$\sqrt{ }$
10v	24.5	$\sqrt{ }$						

Unit.

Serial No \qquad
Test Engineer
Date

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer .
Date .10/12/09.

13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lı Go-то900231-v2Advanced LIGO UK
 26 November 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` T_TOP39P
Test Engineer .
Date Xen... 10/12/09
```


2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2 $_{\text {DVM }}$ Farnell	L30-2		
Signal analyzer	Fluke	77 III	
Pre-amplifier	Agilent	35670 A	
	Stanford Systems	SR560	

```
Unit.
Test Engineer ....Xen.
Date
                                10/12/09
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 10/12/09

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
	5	OV	\checkmark	
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	,
9	Imon4N		21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer . Xen.
Date 10/12/09.

6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.07	1 mV	$\sqrt{ }$
+15 v TP4	14.92	1 mV	$\sqrt{ }$
-15 v TP6	-15.06	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` T_TOP39P Serial No
Test Engineer . Xen.
Date .10/12/09.
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch3	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5 v	$\sqrt{ }$
Ch2	4.9	4.7 to 5 v	$\sqrt{ }$
Ch3	4.9	4.7 to 5 v	$\sqrt{ }$
Ch4	4.9	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen.
Date 10/12/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.9	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	$\sqrt{ }$
Ch2	3.3	3v to 3.4v	$\sqrt{ }$
Ch3	3.3	3v to 3.4v	$\sqrt{ }$
Ch4	3.25	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.49	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.49	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.49	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
```

\qquad

``` T_TOP39P Serial No
Test Engineer Xen.
```

Date 10/12/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 3 to Pin 4	0.480	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 7 to Pin 8	0.480	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.480	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 15 to Pin 16	0.482	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP39P. Serial No
Test Engineer . Xen.
Date .10/12/09

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 olp	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	\checkmark	-24.5	$\sqrt{ }$	-24.5	\checkmark	-24.5	$\sqrt{ }$
-7v	-17.2	\checkmark	-17.3	\checkmark	-17.2	\checkmark	-17.1	\checkmark
-5v	-12.5	\checkmark	-12.5	$\sqrt{ }$	-12.5	$\sqrt{ }$	-12.5	\checkmark
-1v	-2.4	$\sqrt{ }$	-2.4	$\sqrt{ }$	-2.4	\checkmark	-2.4	$\sqrt{ }$
Ov	0	\checkmark	0	$\sqrt{ }$	0	\checkmark	0	$\sqrt{ }$
1v	2.4	$\sqrt{ }$						
5v	12.1	$\sqrt{ }$	12.2	\checkmark	12.2	\checkmark	12.1	\checkmark
7v	17.0	\checkmark	17.0	$\sqrt{ }$	17.1	\checkmark	17.0	$\sqrt{ }$
10v	24.5	$\sqrt{ }$	24.5	$\sqrt{ }$	24.5	$\sqrt{ }$	24.5	\checkmark

Unit.

Serial No \qquad
Test Engineer
Date

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer
Date .10/12/09.

13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lı Go-то900231-v2Advanced LIGO UK
 26 November 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` T_TOP40P
Test Engineer .
Date Xen... 10/12/09
```


2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	

```
Unit.
T_TOP40P
Serial No
```

\qquad

```
Test Engineer ....Xen.
Date
10/12/09
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C104 and C105 on all channels and replaced capacitors C102 and C103 with a 33 pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 10/12/09

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	\checkmark
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	\checkmark
	5	OV	\checkmark	
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	\checkmark
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17 v Supply	$\sqrt{ }$
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
TOP40P
Test Engineer Xen.
Date 10/12/09
```


6. Power

``` Check the polarity of the wiring: 3 Pin Power Connector
```

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to +/-3V.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.09	1 mV	$\sqrt{ }$
+15 v TP4	14.89	1 mV	$\sqrt{ }$
-15 v TP6	-14.98	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` T_TOP40P Serial No
Test Engineer . Xen.
Date .10/12/09.
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch3	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5 v	$\sqrt{ }$
Ch2	4.9	4.7 to 5 v	$\sqrt{ }$
Ch3	4.9	4.7 to 5 v	$\sqrt{ }$
Ch4	4.9	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.35	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Test Engineer . Xen.
Date 10/12/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch3	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch4	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.3	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch2	0.48	$0.4 v$ to $0.5 v$	$\sqrt{ }$
Ch3	0.5	$0.4 v$ to $0.5 v$	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$0.15 v$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
                T_TOP40P
Test Engineer Xen.
```

Date 10/12/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 3 to Pin 4	0.480	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.480	Pin 7 to Pin 8	0.481	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.480	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 15 to Pin 16	0.482	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP40P Serial No
Test Engineer . Xen.
Date .10/12/09.

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 olp	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	\checkmark	-24.5	$\sqrt{ }$	-24.5	\checkmark	-24.5	$\sqrt{ }$
-7v	-17.0	\checkmark	-17.1	\checkmark	-17.0	\checkmark	-17.0	\checkmark
-5v	-12.2	\checkmark	-12.5	$\sqrt{ }$	-12.2	$\sqrt{ }$	-12.2	\checkmark
-1v	-2.4	$\sqrt{ }$	-2.4	$\sqrt{ }$	-2.4	\checkmark	-2.4	$\sqrt{ }$
Ov	0	\checkmark	0	$\sqrt{ }$	0	\checkmark	0	$\sqrt{ }$
1v	2.4	$\sqrt{ }$	2.4	$\sqrt{ }$	2.42	$\sqrt{ }$	2.41	$\sqrt{ }$
5v	12.1	$\sqrt{ }$	12.1	\checkmark	12.2	\checkmark	12.2	\checkmark
7v	17.0	\checkmark	17.0	$\sqrt{ }$	17.0	\checkmark	17.0	$\sqrt{ }$
10v	24.5	$\sqrt{ }$	24.5	$\sqrt{ }$	24.5	$\sqrt{ }$	24.5	\checkmark

Unit.

Serial No \qquad
Test Engineer
Date

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer .
Date .10/12/09.

13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a $39 \mathrm{Ohm}, 1 \mathrm{~W}$ or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lı Go-то900231-v2Advanced LIGO UK
 26 November 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` T_TOP41P
Test Engineer .
Date Xen... 10/12/09
```


2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	

```
Unit.
```

\qquad

```
                T_TOP41P
```

\qquad
Test EngineerXen.
Date
10/12/09

```
\(\qquad\)

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 10/12/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \(\sqrt{ }\) & \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer Xen..
Date 10/12/09.

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.02 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.92 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.95 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?
\(\sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
``` T_TOP41P
``` \(\qquad\)
``` Serial No
Test Engineer . Xen.
Date .10/12/09.
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch2	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{v}$	$\sqrt{ }$
Ch3	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5 v	$\checkmark$
Ch2	4.9	4.7 to 5 v	$\checkmark$
Ch3	4.9	4.7 to 5 v	$\sqrt{ }$
Ch4	4.9	4.7 to 5 v	$\checkmark$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.3	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.45	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Test Engineer . .Xen..
Date 10/12/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch3	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch4	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.25	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.3	3v to 3.4v	$\sqrt{ }$
Ch4	3.15	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.49	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$0.15 v$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
 T_TOP41P
 Serial No
Test Engineer Xen.
```

Date 10/12/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 3 to Pin 4	0.480	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.480	Pin 7 to Pin 8	0.481	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.480	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 15 to Pin 16	0.481	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP41P. Serial No
Test Engineer . Xen.
Date .10/12/09.

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 olp	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\checkmark$	-24.5	$\sqrt{ }$	-24.5	$\checkmark$	-24.5	$\sqrt{ }$
-7v	-17.1	$\checkmark$	-17.4	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$
-5v	-12.4	$\checkmark$	-12.5	$\sqrt{ }$	-12.5	$\sqrt{ }$	-12.5	$\checkmark$
-1v	-2.4	$\sqrt{ }$	-2.42	$\sqrt{ }$	-2.41	$\checkmark$	-2.41	$\sqrt{ }$
Ov	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$
1v	2.4	$\sqrt{ }$	2.41	$\sqrt{ }$	2.41	$\sqrt{ }$	2.42	$\sqrt{ }$
5v	12.0	$\sqrt{ }$	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$
7v	17.0	$\sqrt{ }$	17.0	$\checkmark$	17.1	$\checkmark$	17.2	$\checkmark$
10v	24.5	$\sqrt{ }$	24.5	$\sqrt{ }$	24.5	$\sqrt{ }$	24.5	$\checkmark$

## Unit.

Serial No $\qquad$
Test Engineer
Date

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lı Go-то900231-v2Advanced LIGO UK <br> 26 November 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` T_TOP42P
Test Engineer .
Date Xen.. 11/12/09
2. Test equipment
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	

```
Unit.
```

$\qquad$

```
 T_TOP42P
 Serial No
Test EngineerXen.
Date
11/12/09
```


## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 11/12/09.

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	,
9	Imon4N		21	$\checkmark$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer Xen.
Date 11/12/09.

## 6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.07	1 mV	$\sqrt{ }$
+15 v TP4	14.93	1 mV	$\sqrt{ }$
-15 v TP6	-15.01	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

## Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` T_TOP42P Serial No
Test Engineer . Xen.
Date 11/12/09
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\checkmark$
Ch2	4.85	4.7 to 5 v	$\checkmark$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.9	4.7 to 5 v	$\checkmark$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.3	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\checkmark$
Ch2	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\checkmark$
Ch3	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\checkmark$
Ch4	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit. $\qquad$ .T_TOP42P Serial No
Test Engineer Xen.
Date 11/12/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.9	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	$\sqrt{ }$
Ch2	3.3	3v to 3.4v	$\sqrt{ }$
Ch3	3.15	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.49	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.49	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

## Unit.

 .T_TOP42P Serial NoTest Engineer Xen.
Date 11/12/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.480	Pin 3 to Pin 4	0.481	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.480	Pin 7 to Pin 8	0.481	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.480	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 15 to Pin 16	0.481	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP42P Serial No
Test Engineer . Xen.
Date .11/12/09.

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.2	$\checkmark$	-17.1	$\checkmark$	-17.1	$\checkmark$	-17.0	$\checkmark$
-5v	-12.4	$\checkmark$	-12.2	$\sqrt{ }$	-12.3	$\checkmark$	-12.3	$\checkmark$
-1v	-2.41	$\checkmark$	-2.4	$\sqrt{ }$	-2.41	$\sqrt{ }$	-2.41	$\sqrt{ }$
Ov	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.41	$\checkmark$	2.4	$\sqrt{ }$	2.4	$\sqrt{ }$	2.41	$\checkmark$
5v	12.2	$\checkmark$	12.1	$\checkmark$	12.1	$\checkmark$	12.2	$\checkmark$
7v	17.0	$\checkmark$	17.0	$\checkmark$	17.0	$\checkmark$	17.0	$\checkmark$
10v	24.5	$\sqrt{ }$						

## Unit.

Serial No $\qquad$
Test Engineer
Date

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer . Xen.
Date 11/12/09.

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lı Go-то900231-v2Advanced LIGO UK <br> 26 November 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` T_TOP43P
Test EngineerXen.
Date 14/12/09
```


## 2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	

```
Unit.
```

$\qquad$

```
 T_TOP43P
 Serial No
Test EngineerXen.
Date
11/12/09
```


## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 11/12/09

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	,
9	Imon4N		21	$\checkmark$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer . Xen.
Date 11/12/09.

## 6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.07	1 mV	$\sqrt{ }$
+15 v TP4	14.88	1 mV	$\sqrt{ }$
-15 v TP6	-15.02	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$

## Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` T_TOP43P Serial No
Test Engineer . Xen.
Date 11/12/09
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\checkmark$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.35	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit. $\qquad$ T_TOP43P Serial No
Test Engineer . Xen.
Date 14/12/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.85	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
```

$\qquad$

``` T_TOP43P Serial No
Test Engineer Xen.
Date 14/12/09
```

9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+I- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 3 to Pin 4	0.480	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 7 to Pin 8	0.480	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 11 to Pin 12	0.481	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 15 to Pin 16	0.481	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP43P. Serial No
Test Engineer . Xen.
Date .14/12/09.

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 olp	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$
-5v	-12.4	$\checkmark$	-12.5	$\sqrt{ }$	-12.5	$\checkmark$	-12.5	$\checkmark$
-1v	-2.41	$\checkmark$	-2.41	$\sqrt{ }$	-2.42	$\sqrt{ }$	-2.42	$\sqrt{ }$
Ov	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.42	$\checkmark$	2.41	$\checkmark$	2.41	$\sqrt{ }$	2.42	$\checkmark$
5v	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$	-12.2	$\checkmark$
7v	17.0	$\checkmark$	17.0	$\checkmark$	17.0	$\checkmark$	17.2	$\checkmark$
10v	24.3	$\sqrt{ }$	24.5	$\sqrt{ }$	24.5	$\sqrt{ }$	24.5	$\sqrt{ }$

## Unit.

Serial No $\qquad$
Test Engineer
Date

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer . Xen.
Date .14/12/09.

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$3.3-3.5 \mathbf{v}$	3.44	$\sqrt{ }$
Ch2	$3.3-3.5 \mathrm{v}$	3.44	$\sqrt{ }$
Ch3	$3.3-3.5 \mathrm{v}$	3.44	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lı Go-то900231-v2Advanced LIGO UK <br> 26 November 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $10 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` T_TOP44P
Test Engineer .
Date 14/12/09
2. Test equipment
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	

```
Unit.
```

$\qquad$

```
 T_TOP44P
 Serial No
Test EngineerXen
Date
14/12/09
```


## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date
14/12/09.

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\checkmark$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer . Xen.
Date 14/12/09.

## 6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.06	1 mV	$\sqrt{ }$
+15 v TP4	14.92	1 mV	$\sqrt{ }$
-15 v TP6	-15.03	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

## Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
 TOP44P
 Serial No
Test Engineer
 Xen.
Date
14/12/09
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch3	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.9	4.7 to 5 v	$\sqrt{ }$
Ch3	4.9	4.7 to 5 v	$\sqrt{ }$
Ch4	4.9	4.7 to 5 v	$\checkmark$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.4	3.3v to 3.7v	$\checkmark$
Ch4	3.35	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

Unit. $\qquad$ .T_TOP44P Serial No
Test Engineer . Xen.
Date 14/12/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.85	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.49	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
 T_TOP44P
 Serial No
Test Engineer Xen
```

Date 14/12/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 3 to Pin 4	0.480	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 7 to Pin 8	0.480	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 11 to Pin 12	0.481	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.480	Pin 15 to Pin 16	0.482	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP44P. Serial No
Test Engineer . Xen.
Date .14/12/09.

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.1	$\checkmark$	-17.2	$\sqrt{ }$	-17.1	$\sqrt{ }$	-17.1	$\sqrt{ }$
-5v	-12.5	$\checkmark$	-12.5	$\sqrt{ }$	-12.5	$\checkmark$	-12.5	$\checkmark$
-1v	-2.41	$\sqrt{ }$	-2.42	$\sqrt{ }$	-2.42	$\sqrt{ }$	-2.4	$\sqrt{ }$
Ov	0	$\sqrt{ }$						
1v	2.42	$\checkmark$	2.42	$\sqrt{ }$	2.42	$\checkmark$	2.42	$\checkmark$
5v	12.2	$\sqrt{ }$						
7v	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.1	$\checkmark$	17.1	$\sqrt{ }$
10v	24.5	$\sqrt{ }$						

## Unit.

Serial No $\qquad$
Test Engineer
Date

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer . Xen.
Date 14/12/09.

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lı Go-то900231-v2Advanced LIGO UK <br> 26 November 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` T_TOP45P
Test EngineerXen.
Date 14/12/09
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	

```
Unit.
```

$\qquad$

```
 T_TOP45P
```

$\qquad$
Date
14/12/09

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 14/12/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & , \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer Xen.
Date 14/12/09.

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.09 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.80 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.96 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?
\(\sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
TOP45P
Serial No
Test Engineer ....Xen.
Date
14/12/09

```
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.9 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.9 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline 1 Hz & Output & Specification & Pass/Fail \\
\hline & 3.4 & 3.3 to 3.7v & \(\sqrt{ }\) \\
\hline Ch1 & 3.4 & \(3.3 v\) to \(3.7 v\) & \(\checkmark\) \\
\hline Ch2 & 3.3 & \(3.3 v\) to \(3.7 v\) & \(\checkmark\) \\
\hline Ch3 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 &
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.68 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.68 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
Unit. \(\qquad\) T_TOP45P Serial No
Test Engineer . Xen.
Date 14/12/09
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.9 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.9 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.25 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}
10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.5 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
.T_TOP45P
Serial No
Test Engineer Xen

```

Date 14/12/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c}
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 1 to Pin 2 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 5 to Pin 6 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 9 to Pin 10 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 13 to Pin 14 & 1.203 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c}
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 3 to Pin 4 & 0.479 & \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.480 & Pin 7 to Pin 8 & 0.481 & \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 11 to Pin 12 & 0.480 & \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 15 to Pin 16 & 0.481 & \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit .T_TOP45P. Serial No
Test Engineer . Xen.
Date .14/12/09.

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & \[
\begin{aligned}
& \text { Ch4 } \\
& \text { o/p }
\end{aligned}
\] & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.1 & \(\checkmark\) & -17.4 & \(\sqrt{ }\) & -17.0 & \(\sqrt{ }\) & -17.2 & \(\sqrt{ }\) \\
\hline -5v & -12.2 & \(\checkmark\) & -12.5 & \(\sqrt{ }\) & -12.5 & \(\checkmark\) & -12.5 & \(\checkmark\) \\
\hline -1v & -2.4 & \(\sqrt{ }\) & -2.42 & \(\sqrt{ }\) & -2.4 & \(\sqrt{ }\) & -2.42 & \(\sqrt{ }\) \\
\hline Ov & 0 & \(\sqrt{ }\) \\
\hline 1v & 2.42 & \(\checkmark\) & 2.41 & \(\sqrt{ }\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\sqrt{ }\) & 12.2 & \(\sqrt{ }\) & 12.2 & \(\sqrt{ }\) & 12.1 & \(\sqrt{ }\) \\
\hline 7v & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.5 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Unit.}

Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c}
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch2 & \(3.3-3.5 \mathbf{v}\) & 3.45 & \(\sqrt{ }\) \\
\hline Ch3 & \(3.3-3.5 \mathrm{v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lı Go-то900231-v2Advanced LIGO UK \\ 26 November 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
``` T_TOP46P
Test Engineer ....Xen.
Date 15/12/09
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	

```
Unit.
```

\qquad

```
                            T_TOP46P
                                    Serial No
Test Engineer ....Xen.
Date
15/12/09
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 15/12/09.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
	5	OV	\checkmark	
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	,
9	Imon4N		21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer . Xen.
Date 15/12/09.

6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.07	1 mV	$\sqrt{ }$
+15 v TP4	14.94	1 mV	$\sqrt{ }$
-15 v TP6	-15.03	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` T_TOP46P Serial No
Test Engineer . Xen.
Date 15/12/09
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch2	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to \mathbf{v}	$\sqrt{ }$
Ch3	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5 v	\checkmark
Ch2	4.9	4.7 to 5 v	\checkmark
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	\checkmark

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.35	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.35	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Test Engineer . Xen.
Date 15/12/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch3	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch4	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.3	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch2	0.48	$0.4 v$ to $0.5 v$	$\sqrt{ }$
Ch3	0.5	$0.4 v$ to $0.5 v$	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$0.15 v$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
                .T_TOP46P
Test Engineer . Xen.
```

Date 15/12/09
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 3 to Pin 4	0.479	
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 7 to Pin 8	0.480	
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.480	
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 15 to Pin 16	0.481	

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP46P. Serial No
Test Engineer . Xen.
Date .15/12/09

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.2	\checkmark	-17.2	$\sqrt{ }$	-17.0	$\sqrt{ }$	-17.1	$\sqrt{ }$
-5v	-12.5	\checkmark	-12.5	$\sqrt{ }$	-12.2	\checkmark	-12.5	\checkmark
-1v	-2.4	$\sqrt{ }$	-2.42	$\sqrt{ }$	-2.4	$\sqrt{ }$	-2.4	$\sqrt{ }$
Ov	0	$\sqrt{ }$						
1v	2.42	\checkmark	2.4	$\sqrt{ }$	2.42	\checkmark	2.42	\checkmark
5v	12.2	$\sqrt{ }$						
7v	17.1	$\sqrt{ }$	17.0	$\sqrt{ }$	17.1	\checkmark	17.0	$\sqrt{ }$
10v	24.5	$\sqrt{ }$						

Unit.

Serial No \qquad
Test Engineer
Date

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer .
Date 15/12/09.

13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lı Go-то900231-v2Advanced LIGO UK
 26 November 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

```
                                    T_TOP47P

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 T_TOP47P
 Serial No
 Test EngineerXen.
Date
15/12/09

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 15/12/09.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \(\sqrt{ }\) & \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer . Xen.
Date 15/12/09.

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 11.95 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.79 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.02 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?
\(\sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\sqrt{ }\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

``` \(\qquad\)
``` T_TOP47P Serial No
Test EngineerXen.
Date
15/12/09
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\checkmark$
Ch2	4.85	4.7 to 5 v	$\checkmark$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\checkmark$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.35	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.35	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Test Engineer . Xen.
Date 15/12/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch3	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch4	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.3	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch2	0.48	$0.4 v$ to $0.5 v$	$\sqrt{ }$
Ch3	0.5	$0.4 v$ to $0.5 v$	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$0.15 v$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit. .T_TOP47P Serial No
Test Engineer Xen.
Date 15/12/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

## Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 3 to Pin 4	0.480	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.480	Pin 7 to Pin 8	0.481	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.480	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 15 to Pin 16	0.482	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP47P. Serial No
Test Engineer .
Date Xen. .16/12/09

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.1	$\checkmark$	-17.0	$\sqrt{ }$	-17.0	$\sqrt{ }$	-17.2	$\sqrt{ }$
-5v	-12.5	$\checkmark$	-12.2	$\sqrt{ }$	-12.5	$\checkmark$	-12.5	$\checkmark$
-1v	-2.42	$\sqrt{ }$	-2.41	$\sqrt{ }$	-2.41	$\sqrt{ }$	-2.43	$\sqrt{ }$
Ov	0	$\sqrt{ }$						
1v	2.42	$\checkmark$	2.42	$\sqrt{ }$	2.42	$\checkmark$	2.41	$\checkmark$
5v	12.2	$\sqrt{ }$	12.0	$\sqrt{ }$	12.2	$\sqrt{ }$	12.2	$\sqrt{ }$
7v	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.0	$\checkmark$	17.0	$\sqrt{ }$
10v	24.5	$\sqrt{ }$	24.3	$\sqrt{ }$	24.4	$\sqrt{ }$	14.3	$\sqrt{ }$

## Unit.

Serial No $\qquad$
Test Engineer
Date

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer . Xen.
Date .15/12/09.

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lı Go-то900231-v2Advanced LIGO UK <br> 26 November 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` T_TOP48P
Test EngineerXen.
Date 16/12/09
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	

```
Unit.
 T_TOP48P
```

$\qquad$

```
 Serial No
Test EngineerXen.
Date
 16/12/09
```


## 3. Inspection

## Workmanship

```
Inspect the general workmanship standard and comment: \(\sqrt{ }\)
```


## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 16/12/09.

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\checkmark$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
TOP48P
Test EngineerXen.
Date
16/12/09
```


## 6. Power

```
Check the polarity of the wiring:
3 Pin Power Connector
```

Serial No

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   +/- 0.5v?
+12 v TP5	12.05	1 mV	$\checkmark$
+15 v TP4	14.95	1 mV	$\sqrt{ }$
-15 v TP6	-15.02	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation? $\quad \sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
$\qquad$
$\qquad$

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` T_TOP48P Serial No
Test EngineerXen.
Date 16/12/09
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.8	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch3	4.8	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.8	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.9	4.7 to 5 v	$\sqrt{ }$
Ch3	4.9	4.7 to 5 v	$\sqrt{ }$
Ch4	4.9	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch3	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Test Engineer . Xen.
Date 16/12/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch3	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch4	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	$\sqrt{ }$
Ch2	3.25	3v to 3.4v	$\sqrt{ }$
Ch3	3.3	3v to 3.4v	$\sqrt{ }$
Ch4	3.3	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.49	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$0.15 v$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

## Unit.

 .T_TOP48P Serial NoTest Engineer Xen.
Date 16/12/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

## Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 3 to Pin 4	0.480	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 7 to Pin 8	0.480	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 11 to Pin 12	0.481	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 15 to Pin 16	0.481	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP48P Serial No
Test Engineer .
Date 16/12/09.

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 olp	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\checkmark$	-24.5	$\sqrt{ }$	-24.5	$\checkmark$	-24.5	$\sqrt{ }$
-7v	-17.1	$\checkmark$	-17.1	$\checkmark$	-17.1	$\checkmark$	-17.1	$\checkmark$
-5v	-12.4	$\checkmark$	-12.3	$\sqrt{ }$	-12.4	$\sqrt{ }$	-12.4	$\checkmark$
-1v	-2.4	$\sqrt{ }$	-2.41	$\sqrt{ }$	-2.41	$\checkmark$	-2.4	$\sqrt{ }$
Ov	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$
1v	2.42	$\sqrt{ }$	2.4	$\sqrt{ }$	2.4	$\sqrt{ }$	2.42	$\sqrt{ }$
5v	12.2	$\sqrt{ }$	12.2	$\checkmark$	12.0	$\checkmark$	12.1	$\checkmark$
7v	17.0	$\sqrt{ }$	17.0	$\checkmark$	17.0	$\checkmark$	17.0	$\checkmark$
10v	24.5	$\sqrt{ }$	24.5	$\sqrt{ }$	24.4	$\sqrt{ }$	24.4	$\checkmark$

## Unit.

Serial No $\qquad$
Test Engineer
Date

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lı Go-то900231-v2Advanced LIGO UK <br> 26 November 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` T_TOP49P
Test EngineerXen.
Date 16/12/09
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	

```
Unit.
```

$\qquad$

```
 T_TOP49P
```

$\qquad$

```
 Serial No
Test EngineerXen.
Date
 16/12/09
```


## 3. Inspection

## Workmanship

```
Inspect the general workmanship standard and comment: \(\sqrt{ }\)
```


## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 16/12/09.

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\checkmark$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer Xen..
Date 16/12/09.

## 6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	11.93	1 mV	$\sqrt{ }$
+15 v TP4	14.95	1 mV	$\sqrt{ }$
-15 v TP6	-14.97	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

## Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` T_TOP49P Serial No
Test EngineerXen.
Date 16/12/09
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5 v	$\checkmark$
Ch2	4.85	4.7 to 5 v	$\checkmark$
Ch3	4.9	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\checkmark$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.35	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Test Engineer . Xen.
Date 16/12/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch2	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch3	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch4	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.3	3v to 3.4v	$\sqrt{ }$
Ch4	3.25	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch3	0.5	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$0.15 v$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

## Unit.

 .T_TOP49P Serial NoTest Engineer Xen.
Date 16/12/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

## Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 3 to Pin 4	0.481	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 7 to Pin 8	0.480	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.486	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 15 to Pin 16	0.481	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP49P. Serial No
Test Engineer .
Date Xen. .16/12/09

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.1	$\checkmark$	-12.2	$\checkmark$	-17.1	$\checkmark$	-17.1	$\checkmark$
-5v	-12.4	$\checkmark$	-12.4	$\sqrt{ }$	-12.4	$\checkmark$	-12.3	$\checkmark$
-1v	-2.4	$\checkmark$	-2.42	$\sqrt{ }$	-2.41	$\sqrt{ }$	-2.4	$\sqrt{ }$
Ov	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.42	$\checkmark$	2.42	$\checkmark$	2.42	$\sqrt{ }$	2.41	$\checkmark$
5v	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$
7v	17.0	$\checkmark$	17.1	$\checkmark$	17.1	$\checkmark$	17.0	$\checkmark$
10v	24.5	$\sqrt{ }$						

## Unit.

Serial No $\qquad$
Test Engineer
Date

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer
Date 16/12/09.

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a $39 \mathrm{Ohm}, 1 \mathrm{~W}$ or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lı Go-то900231-v2Advanced LIGO UK <br> 26 November 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` T_TOP50P
Test Engineer .
Date 17/12/09
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2 $_{\text {DVM }}$	Farnell	L30-2	
Signal analyzer	Agilent	77 III	
Pre-amplifier	Stanford Systems	SR560	

```
Unit.
Test EngineerXen.
Date
16/12/09
```


## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.
16/12/09.

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	,
9	Imon4N		21	$\checkmark$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer . Xen.
Date 16/12/09.

## 6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.06	1 mV	$\sqrt{ }$
+15 v TP4	14.94	1 mV	$\sqrt{ }$
-15 v TP6	-14.95	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$

## Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
``` \(\qquad\)
``` T_TOP50P Serial No
Test EngineerXen.
Date
.17/12/09.
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\checkmark$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.4	3.3v to 3.7v	$\checkmark$
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to 0.75v	$\checkmark$
Ch3	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Test Engineer . Xen.
Date 17/12/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch2	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch3	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch4	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.25	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.25	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$0.15 v$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit. .T_TOP50P Serial No
Test Engineer Xen.
Date .17/12/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 3 to Pin 4	0.480	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 7 to Pin 8	0.480	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 11 to Pin 12	0.481	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 15 to Pin 16	0.480	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP50P Serial No
Test Engineer .
Date ..Xen. .17/12/09.

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.2	$\checkmark$	-17.1	$\checkmark$	-17.0	$\checkmark$	-17.0	$\checkmark$
-5v	-12.5	$\checkmark$	-12.5	$\sqrt{ }$	-12.2	$\checkmark$	-12.2	$\checkmark$
-1v	-2.41	$\checkmark$	-2.42	$\sqrt{ }$	-2.4	$\sqrt{ }$	-2.41	$\checkmark$
Ov	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$	0	$\checkmark$
1v	2.4	$\checkmark$	2.42	$\sqrt{ }$	2.42	$\checkmark$	2.41	$\checkmark$
5v	12.1	$\sqrt{ }$	12.1	$\sqrt{ }$	12.2	$\sqrt{ }$	12.2	$\sqrt{ }$
7v	17.0	$\checkmark$	17.0	$\sqrt{ }$	17.0	$\checkmark$	17.0	$\sqrt{ }$
10v	24.5	$\sqrt{ }$						

Test Engineer . Xen.
Date 17/12/09.

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2	-143 dB	-114 dB	229 Hz
Channel 2	Channel 1	-143 dB	-115 dB	275 Hz
Channel 2	Channel 3	-139 dB	-114 dB	316 Hz
Channel 3	Channel 2	-137 dB	-116 dB	240 Hz
Channel 3	Channel 4	-158 dB	-115 dB	724 Hz
Channel 4	Channel 3	-138 dB	-113 dB	871 Hz

Test Engineer .
Date .17/12/09.

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lı Go-то900231-v2Advanced LIGO UK <br> 26 November 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

```
 T_TOP51P
Test Engineer .
Date Xen. 17/12/09
2. Test equipment
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	

```
Unit.
```

$\qquad$

```
 T_TOP51P
```

$\qquad$
Date
17/12/09

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 17/12/09

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & , \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer . Xen.
Date 17/12/09.

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 11.95 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.94 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.04 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?
\(\sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
``` T TOP51P Serial No
Test Engineer ....Xen.
Date .17/12/09.
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch3	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.9	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.9	4.7 to 5 v	$\sqrt{ }$
Ch4	4.9	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3 v to 3.7v	$\sqrt{ }$
Ch2	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to 0.75v	\checkmark
Ch3	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Test Engineer . Xen.
Date 17/12/09.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch2	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch3	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch4	4.9	$4.7 v$ to $5 v$	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	$\sqrt{ }$
Ch2	3.3	3v to 3.4v	$\sqrt{ }$
Ch3	3.25	3v to 3.4v	$\sqrt{ }$
Ch4	3.25	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$0.15 v$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit. .T_TOP51P Serial No
Test Engineer Xen.
Date .17/12/09.
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 3 to Pin 4	0.480	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 7 to Pin 8	0.480	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.480	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 15 to Pin 16	0.482	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP51P. Serial No
Test Engineer . Xen.
Date .17/12/09.

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.2	\checkmark	-17.2	\checkmark	-17.2	\checkmark	-17.0	\checkmark
-5v	-12.4	\checkmark	-12.5	$\sqrt{ }$	-12.5	\checkmark	-12.2	\checkmark
-1v	-2.4	\checkmark	-2.42	$\sqrt{ }$	-2.42	$\sqrt{ }$	-2.4	$\sqrt{ }$
Ov	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.41	\checkmark	2.42	\checkmark	2.41	$\sqrt{ }$	2.41	\checkmark
5v	12.2	\checkmark	12.2	\checkmark	12.1	\checkmark	12.2	\checkmark
7v	17.0	\checkmark	17.1	\checkmark	17.0	\checkmark	17.0	\checkmark
10v	24.5	$\sqrt{ }$						

Unit.

Serial No \qquad
Test Engineer
Date

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer . Xen.
Date 17/12/09.

13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a $39 \mathrm{Ohm}, 1 \mathrm{~W}$ or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lı Go-то900231-v2Advanced LIGO UK
 26 November 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
\qquad
Date 4/1/10

2. Test equipment

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2 $_{\text {DVM }}$	Farnell	L30-2	
	Fluke	77 III	

```
Unit.
```

\qquad

```
                                    T_TOP52P
                                    Serial No
Test Engineer ....Xen.
Date
.4/1/10
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen.
4/1/10.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{l \mid}$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
	5	0V	$\sqrt{ }$	
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	11.96	1 mV	$\sqrt{ }$
+15 v TP4	14.88	1 mV	$\sqrt{ }$
-15 v TP6	-15.10	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
``` \(\qquad\)
``` T_TOP52P Serial No
Test Engineer ....Xen.
Date
``` \(\qquad\)
``` 4/1/10
``` \(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch3 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.9 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch3 & 4.9 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.9 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.35 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.68 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.68 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test EngineerXen
Date .4/1/10
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.9 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 4.9 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}
10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.5 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline
\end{tabular}
100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP52P Serial No
Test EngineerXen. 4/1/10
\(\qquad\)
Date
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c}
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 1 to Pin 2 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 5 to Pin 6 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 9 to Pin 10 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 13 to Pin 14 & 1.203 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c}
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 3 to Pin 4 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 7 to Pin 8 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 11 to Pin 12 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 15 to Pin 16 & 0.481 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit .T_TOP52P
Test EngineerXen.
Date .4/1/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1
stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \mathrm{o} / \mathrm{p}
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stabl & \[
\begin{gathered}
\text { Ch4 } \\
\text { o/p }
\end{gathered}
\] & Ch4 stable ? \\
\hline -10v & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.1 & \(\sqrt{ }\) & -17.0 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.5 & \(\checkmark\) & -12.4 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.41 & \(\checkmark\) & -2.41 & \(\checkmark\) & -2.4 & \(\checkmark\) & -2.4 & \(\checkmark\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.41 & \(\checkmark\) & 2.41 & \(\checkmark\) & 2.41 & \(\checkmark\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.1 & \(\checkmark\) & 12.1 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.1 & \(\checkmark\) & 17.1 & \(\checkmark\) \\
\hline 10v & 24.5 & \(\checkmark\) & 24.5 & \(\checkmark\) & 24.5 & \(\checkmark\) & 24.5 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Unit.}

Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c}
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lı Go-то900231-v2Advanced LIGO UK \\ 26 November 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
\(\qquad\)
Date 4/1/10

\section*{2. Test equipment}

Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
``` T_TOP53P \(\qquad\)
```

Test EngineerXen.
Date
4/1/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.
Date

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \multicolumn{4}{|c|}{} \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & \multicolumn{1}{l|}{ OK? } \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.07 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.94 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.06 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?
\(\sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 350 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

``` \(\qquad\)
``` T_TOP53P Serial No
Test EngineerXen.
Date
``` \(\qquad\)
``` 4/1/10
``` \(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch3 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.9 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch3 & 4.9 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer ....Xen.
Date .4/1/10
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.9 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.35 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}
10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.5 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(0.15 v\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_TOP53P
Serial No
Test Engineer ....Xen.
4/1/10 \(\qquad\)
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 1 to Pin 2 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 5 to Pin 6 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 9 to Pin 10 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 13 to Pin 14 & 1.203 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 3 to Pin 4 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.480 & Pin 7 to Pin 8 & 0.481 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 11 to Pin 12 & 0.479 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 15 to Pin 16 & 0.481 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit .T_TOP53P
Test Engineer ....Xen.
Date .4/1/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1
stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \mathrm{o} / \mathrm{p}
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stabl & \[
\begin{gathered}
\text { Ch4 } \\
\text { o/p }
\end{gathered}
\] & Ch4 stable ? \\
\hline -10v & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.2 & \(\sqrt{ }\) & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.4 & \(\checkmark\) & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.42 & \(\checkmark\) & -2.41 & \(\checkmark\) & -2.42 & \(\checkmark\) & 2.4 & \(\checkmark\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.41 & \(\checkmark\) & 2.4 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.41 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.0 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.1 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.5 & \(\checkmark\) & 24.3 & \(\checkmark\) & 24.4 & \(\checkmark\) & 24.4 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Unit.}

Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.45 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.z

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lı Go-то900231-v2Advanced LIGO UK \\ 26 November 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Test Engineer ....Xen.
Date 4/1/10

\section*{2. Test equipment}

Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 T_TOP54P
 Serial No
 Test EngineerXen.
Date
4/1/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.
4/1/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit. _TOP54P
Test EngineerXen.

```

Date .4/1/10

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 11.96 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.91 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.91 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
```T_TOP54P
Test EngineerXen.
Date
``` \(\qquad\)
``` 4/1/10
``` \(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.9 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\checkmark\) \\
\hline Ch3 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer ....Xen.
Date .4/1/10
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}
10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.49 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(0.15 v\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP54P Serial No
Test Engineer ....Xen.
Date .4/1/10
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 1 to Pin 2 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 5 to Pin 6 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 9 to Pin 10 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 13 to Pin 14 & 1.203 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.477 & Pin 3 to Pin 4 & 0.478 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 7 to Pin 8 & 0.479 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 11 to Pin 12 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 15 to Pin 16 & 0.480 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit T_TOP54P
Test Engineer ....Xen.
Date .4/1/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & \begin{tabular}{l}
Ch2 \\
?
\end{tabular} & Ch3 o/p & Ch3 stable ? & \[
\begin{aligned}
& \text { Ch4 } \\
& \text { o/p }
\end{aligned}
\] & Ch4 stable ? \\
\hline -10v & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.2 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.5 & \(\checkmark\) \\
\hline -1v & -2.42 & \(\sqrt{ }\) & -2.41 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) & -2.42 & \(\checkmark\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.1 & \(\checkmark\) \\
\hline 7v & 17.1 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.1 & \(\checkmark\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.5 & \(\checkmark\) & 24.5 & \(\checkmark\) & 24.5 & \(\checkmark\) & 24.3 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Unit.}

Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.42 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lı Go-то900231-v2Advanced LIGO UK \\ 26 November 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
``` T_TOP55P
Test EngineerXen. \(.5 / 1 / 10\)
```

$\qquad$
$\qquad$

```
Date
```


## 2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	

```
Unit.
```

$\qquad$

```
 T_TOP55P
 Serial No
Test EngineerXen.
Date
5/1/10
```


## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date .5/1/10

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	,
9	Imon4N		21	$\checkmark$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer ....Xen. .5/1/10
$\qquad$ Serial No $\qquad$
Date

## 6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.04	1 mV	$\sqrt{ }$
+15 v TP4	14.92	1 mV	$\sqrt{ }$
-15 v TP6	-15.00	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

## Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
```

$\qquad$

``` T_TOP55P Serial No
Test EngineerXen.
Date
``` \(\qquad\)
``` 5/1/10
``` \(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.8 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.8 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.8 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.8 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & 3.3 v to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3v to 3.7v & \(\checkmark\) \\
\hline Ch4 & 3.4 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.68 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer ....Xen.
Date 5/1/10
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.15 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}
10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(0.15 v\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP55P Serial No
Test Engineer ....Xen. .5/1/10
\(\qquad\)
Date
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 1 to Pin 2 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 5 to Pin 6 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 9 to Pin 10 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 13 to Pin 14 & 1.203 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 3 to Pin 4 & 0.495 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 7 to Pin 8 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 11 to Pin 12 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 15 to Pin 16 & 0.485 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit .T_TOP55P \(\qquad\)
Test Engineer ....Xen. 5/1/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { olp }
\end{aligned}
\] & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & \[
\begin{aligned}
& \text { Ch4 } \\
& \text { o/p }
\end{aligned}
\] & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) & -24.5 & \(\checkmark\) & -24.5 & \(\sqrt{ }\) & -24.5 & \(\checkmark\) \\
\hline -7v & -17.1 & \(\checkmark\) & -17.3 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.4 & \(\checkmark\) & -2.42 & \(\checkmark\) & -2.41 & \(\checkmark\) & -2.42 & \(\checkmark\) \\
\hline 0v & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.41 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.41 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\sqrt{ }\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 17.1 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.5 & \(\checkmark\) & 24.5 & \(\checkmark\) & 24.3 & \(\checkmark\) & 24.5 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Unit.}

Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}

Test Engineer ....Xen.
\(.5 / 1 / 10\)
\(\qquad\)
Date

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a \(39 \mathrm{Ohm}, 1 \mathrm{~W}\) or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.41 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lı Go-то900231-v2Advanced LIGO UK \\ 26 November 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit .T_TOP56P

Test Engineer ....Xen. \(.5 / 1 / 10\)
\(\qquad\)
\(\qquad\)
Date

\section*{2. Test equipment}

Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 \(_{\text {DVM }}\) & Farnell & L30-2 & \\
\hline & Fluke & 77 III & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 T_TOP56P
 Serial No
 Test EngineerXen.
Date
5/1/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ..Xen.
Date 5/1/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & , \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer ....Xen. . \(5 / 1 / 10\)
\(\qquad\)
\(\qquad\)
Date

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.08 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.91 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.05 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?
\(\sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
``` T_TOP56P
Test EngineerXen.
Date .5/1/10
``` \(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.35 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.35 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3v to 3.7v & \(\checkmark\) \\
\hline Ch4 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer ....Xen.
Date 5/1/10
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}
10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(0.15 v\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP56P Serial No
Test Engineer ....Xen. 5/1/10
\(\qquad\)
Date \(.5 / 1 / 10\)
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 1 to Pin 2 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 5 to Pin 6 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 9 to Pin 10 & 1.204 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 13 to Pin 14 & 1.204 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 3 to Pin 4 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 7 to Pin 8 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.477 & Pin 11 to Pin 12 & 0.478 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 15 to Pin 16 & 0.481 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP56P
Test Engineer ....Xen.
Date .5/1/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1
stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \mathrm{o} / \mathrm{p}
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stabl & \[
\begin{gathered}
\text { Ch4 } \\
\text { o/p }
\end{gathered}
\] & Ch4 stabl \\
\hline -10v & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.1 & \(\sqrt{ }\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\checkmark\) & -12.3 & \(\sqrt{ }\) & -12.4 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.42 & \(\checkmark\) & -2.4 & \(\checkmark\) & -2.42 & \(\checkmark\) & -2.41 & \(\checkmark\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.1 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.5 & \(\checkmark\) & 24.4 & \(\checkmark\) & 24.5 & \(\checkmark\) & 24.3 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Unit.}

Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.45 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lı Go-то900231-v2Advanced LIGO UK \\ 26 November 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Test Engineer ....Xen.
Date 6/1/10

\section*{2. Test equipment}

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 \(_{\text {DVM }}\) & Farnell & L30-2 & \\
\hline & Fluke & 77 III & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 T_TOP57P
 Serial No
 Test EngineerXen.
Date
6/1/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date .6/1/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}
\(J 5\)
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \(\sqrt{ }\) & \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer ....Xen.
Date .6/1/10

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.00 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.90 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.06 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?
\(\sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
``` T_TOP57P Serial No
Test EngineerXen.
Date
``` \(\qquad\)
``` 6/1/10
``` \(\qquad\)

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.35 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.35 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3v to 3.7v & \(\checkmark\) \\
\hline Ch4 & 3.35 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\checkmark\) \\
\hline Ch3 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer . .Xen.
Date .6/1/10
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.15 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}
10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(0.15 v\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP57P
Test Engineer ....Xen. 6/1/10
\(\qquad\)
\(\qquad\)
Date .6/1/10
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 1 to Pin 2 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 5 to Pin 6 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 9 to Pin 10 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 13 to Pin 14 & 1.203 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 3 to Pin 4 & 0.482 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.480 & Pin 7 to Pin 8 & 0.481 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 11 to Pin 12 & 0.481 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 15 to Pin 16 & 0.481 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit .T_TOP57P. Serial No \(\qquad\)
Test Engineer ....Xen.
Date .6/1/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { olp }
\end{aligned}
\] & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & \[
\begin{aligned}
& \text { Ch4 } \\
& \text { o/p }
\end{aligned}
\] & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) & -24.5 & \(\checkmark\) & -24.5 & \(\sqrt{ }\) & -24.4 & \(\checkmark\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) & -12.4 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.4 & \(\checkmark\) & -2.41 & \(\checkmark\) & -2.42 & \(\sqrt{ }\) & -2.4 & \(\checkmark\) \\
\hline 0v & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\sqrt{ }\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 17.1 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.4 & \(\checkmark\) & 24.4 & \(\checkmark\) & 24.4 & \(\checkmark\) & 24.4 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Unit.}

Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.45 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lı Go-то900231-v2Advanced LIGO UK \\ 26 November 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Test Engineer ....Xen.
Date 6/1/10

\section*{2. Test equipment}

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 T_TOP58P
 Serial No
 Test EngineerXen.
Date
6/1/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date .6/1/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \(\sqrt{ }\) & \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer ....Xen. . \(6 / 1 / 10\)
\(\qquad\)
Date

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.09 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.82 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.00 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?
\(\sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

``` \(\qquad\)
``` T_TOP58P Serial No
Test EngineerXen.
Date
``` \(\qquad\)
``` 6/1/10
``` \(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.9 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.35 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.35 & 3.3v to 3.7v & \(\checkmark\) \\
\hline Ch4 & 3.4 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.68 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer . .Xen.
Date .6/1/10
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}
10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(0.15 v\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP58P Serial No
Test Engineer ....Xen.
Date .6/1/10
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 1 to Pin 2 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 5 to Pin 6 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 9 to Pin 10 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 13 to Pin 14 & 1.203 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.477 & Pin 3 to Pin 4 & 0.479 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 7 to Pin 8 & 0.479 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 11 to Pin 12 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 15 to Pin 16 & 0.480 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. -_TOP58P. Serial No
Test Engineer . .Xen.
Date \(\qquad\) 6/1/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 olp & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\checkmark\) & -24.5 & \(\sqrt{ }\) & -24.5 & \(\checkmark\) & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\checkmark\) & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.2 & \(\checkmark\) \\
\hline -1v & -2.41 & \(\sqrt{ }\) & -2.42 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) & -2.4 & \(\sqrt{ }\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\sqrt{ }\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\sqrt{ }\) & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.4 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.4 & \(\sqrt{ }\) & 24.4 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Unit.}

Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.42 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lı Go-то900231-v2Advanced LIGO UK \\ 26 November 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
```

 .T TOP59P
 Test EngineerXen.
Date 7/1/10
2. Test equipment
Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 T_TOP59P
 Serial No
 Test EngineerXen.
Date
6/1/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date .6/1/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \(\sqrt{ }\) & \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer ....Xen. .6/1/10.
\(\qquad\) Serial No \(\qquad\)
Date

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 11.99 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.88 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.90 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?
\(\sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

``` \(\qquad\)
``` T_TOP59P Serial No
Test EngineerXen.
Date
``` \(\qquad\)
``` 7/1/10
``` \(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.35 & 3.3v to 3.7v & \(\checkmark\) \\
\hline Ch4 & 3.35 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.68 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.66 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.46 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer ....Xen.
Date .7/1/10
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
\begin{tabular}{l}
0.1 Hz \\
\hline
\end{tabular}\(|\) Output \(\quad\) Specification \begin{tabular}{c|}
\hline Pass/Fail \\
\hline Ch1 \\
\hline Ch2
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}
10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_TOP59P
Serial No
Test Engineer ....Xen.
Date .7/1/10
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 1 to Pin 2 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 5 to Pin 6 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 9 to Pin 10 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 13 to Pin 14 & 1.203 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 3 to Pin 4 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 7 to Pin 8 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 11 to Pin 12 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 15 to Pin 16 & 0.482 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP59P. \(\qquad\)
Test Engineer ....Xen.
Date .7/1/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & \[
\begin{aligned}
& \text { Ch4 } \\
& \text { o/p }
\end{aligned}
\] & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) & -24.5 & \(\checkmark\) & -24.5 & \(\sqrt{ }\) & -24.5 & \(\checkmark\) \\
\hline -7v & -17.0 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.4 & \(\checkmark\) & -2.42 & \(\sqrt{ }\) & -2.42 & \(\checkmark\) & -2.42 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.41 & \(\checkmark\) & 2.42 & \(\sqrt{ }\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\sqrt{ }\) \\
\hline 7v & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.5 & \(\checkmark\) & 24.3 & \(\sqrt{ }\) & 24.3 & \(\checkmark\) & 24.5 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Unit.}

Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
Date

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a \(39 \mathrm{Ohm}, 1 \mathrm{~W}\) or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lı Go-то900231-v2Advanced LIGO UK \\ 26 November 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
``` T TOP60P
Test EngineerXen. .7/1/10
```

$\qquad$

```
Date
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	

```
Unit.
```

$\qquad$

```
 T_TOP60P
 Serial No
Test EngineerXen.
Date
.7/1/10
```


## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.
.7/1/10

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{l \mid}$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
	5	0V	$\sqrt{ }$	
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
$\qquad$
$\qquad$
Date

## 6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.10	1 mV	$\sqrt{ }$
+15 v TP4	14.79	1 mV	$\sqrt{ }$
-15 v TP6	-15.02	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

## Test switches

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
```

$\qquad$

```
 T_TOP60P
 Serial No
Test EngineerXen.
Date
```

$\qquad$

```
.7/1/10
```

$\qquad$

```
Date .7/1/10
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.9	4.7 to 5 v	$\checkmark$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch3	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$


8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.9	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.85	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.25	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.25	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Unit.
.T_TOP60P
Serial No
Test Engineer ....Xen
Date .7/1/10
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 3 to Pin 4	0.484	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 7 to Pin 8	0.480	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.480	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 15 to Pin 16	0.481	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit
.T_TOP60P
Serial No
Test Engineer ....Xen.
Date .7/1/10

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{gathered} \text { Ch1 } \\ \text { o/p } \end{gathered}$	Ch1 stable ?	$\begin{gathered} \text { Ch2 } \\ \text { o/p } \end{gathered}$	$\begin{gathered} \text { Ch2 } \\ \text { stable } \\ ? \end{gathered}$	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.5	$\checkmark$	-24.5	$\checkmark$	-24.5	$\checkmark$	-24.5	$\checkmark$
-7v	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$
-5v	-12.3	$\checkmark$	-12.3	$\sqrt{ }$	-12.3	$\checkmark$	-12.3	$\checkmark$
-1v	-2.42	$\checkmark$	-2.41	$\sqrt{ }$	-2.41	$\checkmark$	-2.42	$\checkmark$
Ov	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.41	$\checkmark$	2.42	$\checkmark$	2.42	$\checkmark$	2.42	$\checkmark$
5v	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$
7v	17.0	$\checkmark$	17.0	$\checkmark$	17.1	$\checkmark$	17.0	$\checkmark$
10v	24.5	$\checkmark$	24.5	$\checkmark$	24.5	$\checkmark$	24.4	$\checkmark$

## Unit.

Serial No $\qquad$
Test Engineer
Date

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a $39 \mathrm{Ohm}, 1 \mathrm{~W}$ or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lı Go-то900231-v2Advanced LIGO UK <br> 26 November 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

```
 T_TOP61P
```

$\qquad$
Test Engineer ....Xen.
Date .8/1/10
2. Test equipment
Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

                                    T_TOP61P
                                    Serial No
    Test Engineer ....Xen.
Date
.7/1/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen.
.7/1/10.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit. T_TOP61P
Test Engineer ....Xen.

```
\(\qquad\)

Date 7/1/10.
\(\qquad\)

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.04 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.91 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.99 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
```

                            T_TOP61P
                                    Serial No
    Test Engineer ....Xen.
Date

```
\(\qquad\)
```

.8/1/10

```
\(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5} \mathbf{}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline
\end{tabular}

1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.35 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & \(\mathbf{0 . 4 8}\) to 0.75v & \(\sqrt{ }\) \\
\hline Ch3 & 0.68 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer . .Xen.
Date .8/1/10
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.15 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}
10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.5 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(0.15 v\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP61P Serial No
Test EngineerXen.
Date .8/1/10
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c}
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 1 to Pin 2 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 5 to Pin 6 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 9 to Pin 10 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.203 & Pin 13 to Pin 14 & 1.203 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c}
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 3 to Pin 4 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 7 to Pin 8 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.477 & Pin 11 to Pin 12 & 0.479 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 15 to Pin 16 & 0.481 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit .T_TOP61P Serial No
Test Engineer Xen.
Date .8/1/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & \[
\begin{aligned}
& \text { Ch4 } \\
& \text { o/p }
\end{aligned}
\] & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.0 & \(\checkmark\) & -17.2 & \(\sqrt{ }\) & -17.2 & \(\sqrt{ }\) & -17.2 & \(\sqrt{ }\) \\
\hline -5v & -12.2 & \(\checkmark\) & -12.5 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.4 & \(\sqrt{ }\) & -2.42 & \(\sqrt{ }\) & -2.42 & \(\sqrt{ }\) & -2.42 & \(\sqrt{ }\) \\
\hline Ov & 0 & \(\sqrt{ }\) \\
\hline 1v & 2.42 & \(\checkmark\) & 2.42 & \(\sqrt{ }\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\sqrt{ }\) \\
\hline 7v & 17.1 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\checkmark\) & 17.1 & \(\sqrt{ }\) \\
\hline 10v & 24.5 & \(\sqrt{ }\) & 24.4 & \(\sqrt{ }\) & 24.4 & \(\sqrt{ }\) & 24.5 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Unit.}

Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c}
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lı Go-то900231-v2Advanced LIGO UK \\ 26 November 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
``` T TOP62P
Test Engineer ....Xen.
Date 8/1/10
2. Test equipment
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	

```
Unit.
```

\qquad

``` T_TOP62P

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date .8/1/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \(\sqrt{ }\) & \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer ....Xen.
Date 8/1/10

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.08 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.94 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.04 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?
\(\sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
``` T_TOP62P Serial No
Test EngineerXen.
Date
``` \(\qquad\)
``` .8/1/10
``` \(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(\mathbf{5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & \(\mathbf{4 . 7 v}\) to \(5 \mathbf{v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\checkmark\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7v & \(\sqrt{ }\) \\
\hline Ch2 & 3.35 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3v to 3.7v & \(\checkmark\) \\
\hline Ch4 & 3.4 & 3.3v to 3.7v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.68 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & \(\mathbf{0 . 4 8}\) to \(\mathbf{0 . 7 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\checkmark\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(\mathbf{0 . 5 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer . .Xen.
Date .8/1/10
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & \(4.7 v\) to \(5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}
10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(0.4 v\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.48 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to \(0.5 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(0.15 v\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP62P Serial No
Test Engineer ....Xen.
Date .8/1/10
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.204 & Pin 1 to Pin 2 & 1.204 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.204 & Pin 5 to Pin 6 & 1.204 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.204 & Pin 9 to Pin 10 & 1.204 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.204 & Pin 13 to Pin 14 & 1.204 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Current monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c} 
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 3 to Pin 4 & 0.477 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 7 to Pin 8 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.477 & Pin 11 to Pin 12 & 0.479 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 15 to Pin 16 & 0.480 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP62P Serial No
Test Engineer . Xen.
Date .8/1/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & \[
\begin{aligned}
& \text { Ch4 } \\
& \text { o/p }
\end{aligned}
\] & Ch4 stable ? \\
\hline -10v & -24.4 & \(\sqrt{ }\) & -24.4 & \(\sqrt{ }\) & -24.4 & \(\sqrt{ }\) & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.0 & \(\checkmark\) & -17.0 & \(\sqrt{ }\) & -17.2 & \(\sqrt{ }\) & -17.1 & \(\sqrt{ }\) \\
\hline -5v & -12.2 & \(\checkmark\) & -12.2 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.41 & \(\checkmark\) & -2.4 & \(\sqrt{ }\) & -2.42 & \(\sqrt{ }\) & -2.42 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) \\
\hline 1v & 2.42 & \(\checkmark\) & 2.42 & \(\sqrt{ }\) & 2.41 & \(\checkmark\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\sqrt{ }\) \\
\hline 7v & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Unit.}

Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.42 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.42 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lı Go-то900231-v2Advanced LIGO UK \\ 26 November 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
``` T_TOP63P
Test Engineer .
Date Xen...
```

$\qquad$

``` Serial No
``` \(\qquad\)
``` 11/1/10
```


## 2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	

```
Unit.
```

$\qquad$

``` T_TOP63P

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 11/1/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & , \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
TOP63P
Test Engineer ....Xen.
Date
11/1/10

```

\section*{6. Power}
```

Check the polarity of the wiring:
3 Pin Power Connector

```
Serial No

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+\boldsymbol{+}-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.06 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.93 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.03 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation? \(\quad \sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

``` \(\qquad\)
``` T_TOP63P Serial No
Test Engineer . Xen.
Date
11/1/10.
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.35	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.66	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to 0.75v	\checkmark
Ch3	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

```
Unit.
```

\qquad

``` T_TOP63P Serial No
Test Engineer Xen.
Date 11/1/10
``` \(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 kHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & \(4.7 v\) to 5v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.15 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch3 & 3.15 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3v to 3.4v & \(\sqrt{ }\) \\
\hline
\end{tabular}
10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & \(\mathbf{0 . 4 v}\) to 0.5v & \(\sqrt{ }\) \\
\hline
\end{tabular}
100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 5 v}\) to \(0.16 v\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & \(\mathbf{0 . 1 4 v}\) to \(\mathbf{0 . 1 6 v}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_TOP63P Serial No
Test Engineer Xen.
Date 11/1/10
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c}
Output: \\
TP9 to TP13 \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.205 & Pin 1 to Pin 2 & 1.204 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.205 & Pin 5 to Pin 6 & 1.204 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.204 & Pin 9 to Pin 10 & 1.204 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{1 . 1 5 - 1 . 2 5 v}\) & 1.204 & Pin 13 to Pin 14 & 1.204 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Nominal \\
r.m.s
\end{tabular} & \begin{tabular}{c}
Output across coil \\
resistor \\
r.m.s
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.479 & Pin 3 to Pin 4 & 0.483 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.480 & Pin 7 to Pin 8 & 0.481 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.478 & Pin 11 to Pin 12 & 0.480 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(\mathbf{0 . 4 7 - 0 . 4 9 v}\) & 0.480 & Pin 15 to Pin 16 & 0.483 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit .T_TOP63P. Serial No
Test Engineer . Xen.
Date .11/1/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & \[
\begin{aligned}
& \text { Ch1 } \\
& \text { o/p }
\end{aligned}
\] & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & \[
\begin{aligned}
& \text { Ch4 } \\
& \text { o/p }
\end{aligned}
\] & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) & -24.5 & \(\sqrt{ }\) & -24.4 & \(\sqrt{ }\) & -24.4 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.1 & \(\sqrt{ }\) & -17.0 & \(\sqrt{ }\) & -17.2 & \(\sqrt{ }\) \\
\hline -5v & -12.3 & \(\checkmark\) & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.41 & \(\checkmark\) & -2.41 & \(\sqrt{ }\) & -2.41 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) \\
\hline 1v & 2.41 & \(\checkmark\) & 2.42 & \(\sqrt{ }\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\sqrt{ }\) \\
\hline 7v & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\checkmark\) & 17.1 & \(\sqrt{ }\) \\
\hline 10v & 24.3 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Unit.}

Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & Output at 10Hz & Max o/p & @Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a \(39 \mathrm{Ohm}, 1 \mathrm{~W}\) or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c}
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.42 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lıgo-t0900231-vı Advanced LIGO UK 6 мay 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(10 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit
TOP64P

```
\(\qquad\)
\(\qquad\)
```

Test Engineer Xen
Date 12/1/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
```

Test Engineer .....Xen.
Date
12/1/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

Changed IC8 and also IC11 due to distortion on CH 3 .

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . . \(\overline{\text { Xen }}\)
Date 12/1/10.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|l|l|l|l|l|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{l \mid}\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline & 5 & 0V & \(\sqrt{ }\) & \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
T_TOP64P
Serial No
Test Engineer
Xen
Date
12/1/10

```

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to +/-3V.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.11 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.97 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.96 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

``` \(\qquad\)
``` T_TOP64P Serial No
Test Engineer . Xen
Date
12/1/10
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	4.7 to 5 v	\checkmark
Ch2	4.8	4.7 to 5 v	\checkmark
Ch3	4.8	4.7 to 5 v	$\sqrt{ }$
Ch4	4.8	4.7 to 5 v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.3	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.3	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.65	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	\checkmark
Ch3	0.65	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Unit.
Test EngineerXen
Date 12/1/10
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz .
Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.8	$4.7 v$ to 5 v	$\sqrt{ }$
Ch2	4.8	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$
Ch4	4.8	$\mathbf{4 . 7 v}$ to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.1	3v to 3.4v	$\sqrt{ }$
Ch4	3.1	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.45	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
                T_TOP64P
                                    Serial No
Test Engineer
                                .Xen
Date
12/1/10
9. Monitor Outputs
Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
```

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.202	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 3 to Pin 4	0.480	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 7 to Pin 8	0.481	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.480	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 15 to Pin 16	0.480	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP64P. Serial No \qquad
Test Engineer .Xen..
Date 12/1/10

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	$\begin{gathered} \text { Ch2 } \\ \text { stable } \end{gathered}$ $?$	Ch3 o/p	$\begin{gathered} \text { Ch3 } \\ \text { stable } \end{gathered}$ $?$	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	$\begin{gathered} \text { Ch4 } \\ \text { stable } \end{gathered}$ $?$
-10v	-24.2	\checkmark	-24.5	\checkmark	-24.5	\checkmark	-24.5	\checkmark
-7v	-17.0	\checkmark	-17.2	\checkmark	-17.1	\checkmark	-17.1	\checkmark
-5v	-12.0	\checkmark	-12.5	\checkmark	-12.3	\checkmark	-12.3	\checkmark
-1v	-2.4	\checkmark	-2.43	\checkmark	-2.42	\checkmark	-2.42	\checkmark
Ov	0	\checkmark	0	$\sqrt{ }$	0	\checkmark	0	\checkmark
1v	2.4	\checkmark	2.42	\checkmark	2.41	\checkmark	2.42	\checkmark
5v	12.0	\checkmark	12.2	\checkmark	12.0	\checkmark	12.2	\checkmark
7v	16.9	\checkmark	17.0	\checkmark	17.0	\checkmark	17.0	\checkmark
10v	24.1	\checkmark	24.2	\checkmark	24.2	\checkmark	24.3	\checkmark

Unit.
.Serial No \qquad
Test Engineer
Date \qquad

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

```
Unit.
                T_TOP64P

\section*{13. Dynamic Range Tests}

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a \(39 \mathrm{Ohm}, 1 \mathrm{~W}\) or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Theoretical o/p \\
r.m.s
\end{tabular} & Measured & OK? \\
\hline Ch1 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.44 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{3 . 3 - 3 . 5 v}\) & 3.43 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Replace links W4 and W5.

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Lı Go-то900231-v2Advanced LIGO UK \\ 26 November 2009}

\section*{Triple TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
```

 T TOP65P
 Test Engineer .
Date Xen.

```
\(\qquad\)
``` Serial No
``` \(\qquad\)
``` 12/1/10
```


## 2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	

```
Unit.
 T_TOP65P
```

$\qquad$

```
 Serial No
Test EngineerXen.
Date
12/1/10
```


## 3. Inspection

## Workmanship

```
Inspect the general workmanship standard and comment: \(\sqrt{ }\)
U1 has been replaced.
```


## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.
Date
12/1/10

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	,
9	Imon4N		21	$\checkmark$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer Xen.
Date
12/1/10

## 6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.05	1 mV	$\sqrt{ }$
+15 v TP4	14.76	1 mV	$\sqrt{ }$
-15 v TP6	-15.06	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$

## Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
``` \(\qquad\)
``` .T_TOP65P Serial No
Test Engineer . Xen
Date
12/1/10
```

8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch3	3.35	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\checkmark$
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.46	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Test Engineer . Xen.
Date 12/1/10. $\qquad$
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.85	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.3	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch2	0.48	$0.4 v$ to $0.5 v$	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$0.15 v$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
 .T_TOP65P
Test Engineer . Xen.
```

Date 12/1/10
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

## Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 3 to Pin 4	0.480	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 7 to Pin 8	0.480	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.477	Pin 11 to Pin 12	0.479	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 15 to Pin 16	0.481	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP65P.
Test Engineer . .Xen...
Date .12/1/10

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$
-5v	-12.3	$\sqrt{ }$	-12.3	$\checkmark$	-12.3	$\checkmark$	-12.3	$\checkmark$
-1v	-2.42	$\sqrt{ }$	-2.42	$\sqrt{ }$	-2.42	$\checkmark$	-2.42	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.42	$\sqrt{ }$	2.42	$\sqrt{ }$	2.41	$\checkmark$	2.42	$\sqrt{ }$
5v	12.2	$\checkmark$	12.2	$\checkmark$	12.1	$\checkmark$	12.2	$\checkmark$
7v	17.1	$\sqrt{ }$	17.0	$\checkmark$	17.0	$\sqrt{ }$	17.0	$\checkmark$
10v	24.3	$\sqrt{ }$						

## Unit.

Serial No $\qquad$
Test Engineer
Date

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer . Xen.
Date 12/1/10.

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a $39 \mathrm{Ohm}, 1 \mathrm{~W}$ or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$3.3-3.5 \mathbf{v}$	3.44	$\sqrt{ }$
Ch2	$3.3-3.5 \mathbf{v}$	3.44	$\sqrt{ }$
Ch3	$3.3-3.5 \mathrm{v}$	3.42	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

## LIGO Laboratory / LIGO Scientific Collaboration

## Lı Go-то900231-v2Advanced LIGO UK <br> 26 November 2009

## Triple TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

```
 T_TOP66P
```

$\qquad$
Test Engineer .
Date Xen.
12/1/10
2. Test equipment
Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Replaced U3.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 12/1/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{4} & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & , \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer Xen.
Date
12/1/10

\section*{6. Power} Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.00 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.80 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.98 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?
\(\sqrt{ }\)

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Test switches}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

``` \(\qquad\)
``` T_TOP66P Serial No
Test Engineer . Xen
Date
12/1/10
```

8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.35	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to 0.75v	\checkmark
Ch3	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Test Engineer . Xen.
Date 12/1/10. \qquad
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.85	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	$\sqrt{ }$
Ch2	3.25	3v to 3.4v	$\sqrt{ }$
Ch3	3.25	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.49	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch3	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch4	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$0.15 v$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
                .T_TOP66P
Test Engineer . Xen.
```

Date 12/1/10
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 3 to Pin 4	0.479	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.481	Pin 7 to Pin 8	0.481	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.479	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.480	Pin 15 to Pin 16	0.482	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP66P.
Test Engineer . .Xen...
Date .12/1/10

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { olp } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 olp	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.2	\checkmark	-17.2	\checkmark	-17.2	\checkmark	-17.2	\checkmark
-5v	-12.3	\checkmark	-12.3	$\sqrt{ }$	-12.3	\checkmark	-12.3	\checkmark
-1v	-2.42	\checkmark	-2.42	$\sqrt{ }$	-2.42	$\sqrt{ }$	-2.42	\checkmark
Ov	0	\checkmark	0	$\sqrt{ }$	0	\checkmark	0	\checkmark
1v	2.42	\checkmark	2.42	$\sqrt{ }$	2.42	\checkmark	2.42	\checkmark
5v	12.2	$\sqrt{ }$						
7v	17.0	\checkmark	17.1	$\sqrt{ }$	17.0	\checkmark	17.0	$\sqrt{ }$
10v	24.4	$\sqrt{ }$	24.4	$\sqrt{ }$	24.4	$\sqrt{ }$	24.5	$\sqrt{ }$

Unit.

Serial No \qquad
Test Engineer
Date

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer . Xen.
Date 12/1/10.

13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.45	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lı Go-то900231-v2Advanced LIGO UK
 26 November 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` T_TOP67P
Test Engineer .
Date Xen.
13/1/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
V/I calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	

```
Unit.
```

\qquad

``` T_TOP67P
Test Engineer ....Xen.
Date
13/1/10
```

\qquad

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

Also, U1 has been replaced.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 13/1/10

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
	5	OV	\checkmark	
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	,
9	Imon4N		21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer . Xen.
Date
13/1/10

6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.00	1 mV	$\sqrt{ }$
+15 v TP4	14.91	1 mV	$\sqrt{ }$
-15 v TP6	-14.95	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` T_TOP67P Serial No
Test Engineer . Xen.
Date
.13/1/10
```


8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	\checkmark

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{ }$
Ch2	3.35	3.3v to 3.7v	$\sqrt{ }$
Ch3	3.35	3.3v to 3.7v	$\sqrt{ }$
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch3	0.66	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$
Ch4	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	\checkmark
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

Test Engineer . Xen.
Date 13/1/10.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch3	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$
Ch4	4.85	$4.7 v$ to $5 v$	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.25	3v to 3.4v	$\sqrt{ }$
Ch2	3.25	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.2	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch2	0.48	$0.4 v$ to 0.5v	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $0.5 v$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch2	0.16	$0.15 v$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

Test Engineer Xen.
Date 13/1/10
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal r.m.s	Output: TP9 to TP13 r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

Current monitors

Ch.	Nominal r.m.s	Output across coil resistor r.m.s	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 3 to Pin 4	0.480	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 7 to Pin 8	0.480	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.480	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 15 to Pin 16	0.480	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP67P. Serial No
Test Engineer . Xen.
Date .13/1/10

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$
-7v	-17.2	\checkmark	-17.2	$\sqrt{ }$	-17.2	$\sqrt{ }$	-17.1	$\sqrt{ }$
-5v	-12.3	\checkmark	-12.3	$\sqrt{ }$	-12.3	\checkmark	-12.2	\checkmark
-1v	-2.42	\checkmark	-2.42	$\sqrt{ }$	-2.42	$\sqrt{ }$	-2.41	\checkmark
Ov	0	$\sqrt{ }$						
1v	2.42	\checkmark	2.42	$\sqrt{ }$	2.42	\checkmark	2.42	\checkmark
5v	12.1	$\sqrt{ }$	12.2	$\sqrt{ }$	12.2	$\sqrt{ }$	12.2	$\sqrt{ }$
7v	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.0	\checkmark	17.0	$\sqrt{ }$
10v	24.2	$\sqrt{ }$	24.3	$\sqrt{ }$	24.3	$\sqrt{ }$	24.3	$\sqrt{ }$

Unit.

Serial No \qquad
Test Engineer
Date

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer . Xen.
Date 13/1/10.

13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch2	$3.3-3.5 \mathbf{v}$	3.44	$\sqrt{ }$
Ch3	$3.3-3.5 \mathrm{v}$	3.43	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

LIGO Laboratory / LIGO Scientific Collaboration

Lı Go-то900231-v2Advanced LIGO UK
 26 November 2009

Triple TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic Range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

```
                T_TOP69P
```

\qquad
Test EngineerXen.
Date
14/1/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
```

Unit.

``` \(\qquad\)
``` T_TOP69P Serial No
Test EngineerXen.
Date 14/1/10
```

$\qquad$

## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104, and C105 on all channels.
Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33 pF polypropylene capacitor.

Also replaced C50 and C51 on all channels.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
Date 14/1/10

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{l \mid}$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
	5	0V	$\sqrt{ }$	
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer . Xen.
Date
14/1/10

## 6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	11.99	1 mV	$\sqrt{ }$
+15 v TP4	14.82	1 mV	$\sqrt{ }$
-15 v TP6	-15.05	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?
$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$

## Test switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` T_TOP69P Serial No
Test Engineer . Xen
Date
14/1/10
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel.

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to 5v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$
Ch3	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $\mathbf{5 v}$	$\sqrt{ }$
Ch4	4.85	5.0	5.0	$\mathbf{4 . 7 v}$ to $5 \mathbf{v}$	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7v	$\sqrt{ }$
Ch3	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	3.3v to 3.7v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch2	0.67	$\mathbf{0 . 4 8}$ to 0.75v	$\sqrt{ }$
Ch3	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\checkmark$
Ch4	0.67	$\mathbf{0 . 4 8}$ to $\mathbf{0 . 7 5 v}$	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch2	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\checkmark$
Ch4	0.47	$\mathbf{0 . 4 v}$ to $\mathbf{0 . 5 v}$	$\sqrt{ }$

```
Unit.
```

$\qquad$

``` T TOP69P Serial No
Test Engineer Xen.
Date 14/1/10
```

$\qquad$
$\qquad$
$\qquad$
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch2	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch3	4.85	$4.7 v$ to 5v	$\sqrt{ }$
Ch4	4.85	$4.7 v$ to 5v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	$\sqrt{ }$
Ch2	3.2	3v to 3.4v	$\sqrt{ }$
Ch3	3.2	3v to 3.4v	$\sqrt{ }$
Ch4	3.15	3v to 3.4v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch2	0.48	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch3	0.47	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$
Ch4	0.46	$\mathbf{0 . 4 v}$ to 0.5v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 5 v}$ to $0.16 v$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 5 v}$ to 0.16v	$\sqrt{ }$

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch2	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch3	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$
Ch4	0.16	$\mathbf{0 . 1 4 v}$ to $\mathbf{0 . 1 6 v}$	$\sqrt{ }$

```
Unit
 T_TOP69P
Test Engineer Xen
```

Date 14/1/10
9. Monitor Outputs

Remove links W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.

Voltage monitors

Ch.	Nominal   r.m.s	Output:   TP9 to TP13   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{1 . 1 5 - 1 . 2 5 v}$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

Current monitors

Ch.	Nominal   r.m.s	Output across coil   resistor   r.m.s	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 3 to Pin 4	0.479	$\sqrt{ }$
$\mathbf{2}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.480	Pin 7 to Pin 8	0.481	$\sqrt{ }$
$\mathbf{3}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.478	Pin 11 to Pin 12	0.480	$\sqrt{ }$
$\mathbf{4}$	$\mathbf{0 . 4 7 - 0 . 4 9 v}$	0.479	Pin 15 to Pin 16	0.482	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit .T_TOP69P. Serial No
Test Engineer . Xen.
Date .14/1/10

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	$\begin{aligned} & \text { Ch1 } \\ & \text { o/p } \end{aligned}$	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	$\begin{aligned} & \text { Ch4 } \\ & \text { o/p } \end{aligned}$	Ch4 stable ?
-10v	-24.4	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$
-7v	-17.2	$\checkmark$	-17.2	$\sqrt{ }$	-17.2	$\sqrt{ }$	-17.1	$\sqrt{ }$
-5v	-12.2	$\checkmark$	-12.3	$\sqrt{ }$	-12.2	$\checkmark$	-12.2	$\checkmark$
-1v	-2.4	$\checkmark$	-2.42	$\sqrt{ }$	-2.42	$\sqrt{ }$	-2.41	$\checkmark$
Ov	0	$\sqrt{ }$						
1v	2.42	$\checkmark$	2.42	$\sqrt{ }$	2.42	$\checkmark$	2.42	$\checkmark$
5v	12.2	$\sqrt{ }$						
7v	17.0	$\sqrt{ }$	17.1	$\sqrt{ }$	17.2	$\checkmark$	17.0	$\sqrt{ }$
10v	24.3	$\sqrt{ }$	24.3	$\sqrt{ }$	24.5	$\sqrt{ }$	24.3	$\sqrt{ }$

## Unit.

Serial No $\qquad$
Test Engineer
Date

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it is only necessary to perform the full test on a sample board only.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at 10Hz	Max o/p	@Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Test Engineer . Xen.
Date .14/1/10.

## 13. Dynamic Range Tests

Remove links W4 and W5. In this test, the board is tested at maximum dynamic range. Connect a $39 \mathrm{Ohm}, 1 \mathrm{~W}$ or more load resistor to the output of each channel. Apply a 5 v peak signal with respect to ground at 10 Hz to the input. Set the voltage between TP10 and TP14 to 7.07 V .

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the differential r.m.s voltage across each load resistor, and record it in the table below.

	Theoretical o/p   r.m.s	Measured	OK?
Ch1	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch2	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$
Ch3	$\mathbf{3 . 3 - 3 . 5 v}$	3.44	$\sqrt{ }$
Ch4	$\mathbf{3 . 3 - 3 . 5 v}$	3.43	$\sqrt{ }$

Replace links W4 and W5.

