LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP68P.... Monitor Card ID...Mon65....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_	P68	Serial No
Test Engineer	.Xen		
Date	.16/3/10.		

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH4.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected the joints on the Mantis microscope.

Unit......T_TOP_P68.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1		Photodiode A+	1	~
1				
2	PD2P	Photodiode B+	2	N
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P68.....Serial No Test Engineer....Xen.... Date......16/3/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_P68	Serial No	
Test Engineer	.Xen		
Date	16/3/10		

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 1	RMS Current	0.75v dc	0.755	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.756	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.756	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.67	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.01	2.9µV√Hz	\checkmark
2		1.32	2.9µV√Hz	\checkmark
3		1.25	2.9µV√Hz	\checkmark
4		1.68	2.9µV√Hz	\checkmark

Unit......T_TOP_P68.....Serial No Test Engineer....Xen.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	38.4	\checkmark
CH1 Negative		CH1 IC5	40.4	\checkmark
CH2 Positive	12.19	CH2 IC1	39.2	\checkmark
CH2 Negative		CH2 IC5	41.6	\checkmark
CH3 Positive	12.18	CH3 IC1	39.2	\checkmark
CH3 Negative		CH3 IC5	40.1	\checkmark
CH4 Positive	12.19	CH4 IC1	38.4	\checkmark
CH4 Negative		CH4 IC5	42.1	\checkmark

Unit......T_TOP_P68.....Serial No Test Engineer....Xen.... Date......21/7/10.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.1	-160.1
Ch2	-160dB	-100.2	-160.2
Ch3	-160dB	-100.8	-160.8
Ch4	-160dB	-102.3	-162.3

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP68P.....Serial No Test Engineer.....RMC Date.....18/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP68P
Driver board ID	TTOP68P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP68P
Monitor board ID	MON65
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON65

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Unit......T_TOP_P1.....Serial No Test EngineerXen..... Date18/11/09.....

Drive Card ID.....T_TOP1P..... Monitor Card ID...Mon21P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- **15. Final Assembly**

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	T TOP P1	Serial No
Test Engineer	.Xen	
Date	18/11/09	

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P1.....Serial No Test EngineerXen..... Date18/11/09.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104, and C105 on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Unit	.T_TOP_P1	Serial No
Test Engineer	.Xen	
Date	.18/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	T_TOP_	P1Serial No
Test Engineer	.Xen	•••••
Date	18/11/09	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P1.....Serial No Test EngineerXen..... Date18/11/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P1	Serial No
Test Engineer>	Xen	
Date1	18/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2		\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	

Unit	T TOP I	P1Serial No
Test Engineer	Xen	
Date	18/11/09	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 1	RMS Current	0.75v dc	0.752	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 4	RMS Current	0.75v dc	0.755	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.752	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.752	\checkmark

1v across load resistor

Unit	.T_TOP_F	P1Serial No
Test Engineer	.Xen	
Date	.18/11/09.	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Unit	T_TOP_P1.	Serial No
Test Engineer	.Xen	

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.2		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

Unit......T_TOP_P1.....Serial No Test EngineerXen..... Date18/11/09.....

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	42.1	\checkmark
CH1 Negative		CH1 IC5	44.5	\checkmark
CH2 Positive	12.19	CH2 IC1	44.3	\checkmark
CH2 Negative		CH2 IC5	43.1	\checkmark
CH3 Positive	12.19	CH3 IC1	43.8	\checkmark
CH3 Negative		CH3 IC5	42.6	\checkmark
CH4 Positive	12.19	CH4 IC1	41.4	\checkmark
CH4 Negative		CH4 IC5	44.0	\checkmark

Unit.....Serial No Test EngineerRMC Date9/2/2010

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.5	-160.5
Ch2	-160dB	-101.5	-161.5
Ch3	-160dB	-98.8	-158.8
Ch4	-160dB	-101.0	-161.0

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

Channel 3 rather noisy

Unit......T_TOP_P1.....Serial No Test EngineerXen..... Date18/11/09.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
2	39.4	3.37	85.5mA	120mA	84.8mA	\checkmark
3	39.3	3.34	85.0mA	120mA	84.8mA	\checkmark
4	39.4	3.35	85.0mA	120mA	84.8mA	\checkmark

Unit T	TOP	P1Serial No
Test Engineer	RMŌ	
Date	16/12	2/09

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. $\sqrt{}$ Test with a DVM that none of the tabs are shorted to chassis. $\sqrt{}$

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{}$ Record below:

UoB box ID	TTOP1P
Driver board ID	TTOP1P
Driver board Drawing No/Issue No	D0902747 v6
Driver board Serial Number	TTOP1P
Monitor board ID	MON21P
Monitor board Drawing No/Issue No	D070480_04_K
Monitor board Serial Number	MON21P

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$
Unit.....Serial No Test EngineerRMC Date9/2/2010

16. Triple Top Test Plan Addendum

It was found that a problem existed on the Noise Monitor outputs. This was due to the lack of compensating capacitors on the Voltage Monitor AD797 output buffer amplifiers on the Driver Boards.

33pf capacitors need to be added to each channel in the places designated for C102 and C103.

Capacitors Added?

Channel 1 C102	OK
Channel 1 C103	OK
Channel 2 C102	OK
Channel 2 C103	OK
Channel 3 C102	OK
Channel 3 C103	OK
Channel 4 C102	OK
Channel 4 C103	OK

The noise output from each channel then needs to be measured again. For convenience, these results may be added to section 13 of this report in place of the previous readings.

Noise monitor tests

Connect the 39 ohm loads, the blanking plug in place on the drive input, and the relay test box.

Switch in all filters.

Connect power, and power up the unit. Measure the noise output on the noise monitor plug in μ V/root Hz, on the HP Dynamic signal Analyser, the preamplifier with a gain of 10, and Stuart Aston's noise measurement set up. Check that it is less than 3 μ V/root Hz with respect to ground, which may be found on sockets number 5, 6, 7, 8 or 9.

	Noise Monitor socket pin number	Noise	< 3µV/rt Hz?
Channel 1	1	1.5 µV/root Hz	OK
Channel 2	2	2.12 µV/root Hz	OK
Channel 3	3	1.40 µV/root Hz	OK
Channel 4	4	1.57 µV/root Hz	OK

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Unit......T_TOP_P2.....Serial No Test EngineerXen..... Date12/11/09.....

Drive Card ID.....T_TOP2P..... Monitor Card ID...Mon22P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P2.....Serial No Test EngineerXen..... Date12/11/09.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P2.....Serial No Test EngineerXen..... Date11/11/09.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104, and C105 on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

UnitT	TOP P2	Serial No
Test EngineerX	en	
Date1	1/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

UnitT	⁻ TOP P2	Serial No
Test EngineerX	(en	
Date1	1/11/09	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus Minus	
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

UnitT	[_TOP_P2	Serial No	
Test Engineer>	(en		
Date1	1/11/09		

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	T TOP	P2Serial No
Test Engineer		
Date	.12/11/09	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 1	RMS Current	0.75v dc	0.758	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 4	RMS Current	0.75v dc	0.759	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 7	RMS Current	0.75v dc	0.755	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 10	RMS Current	0.75v dc	0.760	\checkmark

1v across load resistor

Unit	T TOP	P2Serial No
Test Engineer	Xen	
Date	.12/11/09	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Unit......T_TOP_P2.....Serial No Test EngineerXen.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 are present.

Using the Dynamic Signal Analyser

With the filter switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1 kHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils. **Channel 1**

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	7.7		
1Hz	1.0		
10Hz	-30.3		
100Hz	-42.8		
1KHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	7.7		
1Hz	1.1		
10Hz	-30.3		
100Hz	-42.9		
1KHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	7.6		
1Hz	1.0		
10Hz	-30.3		
100Hz	-42.9		
1KHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	7.6		
1Hz	1.1		
10Hz	-30.2		
100Hz	-42.9		
1KHz	-43.3		

Unit......T_TOP_P2.....Serial No Test EngineerXen..... Date12/11/09.....

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Fre	e?
Ch1	\checkmark	
Ch2	N	
Ch3	N	
Ch4	N	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.22	CH1 IC1	40.6	\checkmark
CH1 Negative		CH1 IC5	43.6	\checkmark
CH2 Positive	12.21	CH2 IC1	42.1	\checkmark
CH2 Negative		CH2 IC5	43.6	\checkmark
CH3 Positive	12.21	CH3 IC1	43.3	\checkmark
CH3 Negative		CH3 IC5	43.8	\checkmark
CH4 Positive	12.21	CH4 IC1	43.3	\checkmark
CH4 Negative		CH4 IC5	42.3	\checkmark

Unit.....Serial No Test EngineerRMC Date30/11/09

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-99.0	-159.0
Ch2	-160dB	-101.2	-161.2
Ch3	-160dB	-96.6	-156.6
Ch4	-160dB	-100.1	-160.1

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nV/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P2.....Serial No Test EngineerXen..... Date12/11/09.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
2	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark
3	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
4	39.4	3.35	85.0mA	120mA	84.8mA	\checkmark

Unit......T_TOP_P2.....Serial No Test EngineerRMC Date16/12/09 **15. Final Assembly Checks**

- 1. Remove the lid of the box. \checkmark
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{10}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. $\sqrt{}$ Test with a DVM that none of the tabs are shorted to chassis. $\sqrt{}$

7. Check that all the LEDs are nicely centred. \checkmark

8. Check that links W4 and W5 are in place. \checkmark

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. \checkmark Record below:

UoB box ID	TTOP2P
Driver board ID	TTOP2P
Driver board Drawing No/Issue No	D0902747 v6
Driver board Serial Number	TTOP2P
Monitor board ID	MON22P
Monitor board Drawing No/Issue No	D070480_04_K
Monitor board Serial Number	MON22P

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, \checkmark

Check all external screws for tightness. \checkmark

Unit.....TTOP P2.....Serial No Test EngineerRMC Date24/2/10

FINAL NOISE MEASUREMENTS

Measure the noise output and noise monitor outputs of the completed unit. The extra screening provided by the enclosure protects the unit against extraneous noise, so the results will be more consistent.

If a channel exceeds the limits, replace the noisy ICs, note the work done. Re-measure and record the final result.

Output Noise

	Spec in dB V/√Hz	Measured @ 10Hz (dB)	-60dB =	Measured in nV/√Hz	OK (+/-1dB) ?
Ch1	-160dB	-100.46 dB	-160.4 dB	6.54 nV/√Hz	OK
Ch2	-160dB	-99.9 dB	-159.9 dB	6.97 nV/√Hz	OK
Ch3	-160dB	-99.4 dB	-159.4 dB	7.34 nV/√Hz	OK
Ch4	-160dB	-99.4 dB	-159.4 dB	7.37 nV/√Hz	OK

Measure the noise output at 10 Hz.

Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V/\sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain.

Ch.	Output	/(Pre-amplifier gain)	Maximum value	Pass/Fail
1	18.8	1.88 µV/√Hz	2.9 µV/√Hz	OK
2	21.9	2.19 µV/√Hz	2.9 µV/√Hz	OK
3	18.4	1.84 µV/√Hz	2.9 µV/√Hz	OK
4	15.3	1.53 µV/√Hz	2.9 µV/√Hz	OK

Repair work (if any)

Channel 2 Drive Board:	IC4 and IC8 replaced
Chanel 1 on Monitor:	IC1 and IC6 replaced by LT1128 s

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Unit......T_TOP_P3.....Serial No Test EngineerXen..... Date19/11/09.....

Drive Card ID.....T_TOP3P..... Monitor Card ID...Mon23P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- **15. Final Assembly**

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit.......T_TOP_P3.....Serial No Test Engineer....Xen.... Date19/11/09.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104, and C105 on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Unit	Т ТОР РЗ	Serial No
Test Engineer	Xen	
Date	19/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	.T_TOP_	P3Serial No
Test Engineer	.Xen	-
Date	.19/11/09)

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P3.....Serial No Test EngineerXen..... Date19/11/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T TOP P3	Serial No
Test Engineer	.Xen	
Date	.19/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2		\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit......T_TOP_P3.....Serial No Test EngineerXen..... Date19/11/09.....

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.760	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.756	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.752	\checkmark

1v across load resistor

Unit	T_TOP_F	23Serial No
Test Engineer	.Xen	
Date	19/11/09.	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.67	1.6v to 1.7v	\checkmark

Unit	.T_TOP_	P3Serial No
Test Engineer	Xen	-

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.9		
10Hz	-30.9		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

Unit......T_TOP_P3.....Serial No Test EngineerXen..... Date19/11/09.....

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.29	CH1 IC1	43.8	\checkmark
CH1 Negative		CH1 IC5	45.0	\checkmark
CH2 Positive	12.29	CH2 IC1	43.8	\checkmark
CH2 Negative		CH2 IC5	45.7	\checkmark
CH3 Positive	12.29	CH3 IC1	45.0	\checkmark
CH3 Negative		CH3 IC5	45.7	\checkmark
CH4 Positive	12.29	CH4 IC1	43.3	\checkmark
CH4 Negative		CH4 IC5	44.3	\checkmark

Unit.....Serial No Test EngineerRMC Date24/11/09

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-102.9	-162.9
Ch2	-160dB	-100.5	-160.5
Ch3	-160dB	-101.27	-161.27
Ch4	-160dB	-98.5	-158.5

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB
Unit......T_TOP_P3.....Serial No Test EngineerXen..... Date19/11/09.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
2	39.4	3.35	85.0mA	120mA	84.8mA	\checkmark
3	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
4	39.4	3.35	85.0mA	120mA	84.8mA	\checkmark

Unit.....TTOP3P.....Serial No Test EngineerRMC Date16/12/09

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. $\sqrt{}$ Test with a DVM that none of the tabs are shorted to chassis. $\sqrt{}$

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP3P
Driver board ID	TTOP3P
Driver board Drawing No/Issue No	D0902747 v6
Driver board Serial Number	TTOP3P
Monitor board ID	MON23P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON23P

10. Check the security of any modification wires. None

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

Unit.....Serial No Test Engineer Date

16. Triple Top Test Plan Addendum

It was found that a problem existed on the Noise Monitor outputs. This was due to the lack of compensating capacitors on the Voltage Monitor AD797 output buffer amplifiers on the Driver Boards.

33pf capacitors need to be added to each channel in the places designated for C102 and C103.

Capacitors Added?

Channel 1 C102	OK
Channel 1 C103	OK
Channel 2 C102	OK
Channel 2 C103	OK
Channel 3 C102	OK
Channel 3 C103	OK
Channel 4 C102	OK
Channel 4 C103	OK

The noise output from each channel then needs to be measured again. For convenience, these results may be added to section 13 of this report in place of the previous readings.

Noise monitor tests

Connect the 39 ohm loads, the blanking plug in place on the drive input, and the relay test box.

Switch in all filters.

Connect power, and power up the unit. Measure the noise output on the noise monitor plug in μ V/root Hz, on the HP Dynamic signal Analyser, the preamplifier with a gain of 10, and Stuart Aston's noise measurement set up. Check that it is less than 3 μ V/root Hz with respect to ground, which may be found on sockets number 5, 6, 7, 8 or 9.

	Noise Monitor socket pin number	Noise	< 3µV/rt Hz?
Channel 1	1	1.26 µV/root Hz	OK
Channel 2	2	1.2 µV/root Hz	OK
Channel 3	3	1.45 µV/root Hz	OK
Channel 4	4	1.89 µV/root Hz	OK

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Unit......T_TOP_P4.....Serial No Test EngineerXen..... Date18/11/09.....

Drive Card ID.....T_TOP4P..... Monitor Card ID...Mon24P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- **15. Final Assembly**

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P4.....Serial No Test Engineer....Xen.... Date18/11/09.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104, and C105 on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Unit	T TOP P4	Serial No
Test Engineer	.Xen	
Date	17/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	.T_TOP_	P4Serial No
Test Engineer	.Xen	· · · · · · · · · · · · · · · · · · ·
Date	.17/11/09	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P4.....Serial No Test EngineerXen..... Date17/11/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P4	Serial No
Test Engineer	Xen	
Date	17/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indio	OK?	
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2		\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit......T_TOP_P4.....Serial No Test EngineerXen.... Date18/11/09.....

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.755	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.754	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.758	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.755	\checkmark

1v across load resistor

Unit	.T_TOP_F	P4Serial No
Test Engineer	Xen	
Date	.18/11/09.	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Unit	.T_TOP_	P4Serial No
Test Engineer	Xen	· ······

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.7		
10Hz	-30.9		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.9		
10Hz	-30.7		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

Unit......T_TOP_P4.....Serial No Test EngineerXen..... Date18/11/09.....

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	42.6	\checkmark
CH1 Negative		CH1 IC5	43.6	\checkmark
CH2 Positive	12.20	CH2 IC1	44.8	\checkmark
CH2 Negative		CH2 IC5	45.0	\checkmark
CH3 Positive	12.20	CH3 IC1	44.5	\checkmark
CH3 Negative		CH3 IC5	45.0	\checkmark
CH4 Positive	12.20	CH4 IC1	42.3	\checkmark
CH4 Negative		CH4 IC5	43.3	\checkmark

Unit.....Serial No Test EngineerRMC... Date30/11/09 – 10:00 am

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-99.6	-159.6
Ch2	-160dB	-100.38	-160.38
Ch3	-160dB	-101.6	-161.6
Ch4	-160dB	-100.0	-160.0

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nV/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P4.....Serial No Test EngineerXen..... Date18/11/09.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
2	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark
3	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
4	39.4	3.35	85.0mA	120mA	84.8mA	\checkmark

Unit.....TTOP4P.....Serial No Test EngineerRMC Date16/12/09

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. $\sqrt{}$ Test with a DVM that none of the tabs are shorted to chassis. $\sqrt{}$

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{\text{Record below}}$:

UoB box ID	TTOP4P
Driver board ID	TTOP4P
Driver board Drawing No/Issue No	D0902747 v6
Driver board Serial Number	TTOP4P
Monitor board ID	MON24P
Monitor board Drawing No/Issue No	DO70480_4_K
Monitor board Serial Number	MON24P

10. Check the security of any modification wires. None

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

Unit.....Serial No Test EngineerRMC Date10/2/10 – 9:30 am

16. Triple Top Test Plan Addendum

It was found that a problem existed on the Noise Monitor outputs. This was due to the lack of compensating capacitors on the Voltage Monitor AD797 output buffer amplifiers on the Driver Boards.

33pf capacitors need to be added to each channel in the places designated for C102 and C103.

Capacitors Added?

Channel 1 C102	OK
Channel 1 C103	OK
Channel 2 C102	OK
Channel 2 C103	OK
Channel 3 C102	OK
Channel 3 C103	OK
Channel 4 C102	OK
Channel 4 C103	OK

The noise output from each channel then needs to be measured again. For convenience, these results may be added to section 13 of this report in place of the previous readings.

Noise monitor tests

Connect the 39 ohm loads, the blanking plug in place on the drive input, and the relay test box.

Switch in all filters.

Connect power, and power up the unit. Measure the noise output on the noise monitor plug in μ V/root Hz, on the HP Dynamic signal Analyser, the preamplifier with a gain of 10, and Stuart Aston's noise measurement set up. Check that it is less than 3 μ V/root Hz with respect to ground, which may be found on sockets number 5, 6, 7, 8 or 9.

	Noise Monitor socket pin number	Noise	< 3µV/rt Hz?
Channel 1	1	1.41	OK
Channel 2	2	1.80	OK
Channel 3	3	2.1	OK
Channel 4	4	2.17	OK

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Unit......T_TOP_P5.....Serial No Test EngineerXen..... Date19/11/09.....

Drive Card ID.....T_TOP5P..... Monitor Card ID...Mon25P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly
- 16. Addendum

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	T_TOP_P5	Serial No
Test Engineer	.Xen	
Date	19/11/09	

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit.......T_TOP_P5.....Serial No Test EngineerXen..... Date18/11/09.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104, and C105 on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Unit	T_TOP_	P5Serial No
Test Engineer	.Xen	
Date	.18/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	T_TO	P_P5	Serial No	
Test Engineer	.Xen	-		
Date	.18/11/	09		

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P5.....Serial No Test EngineerXen..... Date18/11/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	Г_TOP_P5	Serial No
Test Engineer	Ken	
Date1	8/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit......T_TOP_P5.....Serial No Test EngineerXen..... Date18/11/09.....

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.761	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.753	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.757	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.758	\checkmark

1v across load resistor

Unit	.T_TOP_	P5Serial No
Test Engineer	.Xen	
Date	.18/11/09	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

UnitT	_TOP_F	25Serial No
Test EngineerX	en	

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.8		
10Hz	-30.8		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.2		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		
Unit......T_TOP_P5.....Serial No Test EngineerXen..... Date19/11/09.....

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	41.6	\checkmark
CH1 Negative		CH1 IC5	44.0	\checkmark
CH2 Positive	12.19	CH2 IC1	42.8	\checkmark
CH2 Negative		CH2 IC5	45.7	\checkmark
CH3 Positive	12.19	CH3 IC1	42.3	\checkmark
CH3 Negative		CH3 IC5	43.3	\checkmark
CH4 Positive	12.19	CH4 IC1	41.6	\checkmark
CH4 Negative		CH4 IC5	42.6	\checkmark

Unit.....Serial No Test Engineer Date

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.4	-160.4
Ch2	-160dB	-100.5	-160.5
Ch3	-160dB	-96	-156
Ch4	-160dB	-99.7	-159.7

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nV/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P5.....Serial No Test EngineerXen..... Date19/11/09.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
2	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark
3	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
4	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark

Unit.....TTOP5.....Serial No Test EngineerRMC Date16/12/09

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. $\sqrt{}$ Test with a DVM that none of the tabs are shorted to chassis. $\sqrt{}$

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{\text{Record below}}$:

UoB box ID	TTOP5P
Driver board ID	TTOP5P
Driver board Drawing No/Issue No	D0902747 v6
Driver board Serial Number	TTOP5P
Monitor board ID	MON25P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON25P

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

Unit.....TTOP5.....Serial No Test EngineerRMC Date24/2/10

FINAL NOISE MEASUREMENTS

Measure the noise output and noise monitor outputs of the completed unit. The extra screening provided by the enclosure protects the unit against extraneous noise, so the results will be more consistent.

If a channel exceeds the limits, replace the noisy ICs, note the work done. Re-measure and record the final result.

Output Noise

	Spec in dB V/√Hz	Measured @ 10Hz (dB)	-60dB =	Measured in nV/√Hz	OK (+/-1dB) ?		
Ch1	-160dB	-100.17	-160.17	6.7	OK		
Ch2	-160dB	-100.1	-160.1	6.8	OK		
Ch3	-160dB	-100.1	-160.1	6.8	OK		
Ch4	-160dB	-101.34	-161.37	5.9	OK		

Measure the noise output at 10 Hz.

Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V/\sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain.

Ch.	Output	/(Pre-amplifier gain)	Maximum value	Pass/Fail
1	14	1.4	2.9 µV/√Hz	OK
2	16.6	1.66	2.9 µV/√Hz	OK
3	20	2.0	2.9 µV/√Hz	OK
4	12	1.2	2.9 µV/√Hz	OK

Repair work (if any)

Channel 3 IC1 and IC4 changed Channels 1 & 2 monitor ICs IC1 and IC6 changed for LT1128 s

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP6P..... Monitor Card ID...Mon26P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	T_TOP_	P6Serial No
Test Engineer	.Xen	
Date	17/11/09	

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P6.....Serial No Test EngineerXen..... Date17/11/09.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104, and C105 on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

UnitT	_TOP_P6	Serial No
Test EngineerX	en	
Date17	7/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	.T_TOP	P6	Serial No	
Test Engineer	.Xen	-		
Date	.17/11/0	9		

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P6.....Serial No Test EngineerXen..... Date17/11/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T TOP P6	Serial No
Test Engineer	.Xen	
Date	.17/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit......T_TOP_P6.....Serial No Test EngineerXen..... Date17/11/09.....

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter Theoretical		Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 1	RMS Current	0.75v dc	0.758	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.757	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.754	\checkmark

1v across load resistor

Unit	T_TOP_	P6Serial No
Test Engineer	.Xen	
Date	17/11/09	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket	Monitor output?	Expected value	OK?
		Pin	-		
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Unit	.T_TOP_	P6Serial No
Test Engineer	.Xen	-

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

Unit......T_TOP_P6.....Serial No Test EngineerXen..... Date17/11/09.....

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.21	CH1 IC1	43.3	\checkmark
CH1 Negative		CH1 IC5	43.1	
CH2 Positive	12.21	CH2 IC1	43.3	\checkmark
CH2 Negative		CH2 IC5	43.1	\checkmark
CH3 Positive	12.21	CH3 IC1	41.4	\checkmark
CH3 Negative		CH3 IC5	44.3	\checkmark
CH4 Positive	12.21	CH4 IC1	43.1	\checkmark
CH4 Negative		CH4 IC5	44.5	

Unit	.T_TOP_	P6Serial No	
Test Engineer	.RMC	· · · · · · · · · · · · · · · · · · ·	
Date	.1/12/09		

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.5	-161.5
Ch2	-160dB	-101.8	-161.8
Ch3	-160dB	-98.2	-158.2
Ch4	-160dB	-102	-162

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P6.....Serial No Test EngineerXen..... Date17/11/09.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
2	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark
3	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
4	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark

Unit.....TTOP06P...Serial No Test EngineerRMC Date16/12/09

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. $\sqrt{}$ Test with a DVM that none of the tabs are shorted to chassis. $\sqrt{}$

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{\text{Record below}}$:

UoB box ID	TTOP06P
Driver board ID	TTOP06P
Driver board Drawing No/Issue No	D0902747 v6
Driver board Serial Number	TTOP06P
Monitor board ID	MON26P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON26P

10. Check the security of any modification wires. None

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

UnitT Top 6 P.	Serial No
Test Engineer	RMC
Date	14/1/10

PROBLEM REPORT

Problems

After assembly, a quick test on filter operation was performed. Link W4 on channel 1 was found to be floating.

Cause

The problem was caused by link W4 breaking away at both ends.

Solution

Link W4 was repaired with wire links at both ends, and reinforced with rapid Araldite.

Confirmation

10 Hz filter check performed successfully.

Unit re-assembled and final assembly tests repeated.

Unit.....Serial No Test EngineerRMC Date10/1/10

16. Triple Top Test Plan Addendum

It was found that a problem existed on the Noise Monitor outputs. This was due to the lack of compensating capacitors on the Voltage Monitor AD797 output buffer amplifiers on the Driver Boards.

33pf capacitors need to be added to each channel in the places designated for C102 and C103.

Capacitors Added?

Channel 1 C102	OK
Channel 1 C103	OK
Channel 2 C102	OK
Channel 2 C103	OK
Channel 3 C102	OK
Channel 3 C103	OK
Channel 4 C102	OK
Channel 4 C103	OK

The noise output from each channel then needs to be measured again. For convenience, these results may be added to section 13 of this report in place of the previous readings.

Noise monitor tests

Connect the 39 ohm loads, the blanking plug in place on the drive input, and the relay test box.

Switch in all filters.

Connect power, and power up the unit. Measure the noise output on the noise monitor plug in μ V/root Hz, on the HP Dynamic signal Analyser, the preamplifier with a gain of 10, and Stuart Aston's noise measurement set up. Check that it is less than 3 μ V/root Hz with respect to ground, which may be found on sockets number 5, 6, 7, 8 or 9.

Unit.....TTOP 6 P.....Serial No Test EngineerRMC Date25/2/10

FINAL NOISE MEASUREMENTS

Measure the noise output and noise monitor outputs of the completed unit. The extra screening provided by the enclosure protects the unit against extraneous noise, so the results will be more consistent.

If a channel exceeds the limits, replace the noisy ICs, note the work done. Re-measure and record the final result.

Output Noise

	Spec in dB V/√Hz	Measured @ 10Hz (dB)	-60dB =	Measured in nV/√Hz	OK (+/-1dB) ?	
Ch1	-160dB	-101.5	-161.5	6.0 nV/√Hz	OK	
Ch2	-160dB	-101.3	-161.3	5.9 nV/√Hz	OK	
Ch3	-160dB	-100.03	-160.03	6.9 nV/√Hz	OK	
Ch4	-160dB	-101.54	-161.54	5.8 nV/√Hz	OK	

Measure the noise output at 10 Hz.

Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V/\sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain.

Ch.	Output	/(Pre-amplifier gain)	Maximum value	Pass/Fail
1	16.4 µV/√Hz	1.64 µV/√Hz	2.9 µV/√Hz	OK
2	18.0 µV/√Hz	1.80 µV/√Hz	2.9 µV/√Hz	OK
3	14.9 µV/√Hz	1.49 µV/√Hz	2.9 µV/√Hz	OK
4	15.3 µV/√Hz	1.53 µV/√Hz	2.9 µV/√Hz	OK

Repair work (if any)

Monitor: IC1 Ch 1 replaced IC6 Ch 4 changed

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.ukDepartment of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Unit.......T_TOP_P7.....Serial No Test EngineerXen..... Date23/11/09.....

Drive Card ID.....T_TOP7P..... Monitor Card ID...Mon27P....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- **15. Final Assembly**

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P7.....Serial No Test EngineerXen..... Date23/11/09.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P7.....Serial No Test EngineerXen..... Date23/11/09.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104, and C105 on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Unit	.T_TOP_P7	Serial No
Test Engineer	.Xen	
Date	.23/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	T_TOP_	P7Serial No
Test Engineer	.Xen	
Date	23/11/09	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P7.....Serial No Test EngineerXen..... Date23/11/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.
Unit	Г_ТОР_Р7	Serial No	
Test Engineer>	Xen		
Date	23/11/09		

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indio	OK?	
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2		\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4		\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	
Ch4			

Unit......T_TOP_P7.....Serial No Test EngineerXen.... Date23/11/09.....

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 1	RMS Current	0.75v dc	0.759	
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	
	Pin 4	RMS Current	0.75v dc	0.755	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.749	
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	
	Pin 10	RMS Current	0.75v dc	0.753	

1v across load resistor

Unit	T_TOP_P	7Serial No
Test Engineer	.Xen	
Date	23/11/09	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Unit	.T_TOP_F	P7Serial No
Test Engineer	.Xen	

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.8		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

Unit......T_TOP_P7.....Serial No Test EngineerXen..... Date23/11/09.....

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.23	CH1 IC1	41.6	\checkmark
CH1 Negative		CH1 IC5	42.8	\checkmark
CH2 Positive	12.23	CH2 IC1	42.3	\checkmark
CH2 Negative		CH2 IC5	42.3	\checkmark
CH3 Positive	12.23	CH3 IC1	41.6	\checkmark
CH3 Negative		CH3 IC5	43.1	\checkmark
CH4 Positive	12.23	CH4 IC1	42.8	\checkmark
CH4 Negative		CH4 IC5	43.6	\checkmark

Unit.....Serial No Test EngineerRMC Date15/2/10

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-99.0	-159,0
Ch2	-160dB	-103.1	-163.1
Ch3	-160dB	-96.0	-156.0
Ch4	-160dB	-101.5	-101.5

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nV/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P7.....Serial No Test EngineerXen..... Date23/11/09.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
2	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark
3	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
4	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark

Unit......T_TOP_P7.....Serial No Test Engineer Date

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. $\sqrt{}$ Test with a DVM that none of the tabs are shorted to chassis.

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{\text{Record below}}$:

UoB box ID	TTOPP7
Driver board ID	TTOPP7
Driver board Drawing No/Issue No	D0902747 V6
Driver board Serial Number	TTOPP7
Monitor board ID	MON27P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON27P

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. \checkmark

UnitT Top 7 P	Serial No
Test EngineerRMC	
Date	

PROBLEM REPORT

Problems

After assembly, a quick test on filter operation was performed. Link W4 on channel 4 was found to be disconnected from the capacitor.

Cause

The problem was caused by link W4 breaking away at one end.

Solution

Link W4 was repaired with a wire links top the capacitor, and reinforced with rapid Araldite.

Confirmation

10 Hz filter check performed successfully.

Unit re-assembled and final assembly tests repeated.

Unit.....Serial No Test Engineer Date10/2/10

16. Triple Top Test Plan Addendum

It was found that a problem existed on the Noise Monitor outputs. This was due to the lack of compensating capacitors on the Voltage Monitor AD797 output buffer amplifiers on the Driver Boards.

33pf capacitors need to be added to each channel in the places designated for C102 and C103.

Capacitors Added?

oupdontor of radioar	
Channel 1 C102	OK
Channel 1 C103	OK
Channel 2 C102	OK
Channel 2 C103	OK
Channel 3 C102	OK
Channel 3 C103	OK
Channel 4 C102	OK
Channel 4 C103	OK

The noise output from each channel then needs to be measured again. For convenience, these results may be added to section 13 of this report in place of the previous readings.

15. Noise monitor tests

Connect the 39 ohm loads, the blanking plug in place on the drive input, and the relay test box.

Switch in all filters.

Connect power, and power up the unit. Measure the noise output on the noise monitor plug in μ V/root Hz, on the HP Dynamic signal Analyser, the preamplifier with a gain of 10, and Stuart Aston's noise measurement set up. Check that it is less than 3 μ V/root Hz with respect to ground, which may be found on sockets number 5, 6, 7, 8 or 9.

	Noise Monitor socket pin number	Noise	< 3µV/rt Hz?
Channel 1	1	4.6	
Channel 2	2	5.1	
Channel 3	3	2.47	
Channel 4	4	1.37	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Unit.......T_TOP_P8.....Serial No Test EngineerXen..... Date23/11/09.....

Drive Card ID.....T_TOP8P..... Monitor Card ID...Mon28P....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P8.....Serial No Test EngineerXen..... Date23/11/09.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104, and C105 on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Unit	T TOP P8	Serial No
Test Engineer	Xen	
Date	23/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	T TOP	P8Serial No
Test Engineer	.Xen	•••••
Date	.23/11/09	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P8.....Serial No Test EngineerXen..... Date23/11/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_	²⁸ Serial No
Test Engineer	Xen	
Date	23/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	T TOP	P8Serial No
Test Engineer	.Xen	
Date	.23/11/09	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 1	RMS Current	0.75v dc	0.759	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.749	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.758	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.753	\checkmark

1v across load resistor

Unit	T_TOP_	P8Serial No
Test Engineer	.Xen	
Date	.23/11/09	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket	Monitor output?	Expected value	OK?
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Unit......T_TOP_P8.....Serial No Test EngineerXen.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

Unit......T_TOP_P8.....Serial No Test EngineerXen..... Date23/11/09.....

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	41.8	\checkmark
CH1 Negative		CH1 IC5	43.1	\checkmark
CH2 Positive	12.20	CH2 IC1	40.6	\checkmark
CH2 Negative		CH2 IC5	41.4	\checkmark
CH3 Positive	12.20	CH3 IC1	40.1	\checkmark
CH3 Negative		CH3 IC5	41.8	\checkmark
CH4 Positive	12.20	CH4 IC1	40.1	\checkmark
CH4 Negative		CH4 IC5	42.8	\checkmark

Unit.....Serial No Test EngineerRMC Date1/12/09

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-102.4	-162.4
Ch2	-160dB	-102.7	-162.7
Ch3	-160dB	-104.3	-164.3
Ch4	-160dB	-101.7	-161.7

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nV/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P8.....Serial No Test EngineerXen..... Date23/11/09.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore	Spec	Spec	Pass?
			1 =	(peak)	(r.m.s)	
1	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
2	39.4	3.37	85.5mA	120mA	84.8mA	\checkmark
3	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
4	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark

Unit	T_TOP_	P8Serial No
Test Engineer	.RMC	-
Date	.16/12/0	9

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary \checkmark . Test with a DVM that none of the tabs are shorted to chassis.

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{\text{Record below}}$:

UoB box ID	TTOPP8
Driver board ID	TTOPP8
Driver board Drawing No/Issue No	D0902747 v 6
Driver board Serial Number	TTOPP8
Monitor board ID	MON28
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON28

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

Unit.....Serial No Test Engineer Date

FINAL NOISE MEASUREMENTS

Measure the noise output and noise monitor outputs of the completed unit. The extra screening provided by the enclosure protects the unit against extraneous noise, so the results will be more consistent.

If a channel exceeds the limits, replace the noisy ICs, note the work done. Re-measure and record the final result.

Output Noise

	Spec in dB V/√Hz	Measured @ 10Hz (dB)	-60dB =	Measured in nV/√Hz	OK (+/-1dB) ?	
Ch1	-160 dB	-99.3	-159.3		OK	
Ch2	-160 dB	-97.2	-157.2		poor	
Ch3	-160 dB	-100.5	-160.5		OK	
Ch4	-160 dB	-100.0	-160.0		OK	

Measure the noise output at 10 Hz.

Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V/\sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain.

Ch.	Output	/(Pre-amplifier gain)	Maximum value	Pass/Fail
1	20.1	2.01	2.9 µV/√Hz	OK
2	17.2	1.72	2.9 µV/√Hz	OK
3	13.3	1.33	2.9 µV/√Hz	OK
4	13.9	1.39	2.9 µV/√Hz	OK

Repair work (if any)

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Unit.......T_TOP_P9.....Serial No Test EngineerXen..... Date24/11/09.....

Drive Card ID.....T_TOP9P..... Monitor Card ID...Mon29P....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly
- 16. Addendum

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit.......T_TOP_P9.....Serial No Test EngineerXen..... Date24/11/09.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P9.....Serial No Test EngineerXen..... Date24/11/09.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: \checkmark

Removed capacitors C102, C103, C104, and C105 on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Unit	.T TOP P9	Serial No
Test Engineer	.Xen	
Date	.24/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P9.....Serial No Test EngineerXen..... Date24/11/09.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload
5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P9.....Serial No Test EngineerXen..... Date24/11/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_F	9Serial No
Test Engineer	Xen	
Date	24/11/09.	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	T TOP	P9Serial No
Test Engineer	Xen	
Date	.24/11/09	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 1	RMS Current	0.75v dc	0.754	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.759	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.755	\checkmark

1v across load resistor

Unit	T TOP	P9Serial No
Test Engineer	.Xen	
Date	.24/11/09	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Unit......T_TOP_P9.....Serial No Test EngineerXen.....

Date24/11/09.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.9		
10Hz	-30.7		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

Unit......T_TOP_P9.....Serial No Test EngineerXen..... Date24/11/09.....

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	42.8	\checkmark
CH1 Negative		CH1 IC5	45.0	\checkmark
CH2 Positive	12.19	CH2 IC1	41.6	\checkmark
CH2 Negative		CH2 IC5	42.8	\checkmark
CH3 Positive	12.19	CH3 IC1	42.3	\checkmark
CH3 Negative		CH3 IC5	42.3	\checkmark
CH4 Positive	12.19	CH4 IC1	42.1	\checkmark
CH4 Negative		CH4 IC5	43.8	\checkmark

Unit.....Serial No Test EngineerRMC Date10/2/10

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-99.2	-159.2
Ch2	-160dB	-96.6	-156.6
Ch3	-160dB	-100.0	-160.0
Ch4	-160dB	-100.9	-160.9

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nV/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P9.....Serial No Test EngineerXen..... Date24/11/09.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore	Spec	Spec	Pass?
			l =	(peak)	(r.m.s)	
1	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
2	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark
3	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
4	39.4	3.35	85.0mA	120mA	84.8mA	\checkmark

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. $\sqrt{}$ Test with a DVM that none of the tabs are shorted to chassis.

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{}$ Record below:

UoB box ID	TTOPP9
Driver board ID	TTOPP9
Driver board Drawing No/Issue No	D0903747 v6
Driver board Serial Number	TTOPP9
Monitor board ID	MON28P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON28P

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

Unit.....Serial No Test Engineer Date

16. Triple Top Test Plan Addendum

It was found that a problem existed on the Noise Monitor outputs. This was due to the lack of compensating capacitors on the Voltage Monitor AD797 output buffer amplifiers on the Driver Boards.

33pf capacitors need to be added to each channel in the places designated for C102 and C103.

Capacitors Added?

Channel 1 C102	OK
Channel 1 C103	OK
Channel 2 C102	OK
Channel 2 C103	OK
Channel 3 C102	OK
Channel 3 C103	OK
Channel 4 C102	OK
Channel 4 C103	OK

The noise output from each channel then needs to be measured again. For convenience, these results may be added to section 13 of this report in place of the previous readings.

Noise monitor tests

Connect the 39 ohm loads, the blanking plug in place on the drive input, and the relay test box.

Switch in all filters.

Connect power, and power up the unit. Measure the noise output on the noise monitor plug in μ V/root Hz, on the HP Dynamic signal Analyser, the preamplifier with a gain of 10, and Stuart Aston's noise measurement set up. Check that it is less than 3 μ V/root Hz with respect to ground, which may be found on sockets number 5, 6, 7, 8 or 9.

	Noise Monitor socket pin number	Noise	< 3µV/rt Hz?
Channel 1	1	2.34	OK
Channel 2	2	1.87	OK
Channel 3	3	2.29	OK
Channel 4	4	1.4	OK

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP10P..... Monitor Card ID...Mon30P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- **15. Final Assembly**
- 16. Addendum

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_I	P10	Serial No	
Test Engineer	Xen			
Date	.24/11/09			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P10.....Serial No Test EngineerXen..... Date23/11/09.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104, and C105 on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Unit	.T_TOP_P10	Serial No
Test Engineer	.Xen	
Date	.23/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	T_TOP_P10	.Serial No
Test Engineer	Xen	
Date	23/11/09	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P10.....Serial No Test EngineerXen..... Date23/11/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P10	Serial No
Test Engineer	Xen	
Date	23/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indio	OK?	
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2		\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	

Unit	T_TOP_P	10	Serial No	
Test Engineer	Xen			
Date	23/11/09			

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.756	\checkmark
	Pin 1	RMS Current	0.75v dc	0.765	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 4	RMS Current	0.75v dc	0.764	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.756	\checkmark
	Pin 7	RMS Current	0.75v dc	0.759	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 10	RMS Current	0.75v dc	0.761	\checkmark

1v across load resistor

Unit	.T_TOP_P10)Serial No
Test Engineer	Xen	
Date	.23/11/09	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket	Monitor output?	Expected value	OK?
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Unit	T_TOP_P10	Serial No
Test Engineer	Xen	

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.2		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.21	CH1 IC1	40.4	\checkmark
CH1 Negative		CH1 IC5	42.3	\checkmark
CH2 Positive	12.21	CH2 IC1	40.6	\checkmark
CH2 Negative		CH2 IC5	41.6	\checkmark
CH3 Positive	12.21	CH3 IC1	42.3	\checkmark
CH3 Negative		CH3 IC5	42.3	\checkmark
CH4 Positive	12.21	CH4 IC1	41.1	\checkmark
CH4 Negative		CH4 IC5	42.6	\checkmark

UnitTTOP10P	Serial No
Test EngineerR	MC
Date 10	0/2/10

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.2	-161.2dB
Ch2	-160dB	-96.4	-156.4dB
Ch3	-160dB	-99.5	-159.5dB
Ch4	-160dB	-99.9	-159.9dB

Note : Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

Channel 2 initially noisy, so IC4 and iC8 changed (797s)

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore	Spec	Spec	Pass?
			l =	(peak)	(r.m.s)	
1	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
2	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark
3	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
4	39.4	3.35	85.0mA	120mA	84.8mA	\checkmark

Unit.....TTOP10P.....Serial No Test EngineerRMC Date17/12/09

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. $\sqrt{}$

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. \sqrt{T} est with a DVM that none of the tabs are shorted to chassis. \sqrt{T}

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{\text{Record below}}$:

UoB box ID	TTOP10P
Driver board ID	TTOP10P
Driver board Drawing No/Issue No	D0902747 V6
Driver board Serial Number	TTOP10P
Monitor board ID	MON30P
Monitor board Drawing No/Issue No	D070480_04_K
Monitor board Serial Number	MON30P

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

Unit.....Serial No Test EngineerRMC Date10/2/10

16. Triple Top Test Plan Addendum

It was found that a problem existed on the Noise Monitor outputs. This was due to the lack of compensating capacitors on the Voltage Monitor AD797 output buffer amplifiers on the Driver Boards.

33pf capacitors need to be added to each channel in the places designated for C102 and C103.

Capacitors Added?

Channel 1 C102	OK
Channel 1 C103	OK
Channel 2 C102	OK
Channel 2 C103	OK
Channel 3 C102	OK
Channel 3 C103	OK
Channel 4 C102	OK
Channel 4 C103	OK

The noise output from each channel then needs to be measured again. For convenience, these results may be added to section 13 of this report in place of the previous readings.

Noise monitor tests

Connect the 39 ohm loads, the blanking plug in place on the drive input, and the relay test box.

Switch in all filters.

Connect power, and power up the unit. Measure the noise output on the noise monitor plug in μ V/root Hz, on the HP Dynamic signal Analyser, the preamplifier with a gain of 10, and Stuart Aston's noise measurement set up. Check that it is less than 3 μ V/root Hz with respect to ground, which may be found on sockets number 5, 6, 7, 8 or 9.

	Noise Monitor socket pin number	Noise µV/√Hz	< 3µV/rt Hz?
Channel 1	1	1.4	OK
Channel 2	2	1.8	OK
Channel 3	3	1.825	OK
Channel 4	4	1.23	OK

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Unit......T_TOP_P11.....Serial No Test EngineerXen..... Date9/8/10.....

Drive Card ID.....T_TOP11P..... Monitor Card ID...Mon31P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P11.....Serial No Test EngineerXen..... Date9/8/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH2.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.
Unit......T_TOP_P11.....Serial No Test EngineerXen..... Date24/11/09.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out to AA	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P11.....Serial No Test EngineerXen..... Date24/11/09.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P11.....Serial No Test EngineerXen..... Date24/11/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit......T_TOP_P11.....Serial No Test EngineerXen..... Date24/11/09.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator		
	ON	ON OFF		
Ch1	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	
Ch4		\checkmark	\checkmark	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter Theoretical		Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 1	RMS Current	0.75v dc	0.755	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.753	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 10	RMS Current	0.75v dc	0.753	\checkmark

1v across load resistor

Unit......T_TOP_P11.....Serial No Test EngineerXen..... Date24/11/09.....

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket	Monitor output?	Expected value	OK?
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.67	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.16	2.9µV√Hz	\checkmark
2		1.05	2.9µV√Hz	\checkmark
3		0.95	2.9µV√Hz	\checkmark
4		1.74	2.9µV√Hz	\checkmark

Unit	T TOP	P11	.Serial No .	
Test Engineer	Xen			
Date	24/11/09			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.9		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	43.6	\checkmark
CH1 Negative		CH1 IC5	44.0	\checkmark
CH2 Positive	12.19	CH2 IC1	44.3	\checkmark
CH2 Negative		CH2 IC5	43.8	\checkmark
CH3 Positive	12.19	CH3 IC1	43.6	\checkmark
CH3 Negative		CH3 IC5	44.8	\checkmark
CH4 Positive	12.19	CH4 IC1	43.6	\checkmark
CH4 Negative		CH4 IC5	44.8	\checkmark

Unit......T_TOP_P11.....Serial No Test EngineerRMC (1, 3 & 4) / Xen (2) Date1/12/09 / 28/7/10

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.8	-161.8
Ch2	-160dB	-100.1	-160.1
Ch3	-160dB	-100.1	-160.1
Ch4	-160dB	-100.5	-160.5

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P11.....Serial No Test EngineerXen..... Date26/7/10.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
2	39.4			120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP11P.....Serial No Test EngineerRMC Date25/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP11P
Driver board ID	TTOP11P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP11P
Monitor board ID	MON31P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON31P

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Unit......T_TOP_P12.....Serial No Test EngineerXen..... Date9/8/10.....

Drive Card ID.....T_TOP12P..... Monitor Card ID...Mon32P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P12.....Serial No Test EngineerXen..... Date9/8/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit	T_TOP_P12	Serial No
Test Engineer	Xen	
Date	25/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	T_TOP_P12	Serial No
Test Engineer	Xen	
Date	25/11/09	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P12.....Serial No Test EngineerXen..... Date25/11/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P12	.Serial No
Test Engineer	Xen	
Date	25/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	OK?	
	ON OFF		
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON OFF		
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

Unit	T TOP	P12	Serial No .	
Test Engineer	Xen			
Date	25/11/09			

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.757	\checkmark
	Pin 1	RMS Current	0.75v dc	0.758	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 4	RMS Current	0.75v dc	0.763	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 7	RMS Current	0.75v dc	0.752	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 10	RMS Current	0.75v dc	0.757	\checkmark

1v across load resistor

Unit	T_TOP_P12	Serial No
Test Engineer	Xen	
Date	.25/11/09	

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	Pin	output ?	value	
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.04	2.9µV√Hz	\checkmark
2		1.76	2.9µV√Hz	\checkmark
3		1.01	2.9µV√Hz	\checkmark
4		1.14	2.9µV√Hz	\checkmark

Unit	T TOP	P12	Serial No	
Test Engineer .	Xen			
Date	25/11/09			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	3.6		
10Hz	-24.2		
100Hz	-41.9		
1kHz	-43.2		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.9		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?			
Ch1	\checkmark			
Ch2	\checkmark			
Ch3	\checkmark			
Ch4	\checkmark			

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	42.6	\checkmark
CH1 Negative		CH1 IC5	44.5	\checkmark
CH2 Positive	12.20	CH2 IC1	44.0	\checkmark
CH2 Negative		CH2 IC5	42.8	\checkmark
CH3 Positive	12.20	CH3 IC1	43.6	\checkmark
CH3 Negative		CH3 IC5	43.1	\checkmark
CH4 Positive	12.20	CH4 IC1	43.3	\checkmark
CH4 Negative		CH4 IC5	45.0	\checkmark

Unit.....Serial No Test EngineerRMC Date30/11/09

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-96.8	-156.8
Ch2	-160dB	-100.7	-160.7
Ch3	-160dB	-99.0	-159.0
Ch4	-160dB	-98.0	-158.0

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nV/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7Ma	120mA	84.8mA	\checkmark

Unit.....TTOP12P.....Serial No Test EngineerRMC Date25/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. $\sqrt{}$

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP12P
Driver board ID	TTOP12P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP12P
Monitor board ID	MON32P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON32P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP13P..... Monitor Card ID...Mon33P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_	P13	Serial No	
Test Engineer	Xen			
Date	.10/8/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.
Unit	.T_TOP_P13	Serial No
Test Engineer	Xen	
Date	.26/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	.T_TOP_P13	Serial No
Test Engineer	Xen	
Date	.26/11/09	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P13	Serial No
Test Engineer	Xen	
Date	26/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

Unit	T_TOP_P	3Serial No	
Test Engineer	Xen		
Date			

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.756	\checkmark
	Pin 1	RMS Current	0.75v dc	0.756	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.757	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 7	RMS Current	0.75v dc	0.759	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 10	RMS Current	0.75v dc	0.749	\checkmark

1v across load resistor

Unit	T_TOP_P13	.Serial No
Test Engineer	Xen	
Date	.26/11/09	

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.43	2.9µV√Hz	\checkmark
2		1.46	2.9µV√Hz	\checkmark
3		0.92	2.9µV√Hz	\checkmark
4		1.52	2.9µV√Hz	\checkmark

Unit	T_TOP_P13	Serial No
Test Engineer	Xen	
D (00/44/00	

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.8		
10Hz	-30.7		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.8		
10Hz	-30.8		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.8		
10Hz	-30.8		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	40.6	\checkmark
CH1 Negative		CH1 IC5	42.6	\checkmark
CH2 Positive	12.19	CH2 IC1	42.6	\checkmark
CH2 Negative		CH2 IC5	43.8	\checkmark
CH3 Positive	12.19	CH3 IC1	43.6	\checkmark
CH3 Negative		CH3 IC5	44.0	\checkmark
CH4 Positive	12.19	CH4 IC1	42.6	\checkmark
CH4 Negative		CH4 IC5	43.6	\checkmark

Unit.....Serial No Test EngineerRMC Date30/11/09

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-104.3	-164.3
Ch2	-160dB	-102.7	-162.7
Ch3	-160dB	-103.3	-163.3
Ch4	-160dB	-104.5	-164.5

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nV/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit	TTOP13P	Serial No
Test Engineer	RMC	
Date		

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP13P
Driver board ID	TTOP13P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP13P
Monitor board ID	MON33P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON33P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP14P..... Monitor Card ID...Mon34P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_I	P14	.Serial No	
Test Engineer	.Xen			
Date	.10/8/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH1.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P14.....Serial No Test EngineerXen..... Date26/11/09.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit......T_TOP_P14.....Serial No Test EngineerXen..... Date26/11/09.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 1	RMS Current	0.75v dc	0.758	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.757	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.754	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.758	\checkmark

1v across load resistor

Unit	T_TOP_P14	Serial No
Test Engineer	Xen	
Date	.26/11/09	

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	Pin	output ?	value	
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.39	2.9µV√Hz	\checkmark
2		0.95	2.9µV√Hz	\checkmark
3		1.01	2.9µV√Hz	\checkmark
4		1.37	2.9µV√Hz	\checkmark

Unit	T TOP I	P14	Serial No .	
Test Engineer	Xen			
Date				

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.9		
10Hz	-30.7		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	42.6	\checkmark
CH1 Negative		CH1 IC5	43.3	\checkmark
CH2 Positive	12.20	CH2 IC1	42.8	\checkmark
CH2 Negative		CH2 IC5	43.6	\checkmark
CH3 Positive	12.20	CH3 IC1	43.3	\checkmark
CH3 Negative		CH3 IC5	44.5	\checkmark
CH4 Positive	12.20	CH4 IC1	42.3	\checkmark
CH4 Negative		CH4 IC5	43.3	\checkmark

Unit.....T_TOP_P14.....Serial No Test EngineerRMC (2, 3 & 4) / Xen (1)..... Date30/11/09 / 28/7/10.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-102.4	-162.4
Ch2	-160dB	-100.3	-160.3
Ch3	-160dB	-100.1	-160.1
Ch4	-160dB	-100.5	-160.5

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification.

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit	TTOP14P	Serial No	
Test Engineer	RMC		
Date			

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP14P
Driver board ID	TTOP14P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP14P
Monitor board ID	MON34P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON34P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP15P..... Monitor Card ID...Mon35P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P15.....Serial No Test EngineerXen..... Date22/7/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected the joints on the Mantis microscope.
Unit	.T_TOP_P15	Serial No
Test Engineer	.Xen	
Date	.26/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	$\overline{\mathbf{v}}$
25	0V	Return	A2	

Unit	.T_TOP_P15	Serial No
Test Engineer	Xen	
Date	.26/11/09	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P15	Serial No	
Test Engineer	Xen		
Date	26/11/09		

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 1	RMS Current	0.75v dc	0.757	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.757	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 7	RMS Current	0.75v dc	0.762	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.755	\checkmark

1v across load resistor

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket	Monitor output?	Expected value	OK?
		Pin			
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.67	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.29	2.9µV√Hz	\checkmark
2		1.27	2.9µV√Hz	\checkmark
3		0.85	2.9µV√Hz	\checkmark
4		0.99	2.9µV√Hz	\checkmark

Unit	T TOP	P15	Serial No	
Test Engineer .	Xen			
Date	26/11/09			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	40.6	\checkmark
CH1 Negative		CH1 IC5	44.5	\checkmark
CH2 Positive	12.20	CH2 IC1	43.6	\checkmark
CH2 Negative		CH2 IC5	42.6	\checkmark
CH3 Positive	12.20	CH3 IC1	43.6	\checkmark
CH3 Negative		CH3 IC5	43.8	\checkmark
CH4 Positive	12.20	CH4 IC1	42.6	\checkmark
CH4 Negative		CH4 IC5	42.6	\checkmark

Unit.....Serial No

Test EngineerRMC Date1/12/09

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.0	-160
Ch2	-160dB	-98.0	-158
Ch3	-160dB	-100.3	-160.3
Ch4	-160dB	-100.7	-160.7

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nV/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark

Unit.....Serial No Test Engineer Date

15. Final Assembly Checks

1. Remove the lid of the box. $\sqrt{}$

2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below: $\sqrt{}$

UoB box ID	TTOP15P
Driver board ID	TTOP15P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP15P
Monitor board ID	MON35P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON35P

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP16P..... Monitor Card ID...Mon36P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage and Noise Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- 13. Output Noise Tests
- 14. Full Current tests
- **15. Final Assembly**

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Removed capacitors C102, C103, C104, and C105 on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Unit	.T_TOP_P16	Serial No
Test Engineer	.Xen	
Date	.26/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	T_TOP_P16	.Serial No
Test Engineer	Xen	
Date	.26/11/09	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P16	Serial No
Test Engineer	Xen	
Date	26/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2		\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	

Unit	T_TOP_P16	Serial No
Test Engineer	Xen	
Date	26/11/09	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 1	RMS Current	0.75v dc	0.749	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.748	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.757	\checkmark

1v across load resistor

Unit	T_TOP_P16	Serial No	
Test Engineer	Xen		
Date	.26/11/09		

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	SOCKET	output?	value	
		FIII			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V/\sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain.

Ch.	Output	/(Pre-amplifier gain)	Maximum value	Pass/Fail
1	17.1	1.71	2.9	Pass
2	19.0	1.90	2.9	Pass
3	14.5	1.45	2.9	Pass
4	14.9	1.49	2.9	Pass

Unit......T_TOP_P16.....Serial No Test EngineerXen.....

Date26/11/09.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.9		
10Hz	-30.7		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.9		
10Hz	-30.7		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	41.1	\checkmark
CH1 Negative		CH1 IC5	41.6	\checkmark
CH2 Positive	12.20	CH2 IC1	41.8	\checkmark
CH2 Negative		CH2 IC5	43.1	\checkmark
CH3 Positive	12.20	CH3 IC1	41.8	\checkmark
CH3 Negative		CH3 IC5	41.8	\checkmark
CH4 Positive	12.20	CH4 IC1	42.1	\checkmark
CH4 Negative		CH4 IC5	42.8	\checkmark

Unit TTC)P16P	Serial No
Test Engineer	RMC	
Date	30/11/9	

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.2	-160.2
Ch2	-160dB	-100.0	-160.0
Ch3	-160dB	-100.5	-160.5
Ch4	-160dB	-99.7	-159.7

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore	Spec	Spec	Pass?
			l =	(peak)	(r.m.s)	
1	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
2	39.4	3.37	85.5mA	120mA	84.8mA	\checkmark
3	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
4	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark

Unit	. TTOP16P	Serial No
Test Enginee	erRMC	
Date		

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP16P	
Driver board ID	TTOP16P	
Driver board Drawing No/Issue No	D0902747 V 6	
Driver board Serial Number	TTOP16P	
Monitor board ID	MON36(P)	
Monitor board Drawing No/Issue No	D070480_04_K	
Monitor board Serial Number	MON36(P)	

10. Check the security of any modification wires. None

- 11. Visually inspect. \checkmark
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP17P..... Monitor Card ID...Mon37P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P17.....Serial No Test EngineerXen..... Date9/8/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

IC8 and IC4 have been replaced by the AD8671 op-amp on CHs 3 & 4.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.
Unit......T_TOP_P17.....Serial No Test EngineerXen..... Date27/11/09.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out to AA	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?	
Mon			Sat		
1	Imon1P	Current Source 1+	5	\checkmark	
2	Imon2P	Current Source 2+	6	\checkmark	
3	Imon3P	Current Source 3+	7	\checkmark	
4	Imon4P	Current Source 4+	8	\checkmark	
5	0V	\checkmark			
6	Imon1N	Current Source 1-	18	\checkmark	
7	Imon2N	Current Source 2-	19	\checkmark	
8	Imon3N	Current Source 3-	20	\checkmark	
9	Imon4N	Current Source 4-	21	\checkmark	

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_P17.....Serial No Test EngineerXen..... Date27/11/09.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P17.....Serial No Test EngineerXen..... Date27/11/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P17	Serial No
Test Engineer	Xen	
Date		

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

Unit	T TOP I	P17	Serial No	
Test Engineer	Xen			
Date	27/11/09.			

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 1	RMS Current	0.75v dc	0.757	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.754	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.757	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.755	\checkmark

1v across load resistor

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket	Monitor output?	Expected value	OK?
		Pin	-		
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		0.85	2.9µV√Hz	\checkmark
2		1.66	2.9µV√Hz	\checkmark
3		1.97	2.9µV√Hz	\checkmark
4		0.98	2.9µV√Hz	\checkmark

Unit	T TOP	P17	Serial No	
Test Engineer	Xen			
Date	27/11/09			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.9		
10Hz	-30.7		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	40.6	\checkmark
CH1 Negative		CH1 IC5	43.8	\checkmark
CH2 Positive	12.20	CH2 IC1	42.6	\checkmark
CH2 Negative		CH2 IC5	43.3	\checkmark
CH3 Positive	12.20	CH3 IC1	43.8	\checkmark
CH3 Negative		CH3 IC5	45.7	\checkmark
CH4 Positive	12.20	CH4 IC1	42.1	\checkmark
CH4 Negative		CH4 IC5	44.8	\checkmark

Unit	.T_TOP_F	P17	.Serial No	
Test Engineer	Xen			
Date	.29/7/10			

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-99.7	-159.7
Ch2	-160dB	-100.6	-160.6
Ch3	-160dB	-102.6	-162.6
Ch4	-160dB	-102.9	-162.9

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit	TTOP17P	Serial No
Test Engineer.	RMC	
Date		

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP17P
Driver board ID	TTOP17P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP17P
Monitor board ID	MON37P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON37P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP18P..... Monitor Card ID...Mon38P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P18.....Serial No Test EngineerXen..... Date9/8/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH1.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out to AA	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit......T_TOP_P18.....Serial No Test EngineerXen..... Date30/11/09.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		Indicator		OK?
	ON	OFF			
Ch1	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark		
Ch4		\checkmark	\checkmark		

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 1	RMS Current	0.75v dc	0.759	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 4	RMS Current	0.75v dc	0.760	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 7	RMS Current	0.75v dc	0.758	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.753	\checkmark

1v across load resistor

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.31	2.9µV√Hz	\checkmark
2		1.33	2.9µV√Hz	\checkmark
3		1.22	2.9µV√Hz	\checkmark
4		1.06	2.9µV√Hz	\checkmark

Unit	T_TOP_	P18	Serial No	
Test Engineer .	Xen			
Date	1/12/09			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	41.1	\checkmark
CH1 Negative		CH1 IC5	42.3	\checkmark
CH2 Positive	12.19	CH2 IC1	43.3	\checkmark
CH2 Negative		CH2 IC5	41.8	\checkmark
CH3 Positive	12.19	CH3 IC1	42.1	\checkmark
CH3 Negative		CH3 IC5	42.6	\checkmark
CH4 Positive	12.19	CH4 IC1	41.6	\checkmark
CH4 Negative		CH4 IC5	42.8	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	- 60dB =
Ch1	-160dB	-101.1	-161.1
Ch2	-160dB	-101.2	-161.2
Ch3	-160dB	-99.2	-159.2
Ch4	-160dB	-98.7	-158.7

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit	. TTOP18P	Serial No
Test Engineer	RMC	
Date	.24/8/10	

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP18P
Driver board ID	TTOP18P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP18P
Monitor board ID	MON38P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON38P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP19P..... Monitor Card ID...Mon39P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P19.....Serial No Test EngineerXen..... Date9/8/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P19.....Serial No Test EngineerXen..... Date2/12/09.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.
Unit......T_TOP_P19.....Serial No Test EngineerXen..... Date2/12/09....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	$\overline{\mathbf{v}}$

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P19.....Serial No Test EngineerXen..... Date2/12/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit.......T_TOP_P19.....Serial No Test EngineerXen..... Date2/12/09.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 1	RMS Current	0.75v dc	0.753	\checkmark
2	Pin 5	Current Monitor	Current Monitor 0.75v r.m.s		\checkmark
	Pin 4	RMS Current	0.75v dc	0.752	\checkmark
3	Pin 8	Current Monitor 0.75v r.m.s		0.753	\checkmark
	Pin 7	RMS Current 0.75v dc		0.755	\checkmark
4	Pin 11	Current Monitor	Current Monitor 0.75v r.m.s		\checkmark
	Pin 10	RMS Current	0.75v dc	0.756	\checkmark

1v across load resistor

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.41	2.9µV√Hz	\checkmark
2		0.86	2.9µV√Hz	\checkmark
3		1.05	2.9µV√Hz	\checkmark
4		1.37	2.9µV√Hz	\checkmark

Unit	T TOP	P19	Serial No	
Test Engineer	Xen			
Date	2/12/09			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.2		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.7		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	41.8	\checkmark
CH1 Negative		CH1 IC5	44.5	\checkmark
CH2 Positive	12.19	CH2 IC1	43.1	\checkmark
CH2 Negative		CH2 IC5	43.1	\checkmark
CH3 Positive	12.19	CH3 IC1	43.8	\checkmark
CH3 Negative		CH3 IC5	46.7	\checkmark
CH4 Positive	12.19	CH4 IC1	43.1	\checkmark
CH4 Negative		CH4 IC5	42.8	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.9	-161.9
Ch2	-160dB	-100.0	-160.0
Ch3	-160dB	-101.3	-161.3
Ch4	-160dB	-101.6	-161.6

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.28	83.2mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

UnitT Top 19 I	Ρ	Serial No
Test Engineer	.RMC	
Date	.12/1/10	

PROBLEM REPORT

Problems

During the noise tests, the unit had excess noise on Channel 4.

Cause

The problem was expected to be due to noisy AD797s, IC4 and IC8

Solution

These ICs needed to be replaced.

Action

These ICs were replaced.

Confirmation

A frequency response test, and a noise test were performed. Noise levels and frequency response were both nominal. The results of the noise test were recorded on page 16 of this report.

Unit	TTOP19P	Serial No	
Test Engineer	RMC		
Date	24/8/10		

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP19P
Driver board ID	TTOP19P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP19P
Monitor board ID	MON39P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON39P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP20P..... Monitor Card ID...Mon40P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_	P20	Serial No	
Test Engineer	.Xen			
Date	.10/8/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

IC8 and IC4 have been replaced by the AD8671 op-amp on CHs 1 & 4.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P20.....Serial No Test EngineerXen..... Date2/12/09.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit.......T_TOP_P20.....Serial No Test EngineerXen..... Date2/12/09.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator		
	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	
Ch4		\checkmark	\checkmark	

Unit......T_TOP_P20.....Serial No Test EngineerXen..... Date2/12/09.....

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 1	RMS Current	0.75v dc	0.758	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 4	RMS Current	0.75v dc	0.754	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 7	RMS Current	0.75v dc	0.760	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.755	\checkmark

1v across load resistor

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		0.88	2.9µV√Hz	\checkmark
2		1.50	2.9µV√Hz	\checkmark
3		1.60	2.9µV√Hz	\checkmark
4		0.93	2.9µV√Hz	\checkmark

Unit	T_TOP_P20	Serial No
Test Engineer	Xen	
Date		

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	3.4		
10Hz	-25.0		
100Hz	-42.0		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.9		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.17	CH1 IC1	41.4	\checkmark
CH1 Negative		CH1 IC5	43.6	
CH2 Positive	12.17	CH2 IC1	43.3	\checkmark
CH2 Negative		CH2 IC5	42.8	\checkmark
CH3 Positive	12.17	CH3 IC1	44.3	\checkmark
CH3 Negative		CH3 IC5	45.5	\checkmark
CH4 Positive	12.17	CH4 IC1	42.8	\checkmark
CH4 Negative		CH4 IC5	44.3	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.1	-161.1
Ch2	-160dB	-99.8	-159.8
Ch3	-160dB	-100.0	-160.0
Ch4	-160dB	-102.4	-162.4

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP20P.....Serial No Test EngineerRMC Date24/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP20P
Driver board ID	TTOP20P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP20P
Monitor board ID	MON40P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON40P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP21P..... Monitor Card ID...Mon41P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_	P21	Serial No	
Test Engineer	.Xen			
Date	.10/9/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	
3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit	.T_TOP_P21	Serial No
Test Engineer	Xen	
Date	.1/12/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	$\overline{\mathbf{v}}$
25	0V	Return	A2	

Unit	T_TOP_P21	.Serial No
Test Engineer	Xen	
Date	.1/12/09	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P21	Serial No
Test Engineer	Xen	
Date	1/12/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	.T_TOP_F	P21	Serial No	
Test Engineer	Xen			
Date	.1/12/09			

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.758	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.750	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.752	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.753	\checkmark

1v across load resistor

Unit	.T TOP P21	Serial No
Test Engineer	Xen	
Date	.22/7/10	

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	Pin	output?	value	
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.74	2.9µV√Hz	\checkmark
2		0.96	2.9µV√Hz	\checkmark
3		1.57	2.9µV√Hz	\checkmark
4		0.77	2.9µV√Hz	\checkmark

Unit	T_TOP_	P21	Serial No	
Test Engineer	Xen			
Date	1/12/09.			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.17	CH1 IC1	41.1	\checkmark
CH1 Negative		CH1 IC5	42.6	\checkmark
CH2 Positive	12.17	CH2 IC1	41.6	\checkmark
CH2 Negative		CH2 IC5	42.3	\checkmark
CH3 Positive	12.17	CH3 IC1	43.6	\checkmark
CH3 Negative		CH3 IC5	44.0	\checkmark
CH4 Positive	12.17	CH4 IC1	41.8	\checkmark
CH4 Negative		CH4 IC5	42.3	\checkmark

Unit.....Serial No

Test EngineerRMC Date8/12/09

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-98.2	-158.2
Ch2	-160dB	-97.1	-157.1
Ch3	-160dB	-101.5	-161.5
Ch4	-160dB	-99.27	-159.2

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit	TTOP21P	Serial No	
Test Engineer	RMC		
Date	24/8/10		

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP21P
Driver board ID	TTOP21P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP21P
Monitor board ID	MON41P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON41P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP22P..... Monitor Card ID...Mon42P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	T_TOP_	P22	Serial No	
Test Engineer .	Xen	•••••		
Date	28/7/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

IC8 and IC4 have been replaced by the AD8671 op-amp on CHs 1 & 2.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P22.....Serial No Test EngineerXen.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit.......T_TOP_P22.....Serial No Test EngineerXen..... Date1/12/09.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 1	RMS Current	0.75v dc	0.757	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.758	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 7	RMS Current	0.75v dc	0.753	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.755	\checkmark

1v across load resistor

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		0.92	2.9µV√Hz	\checkmark
2		1.42	2.9µV√Hz	\checkmark
3		0.94	2.9µV√Hz	\checkmark
4		0.88	2.9µV√Hz	\checkmark

Unit	.T TOP I	P22	.Serial No	
Test Engineer	Xen			
Date	.1/12/09			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.17	CH1 IC1	41.1	\checkmark
CH1 Negative		CH1 IC5	44.8	
CH2 Positive	12.17	CH2 IC1	42.3	
CH2 Negative		CH2 IC5	43.1	\checkmark
CH3 Positive	12.17	CH3 IC1	43.8	\checkmark
CH3 Negative		CH3 IC5	44.8	\checkmark
CH4 Positive	12.17	CH4 IC1	43.1	\checkmark
CH4 Negative		CH4 IC5	42.3	

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.5	-160.5
Ch2	-160dB	-100.4	-160.4
Ch3	-160dB	-98	-158
Ch4	-160dB	-98.2	-158.2

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP22P.....Serial No Test EngineerRMC Date24/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP22P
Driver board ID	TTOP22P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP22P
Monitor board ID	MON42P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON42P

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP23P..... Monitor Card ID...Mon43P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_I	P23	Serial No	
Test Engineer	.Xen			
Date	10/8/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	
3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH4.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P23.....Serial No Test EngineerXen..... Date2/11/09.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	$\overline{\mathbf{v}}$

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus Minus	
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P23	Serial No
Test Engineer	Xen	
Date	2/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	T_TOP_P	3Serial No
Test Engineer	Xen	
Date		

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 1	RMS Current	0.75v dc	0.756	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.753	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.755	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.754	\checkmark

1v across load resistor

Unit	T_TOP_P23	.Serial No
Test Engineer	Xen	
Date	2/11/09	

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	Pin	output?	value	
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.27	2.9µV√Hz	\checkmark
2		0.84	2.9µV√Hz	\checkmark
3		1.22	2.9µV√Hz	\checkmark
4		1.36	2.9µV√Hz	\checkmark

Unit	T_TOP_P23	Serial No
Test Engineer	[.] Xen	
Date		

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	3.4		
10Hz	-25.1		
100Hz	-42.0		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/	P Pass/Fail
Ch1	4.85	5	
Ch2	4.85	5	
Ch3	4.85	5	
Ch4	4.85	5	
Unit	T TOP P23	Serial No	

Unit.....T_TOP_P23.....Serial No

Test EngineerXen..... Date2/11/09.....

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	38.7	\checkmark
CH1 Negative		CH1 IC5	41.1	\checkmark
CH2 Positive	12.19	CH2 IC1	41.1	\checkmark
CH2 Negative		CH2 IC5	42.3	\checkmark
CH3 Positive	12.19	CH3 IC1	41.6	\checkmark
CH3 Negative		CH3 IC5	42.1	\checkmark
CH4 Positive	12.19	CH4 IC1	41.8	\checkmark
CH4 Negative		CH4 IC5	42.6	\checkmark

Unit.....T_TOP_P23.....Serial No Test EngineerRMC (1, 2 & 3) / Xen (4) Date8/12/09 / 22/7/10

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-98.8	-158.8
Ch2	-160dB	-101.2	-161.2
Ch3	-160dB	-98.7	-158.7
Ch4	-160dB	-102.5	-162.5

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP23P.....Serial No Test EngineerRMC Date24/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP23P
Driver board ID	TTOP23P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP23P
Monitor board ID	MON43P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON43P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP24P..... Monitor Card ID...Mon44P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P24.....Serial No Test EngineerXen..... Date9/8/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P24.....Serial No Test EngineerXen..... Date2/12/09.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P24.....Serial No Test EngineerXen.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P24.....Serial No Test EngineerXen..... Date2/12/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P24	.Serial No
Test Engineer	Xen	
Date	.2/12/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	T_TOP_F	P24	Serial No	
Test Engineer	Xen			
Date	2/12/09			

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 1	RMS Current	0.75v dc	0.756	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.760	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.754	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 10	RMS Current	0.75v dc	0.753	\checkmark

1v across load resistor

Unit	T_TOP_P24	Serial No
Test Engineer	Xen	
Date	.2/12/09	

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
		Pin	output?	value	
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.67	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.01	2.9µV√Hz	\checkmark
2		1.54	2.9µV√Hz	\checkmark
3		0.90	2.9µV√Hz	\checkmark
4		1.27	2.9µV√Hz	\checkmark

Unit	T_TOP_I	P24	Serial No	
Test Engineer	Xen			
Date	2/12/09			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	3.3		
10Hz	-25.2		
100Hz	-42.0		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.9		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	41.1	\checkmark
CH1 Negative		CH1 IC5	41.6	\checkmark
CH2 Positive	12.19	CH2 IC1	43.3	\checkmark
CH2 Negative		CH2 IC5	43.3	\checkmark
CH3 Positive	12.19	CH3 IC1	43.1	\checkmark
CH3 Negative		CH3 IC5	43.1	\checkmark
CH4 Positive	12.19	CH4 IC1	42.1	\checkmark
CH4 Negative		CH4 IC5	41.6	\checkmark

Unit.....Serial No

Test EngineerRMC Date20/1/10

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.4 dB	-160.4 dB
Ch2	-160dB	-101.7 dB	-161.7dB
Ch3	-160dB	-101.6 dB	-161.6 dB
Ch4	-160dB	-100.26 dB	-160.26 dB

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nV/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.27	83.2mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit......TTOP24P.....Serial No Test EngineerRMC Date24/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP24P
Driver board ID	TTOP24P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP24P
Monitor board ID	MON44P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON44P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

UnitT Top 24	P	Serial No
Test Engineer	.RMC	
Date	.20/1/10	

PROBLEM REPORT

Problems

During noise tests, channel 4 was found to be excessively noisy.

Cause

IC4 and IC8 on channel 4

Solution

The noisy ICs were replaced, then the noise tests were performed.

Confirmation Noise dropped to -160dB

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP25P...... Monitor Card ID...Mon46P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage and Noise Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- 13. Noise Tests
- 14. Full Current tests
- **15. Final Assembly**

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

Unit......T_TOP_P25.....Serial No Test EngineerXen..... Date11/11/09.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: \checkmark

Unit	T TOP P25	Serial No
Test Engineer	Xen	
Date	11/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	$\overline{\mathbf{v}}$
25	0V	Return	A2	

Unit	.T_TOP_P	25	.Serial No	
Test Engineer	Xen			
Date	.11/11/09			

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_F	P <mark>25</mark>	.Serial No	
Test Engineer	Xen			
Date	.11/11/09			

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	

Unit	T_TOP_I	P25	Serial No	
Test Engineer	Xen			
Date	11/11/09			

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 1	RMS Current	0.75v dc	0.754	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.755	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 7	RMS Current	0.75v dc	0.753	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.748	\checkmark
	Pin 10	RMS Current	0.75v dc	0.751	\checkmark

Unit	T_TOP_P25	Serial No
Test Engineer	Xen	
Date	.11/11/09	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.6	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.6	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.6	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.6	1.6v to 1.7v	\checkmark

Noise monitor tests

Connect the 39 ohm loads, the blanking plug in place on the drive input, and the relay test box.

Switch in all filters.

Connect power, and power up the unit. Measure the noise output on the noise monitor plug in μ V/root Hz, on the HP Dynamic signal Analyser, the preamplifier with a gain of 10, and Stuart Aston's noise measurement set up. Check that it is less than 3 μ V/root Hz with respect to ground, which may be found on sockets number 5, 6, 7, 8 or 9.

	Noise Monitor socket pin number	Noise	< 3µV/rt Hz?
Channel 1	1	2.34	OK
Channel 2	2	1.87	OK
Channel 3	3	2.29	OK
Channel 4	4	1.4	OK

Unit......T_TOP_P25.....Serial No Test EngineerXen.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 are present.

Using the Dynamic Signal Analyser

With the filter switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1 kHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils. **Channel 1**

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	7.5		
1Hz	1.1		
10Hz	-30.0		
100Hz	-42.8		
1KHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	7.8		
1Hz	1.1		
10Hz	-30.1		
100Hz	-42.8		
1KHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	7.6		
1Hz	1.0		
10Hz	-30.4		
100Hz	-42.8		
1KHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	7.6		
1Hz	1.1		
10Hz	-30.1		
100Hz	-42.8		
1KHz	-43.3		

Unit	.T_TOP_P25	Serial No
Test Engineer	Xen	
Date	.11/11/09	

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1KHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.23	CH1 IC1	40.6	\checkmark
CH1 Negative		CH1 IC5	42.8	\checkmark
CH2 Positive	12.23	CH2 IC1	43.1	\checkmark
CH2 Negative		CH2 IC5	43.6	\checkmark
CH3 Positive	12.23	CH3 IC1	41.6	\checkmark
CH3 Negative		CH3 IC5	44.0	\checkmark
CH4 Positive	12.23	CH4 IC1	44.3	\checkmark
CH4 Negative		CH4 IC5	46.0	\checkmark

Unit.....Serial No Test EngineerRMC Date1/12/09

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.2	-160.2
Ch2	-160dB	-100.3	-160.3
Ch3	-160dB	-100.7	-160.7
Ch4	-160dB	-101.9	-161.9

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
2	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark
3	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
4	39.4	3.35	85.0mA	120mA	84.8mA	\checkmark

Unit...... TTOP25PSerial No Test EngineerRMC Date

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP25P
Driver board ID	TTOP25P
Driver board Drawing No/Issue No	D0902747
Driver board Serial Number	TTOP25P
Monitor board ID	MON46P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON46P

10. Check the security of any modification wires. None

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws,

Check all external screws for tightness.

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.ukDepartment of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP26P..... Monitor Card ID...Mon47P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage and Noise Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- 13. Noise Tests
- 14. Full Current tests
- **15. Final Assembly**

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: \checkmark

Unit	.T_TOP_P26	Serial No
Test Engineer	.Xen	
Date	.16/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	T_TOP_P26	Serial No
Test Engineer	Xen	
Date		

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	7ΜΩ	
IC12 Channel 1	7ΜΩ	
IC11 Channel 2	7ΜΩ	
IC12 Channel 2	7ΜΩ	
IC11 Channel 3	7ΜΩ	
IC12 Channel 3	7ΜΩ	
IC11 Channel 4	7ΜΩ	
IC12 Channel 4	7ΜΩ	

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P26	Serial No
Test Engineer	Xen	
Date	16/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2		\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.751	
	Pin 1	RMS Current	0.75v dc	0.754	
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	
	Pin 4	RMS Current	0.75v dc	0.751	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.751	
	Pin 7	RMS Current	0.75v dc	0.757	
4	Pin 11	Current Monitor	0.75v r.m.s	0.749	
	Pin 10	RMS Current	0.75v dc	0.753	

1v across load resistor

Unit	T_TOP_P26	Serial No	
Test Engineer	Xen		
Date	.16/11/09		

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket	Monitor output?	Expected value	OK?
		Pin	•		
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise monitor tests

Connect the 39 ohm loads, the blanking plug in place on the drive input, and the relay test box.

Switch in all filters.

Connect power, and power up the unit. Measure the noise output on the noise monitor plug in μ V/root Hz, on the HP Dynamic signal Analyser, the preamplifier with a gain of 10, and Stuart Aston's noise measurement set up. Check that it is less than 3 μ V/root Hz with respect to ground, which may be found on sockets number 5, 6, 7, 8 or 9.

	Noise Monitor socket pin number	Noise	< 3µV/rt Hz?
Channel 1	1	1.56	OK
Channel 2	2	1.67	OK
Channel 3	3	1.25	OK
Channel 4	4	1.45	OK

Unit	T TOP I	P26	Serial No	
Test Engineer	Xen			
Date	16/11/09.			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-29.9		
100Hz	-42.3		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-29.9		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.21	CH1 IC1	41.4	\checkmark
CH1 Negative		CH1 IC5	43.1	\checkmark
CH2 Positive	12.21	CH2 IC1	42.6	\checkmark
CH2 Negative		CH2 IC5	42.6	\checkmark
CH3 Positive	12.21	CH3 IC1	43.1	\checkmark
CH3 Negative		CH3 IC5	42.8	\checkmark
CH4 Positive	12.21	CH4 IC1	42.1	\checkmark
CH4 Negative		CH4 IC5	43.8	

Unit.....Serial No Test EngineerRMC Date3/12/09

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.35	-160.35
Ch2	-160dB	-101.0	-161.0
Ch3	-160dB	-103.0	-163.0
Ch4	-160dB	-96.8	-156.8

IC8 ch 4 and IC4 ch 4 changed.

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.37	85.8mA	120mA	84.8mA	\checkmark
2	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark
3	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
4	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark

Unit.....Serial No Test Engineer Date

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP26P
Driver board ID	TTOP26P
Driver board Drawing No/Issue No	D0902747
Driver board Serial Number	TTOP26P
Monitor board ID	MON47P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON47P

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws,

Check all external screws for tightness.

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP27P..... Monitor Card ID...Mon48P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit	T_TOP_P27	Serial No
Test Engineer	Xen	
Date	28/7/10	

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

IC8 and IC4 have been replaced by the AD8671 op-amp on CHs 3 & 4.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P27.....Serial No Test EngineerXen.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_P26.....Serial No Test EngineerXen..... Date12/11/09.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P27.....Serial No Test EngineerXen.....

Date12/11/09.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit......T_TOP_P27.....Serial No Test EngineerXen..... Date12/11/09.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indi	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator		
	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	
Ch4		\checkmark	\checkmark	

Unit	T_TOP_F	P27	Serial No	
Test Engineer	Xen			
Date	12/11/09.			

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 1	RMS Current	0.75v dc	0.762	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.754	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.757	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.755	\checkmark

1v across load resistor

Unit......T_TOP_P27.....Serial No Test EngineerXen..... Date12/11/09.....

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.80	2.9µV√Hz	\checkmark
2		1.44	2.9µV√Hz	\checkmark
3		1.25	2.9µV√Hz	\checkmark
4		1.09	2.9µV√Hz	\checkmark

Unit	T_TOP_P27.	Serial No
Test Engineer	Xen	
Date		

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Using the Dynamic Signal Analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1KHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.0		
100Hz	-42.8		
1KHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1KHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1KHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.21	CH1 IC1	38.4	\checkmark
CH1 Negative		CH1 IC5	39.4	\checkmark
CH2 Positive	12.21	CH2 IC1	41.1	\checkmark
CH2 Negative		CH2 IC5	41.8	\checkmark
CH3 Positive	12.21	CH3 IC1	42.6	\checkmark
CH3 Negative		CH3 IC5	40.4	\checkmark
CH4 Positive	12.21	CH4 IC1	38.9	\checkmark
CH4 Negative		CH4 IC5	42.6	\checkmark

Unit......T_TOP_P27.....Serial No Test EngineerRMC (1&2) / Xen (3&4) Date1/12/09/28/7/10

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs.

Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.9	-161.9
Ch2	-160dB	-101.0	-161.0
Ch3	-160dB	-101.4	-161.4
Ch4	-160dB	-101.0	-161.0

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit	TTOP27P	Serial No
Test Engineer	RMC	
Date	30/9/10	

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP27P
Driver board ID	TTOP27P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP27P
Monitor board ID	MON48P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON48P

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. $\sqrt{}$

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP28P..... Monitor Card ID...Mon49P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_P28	Serial No
Test Engineer	.Xen	
Date	.13/8/10	

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit.......T_TOP_P28.....Serial No Test EngineerXen..... Date13/11/09.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit	T TOP P28	Serial No
Test Engineer .	Xen	
Date	13/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	T_TOP_P28	Serial No
Test Engineer	Xen	
Date	.13/11/09	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P28	.Serial No
Test Engineer	Xen	
Date	13/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 1	RMS Current	0.75v dc	0.757	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 4	RMS Current	0.75v dc	0.757	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 7	RMS Current	0.75v dc	0.757	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.752	\checkmark

1v across load resistor

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.40	2.9µV√Hz	\checkmark
2		1.61	2.9µV√Hz	\checkmark
3		1.17	2.9µV√Hz	\checkmark
4		1.0	2.9µV√Hz	\checkmark

Unit	T TOP I	P28	Serial No .	
Test Engineer	Xen			
Date	16/11/09.			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?			
Ch1	\checkmark			
Ch2	\checkmark			
Ch3	\checkmark			
Ch4	\checkmark			

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.21	CH1 IC1	40.1	\checkmark
CH1 Negative		CH1 IC5	44.0	\checkmark
CH2 Positive	12.21	CH2 IC1	42.8	\checkmark
CH2 Negative		CH2 IC5	43.6	\checkmark
CH3 Positive	12.21	CH3 IC1	42.8	\checkmark
CH3 Negative		CH3 IC5	44.3	\checkmark
CH4 Positive	12.21	CH4 IC1	42.1	\checkmark
CH4 Negative		CH4 IC5	42.6	\checkmark

Unit.....Serial No Test EngineerRMC Date24/11/09

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.5	-160.5
Ch2	-160dB	-101.4	-161.4
Ch3	-160dB	-100.3	-160.3
Ch4	-160dB	-100.8	-160.8

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nV/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit......TTOP28P......Serial No Test EngineerRMC Date30/9/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP28P		
Driver board ID	TTOP28P		
Driver board Drawing No/Issue No	D0902747_V9		
Driver board Serial Number	TTOP28P		
Monitor board ID	MON49P		
Monitor board Drawing No/Issue No	D0070480_4_K		
Monitor board Serial Number	MON49P		

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. $\sqrt{}$

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP29P..... Monitor Card ID...Mon50P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage and Noise Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- 13. Noise Tests
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit	.T_TOP_F	P29	.Serial No	
Test Engineer	Xen			
Date	.13/11/09.			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit.......T_TOP_P29.....Serial No Test EngineerXen..... Date13/11/09......

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: \checkmark

Unit	.T_TOP_P29	Serial No
Test Engineer	.Xen	
Date	.13/11/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	.T TOP P29	Serial No
Test Engineer	Xen	
Date	.13/11/09	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P29	Serial No
Test Engineer	Xen	
Date	13/11/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 1	RMS Current	0.75v dc	0.752	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.756	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.757	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.753	\checkmark

1v across load resistor

Unit	T_TOP_P29	Serial No
Test Engineer	Xen	
Date	13/11/09	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket	Monitor output?	Expected value	OK?
		Pin	•		
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise monitor tests

Connect the 39 ohm loads, the blanking plug in place on the drive input, and the relay test box.

Switch in all filters.

Connect power, and power up the unit. Measure the noise output on the noise monitor plug in μ V/root Hz, on the HP Dynamic signal Analyser, the preamplifier with a gain of 10, and Stuart Aston's noise measurement set up. Check that it is less than 3 μ V/root Hz with respect to ground, which may be found on sockets number 5, 6, 7, 8 or 9.

	Noise Monitor socket pin number	Noise	< 3µV/rt Hz?
Channel 1	1	2.27	OK
Channel 2	2	2.15	OK
Channel 3	3	1.79	OK
Channel 4	4	1.55	OK

Unit	.Serial No
Test Engineer	
Date	

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Using the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.2		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive		CH1 IC1	41.6	\checkmark
CH1 Negative		CH1 IC5	42.8	\checkmark
CH2 Positive		CH2 IC1	43.1	\checkmark
CH2 Negative		CH2 IC5	44.0	\checkmark
CH3 Positive		CH3 IC1	44.0	\checkmark
CH3 Negative		CH3 IC5	44.5	\checkmark
CH4 Positive		CH4 IC1	42.8	\checkmark
CH4 Negative		CH4 IC5	44.5	\checkmark

Unit.....Serial No Test EngineerRMC Date30/11/09

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.0	-160.0
Ch2	-160dB	-97.6	-157.6
Ch3	-160dB	-101.0	-161.0
Ch4	-160dB	-100.3	-160.0

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nV/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
2	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark
3	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
4	39.4	3.34	84.8mA	120mA	84.8mA	\checkmark

Unit.....Serial No Test Engineer Date

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP29P
Driver board ID	TTOP29P
Driver board Drawing No/Issue No	D0902747 V6
Driver board Serial Number	TTOP29P
Monitor board ID	MON50P
Monitor board Drawing No/Issue No	DO7O480_04_K
Monitor board Serial Number	MON50P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. $\sqrt{}$
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP30P..... Monitor Card ID...Mon51P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_	P30	Serial No	
Test Engineer	.Xen			
Date	.10/8/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit	.T_TOP_P30	Serial No
Test Engineer	Xen	
Date	.3/12/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	.T_TOP_P3	80	Serial No	
Test Engineer	Xen			
Date	.3/12/09			

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_P30	Serial No
Test Engineer	.Xen	
Date	.3/12/09	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	T_TOP_P30	Serial No
Test Engineer	Xen	
Date	.3/12/09	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 1	RMS Current	0.75v dc	0.759	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.758	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.759	\checkmark

1v across load resistor

Unit	T TOP	P30	Serial No	
Test Engineer	Xen			
Date	3/12/09			

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	SOCKET	output?	value	
		FIII			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.50	2.9µV√Hz	\checkmark
2		1.97	2.9µV√Hz	\checkmark
3		1.45	2.9µV√Hz	\checkmark
4		1.33	2.9µV√Hz	\checkmark

Unit	T TOP	P30	Serial No .	
Test Engineer	Xen			
Date	.3/12/09.			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	40.1	\checkmark
CH1 Negative		CH1 IC5	42.1	\checkmark
CH2 Positive	12.19	CH2 IC1	42.6	\checkmark
CH2 Negative		CH2 IC5	42.3	\checkmark
CH3 Positive	12.19	CH3 IC1	41.6	\checkmark
CH3 Negative		CH3 IC5	41.4	\checkmark
CH4 Positive	12.19	CH4 IC1	41.6	\checkmark
CH4 Negative		CH4 IC5	41.8	\checkmark

Unit.....Serial No

Test EngineerRMC Date3/12/09

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.0	
Ch2	-160dB	-100.0	
Ch3	-160dB	-99.9	
Ch4	-160dB	-103.0	

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit......TTOP30P.....Serial No Test EngineerRMC Date23/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP30P
Driver board ID	TTOP30P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP30P
Monitor board ID	MON51
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON51

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP31P..... Monitor Card ID...Mon52P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit	.T_TOP_	P31	Serial No .	
Test Engineer	Xen			
Date	.28/7/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH4.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P31.....Serial No Test EngineerXen..... Date3/12/09.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	$\overline{\mathbf{v}}$
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit.......T_TOP_P31.....Serial No Test EngineerXen..... Date3/12/09.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

Unit......T_TOP_P31.....Serial No Test EngineerXen..... Date3/12/09.....

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.752	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.756	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.757	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.755	\checkmark

1v across load resistor

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.41	2.9µV√Hz	\checkmark
2		1.10	2.9µV√Hz	\checkmark
3		0.84	2.9µV√Hz	\checkmark
4		0.99	2.9µV√Hz	\checkmark

Unit	T TOP	P31	Serial No	
Test Engineer	Xen			
Date	3/12/09			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	40.4	\checkmark
CH1 Negative		CH1 IC5	41.4	\checkmark
CH2 Positive	12.20	CH2 IC1	41.4	\checkmark
CH2 Negative		CH2 IC5	41.4	\checkmark
CH3 Positive	12.19	CH3 IC1	41.6	\checkmark
CH3 Negative		CH3 IC5	40.9	\checkmark
CH4 Positive	12.20	CH4 IC1	41.1	\checkmark
CH4 Negative		CH4 IC5	40.6	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.3	-160.3
Ch2	-160dB	-99.9	-159.9
Ch3	-160dB	-98.4	-158.4
Ch4	-160dB	-101.6	-161.6

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit..... TTOP31P ...Serial No Test EngineerRMC Date23/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP31P
Driver board ID	TTOP31P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP31P
Monitor board ID	MON52P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON52P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP32P..... Monitor Card ID...Mon53P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P32.....Serial No Test EngineerXen..... Date9/8/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH3.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P32.....Serial No Test EngineerXen.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	$\overline{\mathbf{v}}$

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit......T_TOP_P32.....Serial No Test EngineerXen..... Date4/12/09.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.755	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.757	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.757	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 10	RMS Current	0.75v dc	0.753	\checkmark

1v across load resistor

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		0.73	2.9µV√Hz	\checkmark
2		1.65	2.9µV√Hz	\checkmark
3		1.02	2.9µV√Hz	\checkmark
4		1.36	2.9µV√Hz	\checkmark

Unit	T TOP	P32	Serial No .	
Test Engineer	Xen			
Date	.4/12/09.			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	38.7	\checkmark
CH1 Negative		CH1 IC5	40.1	\checkmark
CH2 Positive	12.19	CH2 IC1	41.1	\checkmark
CH2 Negative		CH2 IC5	40.9	\checkmark
CH3 Positive	12.19	CH3 IC1	42.1	\checkmark
CH3 Negative		CH3 IC5	41.6	\checkmark
CH4 Positive	12.19	CH4 IC1	40.6	\checkmark
CH4 Negative		CH4 IC5	42.6	\checkmark

Unit......T_TOP_P32.....Serial No Test EngineerRMC (1, 2 & 4) / Xen (3) Date8/12/09 / 28/7/10

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	- 60dB =
Ch1	-160dB	-99.4	-159.4
Ch2	-160dB	-99.9	-159.9
Ch3	-160dB	-102.5	-162.5
Ch4	-160dB	-100	-160

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP31P.....Serial No Test EngineerRMC Date23/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP32P
Driver board ID	TTOP32P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP32P
Monitor board ID	MON53P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON53P

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP33P..... Monitor Card ID...Mon54P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit......T_TOP_P33.....Serial No Test EngineerXen..... Date9/8/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH3.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P33.....Serial No Test EngineerXen.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?	
Mon			Sat		
1	Imon1P	Current Source 1+	5	\checkmark	
2	Imon2P	Current Source 2+	6	\checkmark	
3	Imon3P	Current Source 3+	7	\checkmark	
4	Imon4P	Current Source 4+	8	\checkmark	
5	0V	\checkmark			
6	Imon1N	Current Source 1-	18	\checkmark	
7	Imon2N	Current Source 2-	19	\checkmark	
8	Imon3N	Current Source 3-	20	\checkmark	
9	Imon4N	Current Source 4-	21	\checkmark	

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit......T_TOP_P33.....Serial No Test EngineerXen..... Date4/12/09.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator		
	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	
Ch4		\checkmark	\checkmark	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter Theoretical		Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 1	RMS Current	0.75v dc	0.759	\checkmark
2	Pin 5	Current Monitor	Current Monitor 0.75v r.m.s		\checkmark
	Pin 4	RMS Current	0.75v dc	0.752	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.758	\checkmark
4	Pin 11	Current Monitor 0.75v r.m.s		0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.751	\checkmark

1v across load resistor

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.67	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.29	2.9µV√Hz	\checkmark
2		0.82	2.9µV√Hz	\checkmark
3		1.53	2.9µV√Hz	\checkmark
4		1.74	2.9µV√Hz	\checkmark

Unit	T TOP	P33	Serial No .	
Test Engineer	Xen	·		
Date	4/12/09.			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	40.6	\checkmark
CH1 Negative		CH1 IC5	42.1	\checkmark
CH2 Positive	12.19	CH2 IC1	41.8	\checkmark
CH2 Negative		CH2 IC5	43.1	\checkmark
CH3 Positive	12.19	CH3 IC1	42.3	\checkmark
CH3 Negative		CH3 IC5	43.6	\checkmark
CH4 Positive	12.19	CH4 IC1	40.6	\checkmark
CH4 Negative		CH4 IC5	42.6	\checkmark

Unit......T_TOP_P33.....Serial No Test EngineerRMC (1, 2 & 4) / Xen (3) Date8/12/09 / 28/7/10

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.4	-100.4
Ch2	-160dB	-99.7	-159.7
Ch3	-160dB	-101.0	-161.0
Ch4	-160dB	-100.4	-160.4

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit	TTOP33P	Serial No
Test Engineer	.RMC	
Date	.23/8/10	

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP33P
Driver board ID	TTOP33P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP33P
Monitor board ID	MON54P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON54P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP34P..... Monitor Card ID...Mon55P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P34.....Serial No Test EngineerXen..... Date9/8/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit	.T_TOP_P34	Serial No
Test Engineer	Xen	
Date	.4/12/09	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_P34.....Serial No Test EngineerXen..... Date4/12/09.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit......T_TOP_P34.....Serial No Test EngineerXen..... Date4/12/09.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator		
	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	
Ch4		\checkmark	\checkmark	

Unit	T_TOP_P34	.Serial No
Test Engineer	Xen	
Date	4/12/09	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 1	RMS Current	0.75v dc	0.755	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.758	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 7	RMS Current	0.75v dc	0.758	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.753	\checkmark

1v across load resistor

Unit	.T_TOP_F	⊃34	.Serial No	
Test Engineer	Xen			
Date	.4/12/09			

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	Pin	output ?	value	
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.14	2.9µV√Hz	\checkmark
2		1.01	2.9µV√Hz	\checkmark
3		0.99	2.9µV√Hz	\checkmark
4		1.38	2.9µV√Hz	\checkmark

Unit......T_TOP_P34.....Serial No Test EngineerXen.....

Date4/12/09.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	41.1	\checkmark
CH1 Negative		CH1 IC5	42.6	\checkmark
CH2 Positive	12.20	CH2 IC1	42.6	\checkmark
CH2 Negative		CH2 IC5	42.1	\checkmark
CH3 Positive	12.20	CH3 IC1	43.8	\checkmark
CH3 Negative		CH3 IC5	44.8	\checkmark
CH4 Positive	12.20	CH4 IC1	43.1	\checkmark
CH4 Negative		CH4 IC5	43.3	\checkmark

Unit.....Serial No Test EngineerRMC Date8/12/09

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-98.7	-158.7dB
Ch2	-160dB	-100.4	-160.4dB
Ch3	-160dB	-99.8	-159.8dB
Ch4	-160dB	-99.8	-159.8dB

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P34.....Serial No Test EngineerXen..... Date22/7/10.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark

Unit.....TTOP34P.....Serial No Test EngineerRMC Date23/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP34P
Driver board ID	TTOP34P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP34P
Monitor board ID	MON55P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON55P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP35P..... Monitor Card ID...Mon45....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit......T_TOP_P35.....Serial No Test EngineerXen..... Date9/8/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH4.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P35.....Serial No Test EngineerXen..... Date21/1/10.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?	
Mon			Sat		
1	Imon1P	Current Source 1+	5	\checkmark	
2	Imon2P	Current Source 2+	6	\checkmark	
3	Imon3P	Current Source 3+	7	\checkmark	
4	Imon4P	Current Source 4+	8	\checkmark	
5	0V	\checkmark			
6	Imon1N	Current Source 1-	18	\checkmark	
7	Imon2N	Current Source 2-	19	\checkmark	
8	Imon3N	Current Source 3-	20	\checkmark	
9	Imon4N	Current Source 4-	21	\checkmark	

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P35.....Serial No Test EngineerXen..... Date21/1/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit.......T_TOP_P35.....Serial No Test EngineerXen..... Date21/1/10.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.749	\checkmark
	Pin 1	RMS Current	0.75v dc	0.757	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 4	RMS Current	0.75v dc	0.754	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 7	RMS Current	0.75v dc	0.753	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 10	RMS Current	0.75v dc	0.749	\checkmark

1v across load resistor

Unit	T_TOP_	P35	Serial No	
Test Engineer	Xen			
Date	21/1/10			

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.26	2.9µV√Hz	\checkmark
2		0.96	2.9µV√Hz	\checkmark
3		1.64	2.9µV√Hz	\checkmark
4		0.94	2.9µV√Hz	\checkmark

Unit	T_TOP_P35	Serial No
Test Enginee	rXen	
Date		

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free	?
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.21	CH1 IC1	37.0	\checkmark
CH1 Negative		CH1 IC5	38.7	\checkmark
CH2 Positive	12.21	CH2 IC1	39.2	\checkmark
CH2 Negative		CH2 IC5	39.7	\checkmark
CH3 Positive	12.21	CH3 IC1	38.7	\checkmark
CH3 Negative		CH3 IC5	38.7	\checkmark
CH4 Positive	12.21	CH4 IC1	37.0	\checkmark
CH4 Negative		CH4 IC5	39.2	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-98.7	-158.7
Ch2	-160dB	-100.4	-160.4
Ch3	-160dB	-98.5	-158.5
Ch4	-160dB	-101.1	-161.1

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.27	83.2mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit......TTOP35P.....Serial No Test EngineerRMC Date24/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP35P
Driver board ID	TTOP35P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP35P
Monitor board ID	MON45P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON45P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP36P..... Monitor Card ID...Mon56....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P36.....Serial No Test EngineerXen..... Date9/8/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CHs 3 & 4.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit	.T_TOP_P36	Serial No
Test Engineer	Xen	
Date	.20/1/10	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	.T_TOP_F	P36	.Serial No	
Test Engineer	Xen			
Date	.20/1/10			

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P36.....Serial No Test EngineerXen..... Date20/1/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_P36.	Serial No
Test Engineer	Xen	
Date	.20/1/10	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	OK?	
	ON OFF		
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark \checkmark		\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON OFF		
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark \checkmark		\checkmark
Ch3			\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	T_TOP_F	P36	.Serial No .	
Test Engineer	Xen			
Date	20/1/10			

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 1	RMS Current	0.75v dc	0.754	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.748	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 10	RMS Current	0.75v dc	0.751	\checkmark

1v across load resistor

Unit	.T_TOP_F	°36	.Serial No	
Test Engineer	.Xen			
Date	.20/1/10			

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
		Pin	output?	value	
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.67	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.13	2.9µV√Hz	\checkmark
2		0.99	2.9µV√Hz	\checkmark
3		1.10	2.9µV√Hz	\checkmark
4		1.55	2.9µV√Hz	\checkmark

Unit	T_TOP_	P36	Serial No	
Test Engineer .	Xen			
Date	20/1/10			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.2		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	40.4	\checkmark
CH1 Negative		CH1 IC5	42.3	\checkmark
CH2 Positive	12.20	CH2 IC1	41.1	\checkmark
CH2 Negative		CH2 IC5	42.3	\checkmark
CH3 Positive	12.20	CH3 IC1	40.6	\checkmark
CH3 Negative		CH3 IC5	41.8	\checkmark
CH4 Positive	12.20	CH4 IC1	39.9	\checkmark
CH4 Negative		CH4 IC5	41.4	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.4	-161.4
Ch2	-160dB	-99.6	-159.6
Ch3	-160dB	-102.0	-162.0
Ch4	-160dB	-101.6	-161.6

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP36.....Serial No Test EngineerRMC Date23/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP36P
Driver board ID	TTOP36P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP36P
Monitor board ID	MON56P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON56P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP37P..... Monitor Card ID...Mon58P.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit	.T_TOP_	P37	Serial No	
Test Engineer	Xen			
Date	.28/7/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

IC8 and IC4 have been replaced by the AD8671 op-amp on CH4.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P37.....Serial No Test EngineerXen.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P37.....Serial No Test EngineerXen..... Date13/11/09.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit......T_TOP_P37.....Serial No Test EngineerXen.... Date13/11/09.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.754	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.753	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.759	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.752	\checkmark

1v across load resistor

Unit......T_TOP_P37.....Serial No Test EngineerXen..... Date13/11/09.....

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.51	2.9µV√Hz	\checkmark
2		1.05	2.9µV√Hz	\checkmark
3		1.40	2.9µV√Hz	\checkmark
4		1.08	2.9µV√Hz	\checkmark

Unit	T_TOP_P	37Serial No
Test Engineer .	Xen	
Date	13/11/09	

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.9		
1kHz	-43.8		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.18	CH1 IC1	42.3	\checkmark
CH1 Negative		CH1 IC5	42.8	\checkmark
CH2 Positive	12.18	CH2 IC1	43.6	\checkmark
CH2 Negative		CH2 IC5	43.6	\checkmark
CH3 Positive	12.18	CH3 IC1	43.1	\checkmark
CH3 Negative		CH3 IC5	42.3	\checkmark
CH4 Positive	12.18	CH4 IC1	42.3	\checkmark
CH4 Negative		CH4 IC5	44.3	\checkmark

Unit.....T_TOP_P37.....Serial No Test EngineerRMC (1, 2 & 3) / Xen (4).... Date30/11/09 / 28/7/10.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-98.3	-158.3
Ch2	-160dB	-101.3	-161.3
Ch3	-160dB	-99.2	-159.2
Ch4	-160dB	-100.7	-160.7

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit	TTOP37P	Serial No	
Test Engineer	RMC		
Date	24/8/10		

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP37P
Driver board ID	TTOP37P
Driver board Drawing No/Issue No	D0902747_V8
Driver board Serial Number	TTOP37P
Monitor board ID	MON58P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON58P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP38P..... Monitor Card ID...Mon57....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_	P38	Serial No	
Test Engineer	.Xen			
Date	.10/8/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Removed capacitors C27 and C32 on all channels and replaced the 33pF ceramic capacitor with a 33pF polypropylene capacitor.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P38.....Serial No Test EngineerXen..... Date20/1/10.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	$\overline{\mathbf{v}}$

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_P38......Serial No Test EngineerXen..... Date20/1/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit.......T_TOP_P38......Serial No Test EngineerXen..... Date20/1/10.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.753	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.753	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.752	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 10	RMS Current	0.75v dc	0.751	\checkmark

1v across load resistor

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.67	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		0.92	2.9µV√Hz	\checkmark
2		1.02	2.9µV√Hz	\checkmark
3		1.28	2.9µV√Hz	\checkmark
4		1.24	2.9µV√Hz	\checkmark

Unit	T TOP	P38	Serial No	
Test Engineer .	Xen	·		
Date				

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.8		
10Hz	-30.9		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.9		
10Hz	-30.7		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.21	CH1 IC1	39.7	\checkmark
CH1 Negative		CH1 IC5	40.9	\checkmark
CH2 Positive	12.21	CH2 IC1	40.6	\checkmark
CH2 Negative		CH2 IC5	42.8	\checkmark
CH3 Positive	12.21	CH3 IC1	40.4	\checkmark
CH3 Negative		CH3 IC5	41.6	\checkmark
CH4 Positive	12.21	CH4 IC1	39.7	\checkmark
CH4 Negative		CH4 IC5	41.6	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-99.9	-159.9
Ch2	-160dB	-100.1	-160.1
Ch3	-160dB	-99.9	-159.9
Ch4	-160dB	-100.9	-160.9

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V =	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP38P.....Serial No Test EngineerRMC Date30/9/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP38P
Driver board ID	TTOP38P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP38P
Monitor board ID	MON57P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON57P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. $\sqrt{}$
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP39P..... Monitor Card ID...Mon100.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit......T_TOP_P39.....Serial No Test EngineerXen..... Date10/9/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit	T_TOP_P39	Serial No
Test Engineer .	Xen	
Date	20/1/10	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit	.T_TOP_P39	Serial No	
Test Engineer	.Xen		
Date	.20/1/10		

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_P39	8	Serial No	
Test Engineer	Xen			
Date	.20/1/10			

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	T_TOP_P39	.Serial No
Test Engineer	Xen	
Date	20/1/10	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.752	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.752	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.753	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.751	\checkmark

1v across load resistor

Unit	.T_TOP_F	⊃39	.Serial No	
Test Engineer	Xen			
Date	.20/1/10			

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.01	2.9µV√Hz	\checkmark
2		1.26	2.9µV√Hz	\checkmark
3		1.37	2.9µV√Hz	\checkmark
4		1.34	2.9µV√Hz	\checkmark

Unit	T_TOP_P39	Serial No
Test Engineer	Xen	
Date		

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.18	CH1 IC1	40.1	\checkmark
CH1 Negative		CH1 IC5	42.6	\checkmark
CH2 Positive	12.18	CH2 IC1	42.1	\checkmark
CH2 Negative		CH2 IC5	42.6	\checkmark
CH3 Positive	12.18	CH3 IC1	41.8	\checkmark
CH3 Negative		CH3 IC5	42.6	\checkmark
CH4 Positive	12.18	CH4 IC1	41.4	\checkmark
CH4 Negative		CH4 IC5	40.1	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-99.9	-159.9
Ch2	-160dB	-102.1	-162.1
Ch3	-160dB	-102.6	-162.6
Ch4	-160dB	-99.9	-159.9

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit......TTOP39P.....Serial No Test EngineerRMC Date30/9/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP39P
Driver board ID	TTOP39P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP39P
Monitor board ID	MON100P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON100P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. $\sqrt{}$
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP40P..... Monitor Card ID...Mon101.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_	P40	Serial No .	
Test Engineer	.Xen			
Date	.7/7/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P40.....Serial No Test EngineerXen.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out to AA	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_P40.....Serial No Test EngineerXen..... Date19/1/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P40.....Serial No Test EngineerXen..... Date19/1/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P40	Serial No
Test Engineer	Xen	
Date		

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit......T_TOP_P40.....Serial No Test EngineerXen..... Date6/7/10.....

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 1	RMS Current	0.75v dc	0.759	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.747	\checkmark
	Pin 4	RMS Current	0.75v dc	0.750	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.749	\checkmark
	Pin 10	RMS Current	0.75v dc	0.752	\checkmark

1v across load resistor

Unit	T_TOP_	P40	Serial No	
Test Engineer	Xen			
Date				

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.84	2.9µV√Hz	\checkmark
2		1.84	2.9µV√Hz	\checkmark
3		0.78	2.9µV√Hz	\checkmark
4		1.02	2.9µV√Hz	\checkmark

Unit	T_TOP_	P40	Serial No	
Test Engineer	Xen	••••••		
Date	6/7/10			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.2		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

Unit......T_TOP_P40.....Serial No Test EngineerXen..... Date6/7/10.....

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	38.2	\checkmark
CH1 Negative		CH1 IC5	40.9	\checkmark
CH2 Positive	12.20	CH2 IC1	40.4	\checkmark
CH2 Negative		CH2 IC5	43.1	\checkmark
CH3 Positive	12.20	CH3 IC1	41.4	\checkmark
CH3 Negative		CH3 IC5	42.6	\checkmark
CH4 Positive	12.20	CH4 IC1	38.9	\checkmark
CH4 Negative		CH4 IC5	41.1	\checkmark

Unit......T_TOP_P40.....Serial No Test EngineerXen..... Date6/7/10.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	- 60dB =
Ch1	-160dB	-100.7	-160.7
Ch2	-160dB	-101.7	-161.7
Ch3	-160dB	-101.2	-161.2
Ch4	-160dB	-99.9	-159.9

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P40.....Serial No Test EngineerXen..... Date6/7/10.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP40P....Serial No Test EngineerRMC Date23/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred.

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP40P		
Driver board ID	TTOP40P		
Driver board Drawing No/Issue No	D0902747_V9		
Driver board Serial Number	TTOP40P		
Monitor board ID	MON101		
Monitor board Drawing No/Issue No	D070480_4_K		
Monitor board Serial Number	MON101		

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect.√

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. \checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP41P..... Monitor Card ID...Mon102.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit	.T_TOP_	P41	Serial No .	
Test Engineer	Xen			
Date	.28/7/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit.......T_TOP_P41.....Serial No Test EngineerXen..... Date19/1/10.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH4.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P41.....Serial No Test EngineerXen.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P41.....Serial No Test EngineerXen..... Date19/1/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P	41	Serial No	
Test Engineer	Xen			
Date				

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 1	RMS Current	0.75v dc	0.754	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.754	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.757	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.755	\checkmark

1v across load resistor

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.42	2.9µV√Hz	\checkmark
2		1.72	2.9µV√Hz	\checkmark
3		1.53	2.9µV√Hz	\checkmark
4		1.97	2.9µV√Hz	\checkmark

Unit	T_TOP_	P41	Serial No .	
Test Engineer	Xen	-		
Date				

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.9		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free) ?
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.21	CH1 IC1	39.7	\checkmark
CH1 Negative		CH1 IC5	42.6	\checkmark
CH2 Positive	12.21	CH2 IC1	40.4	\checkmark
CH2 Negative		CH2 IC5	39.7	\checkmark
CH3 Positive	12.20	CH3 IC1	40.1	\checkmark
CH3 Negative		CH3 IC5	42.1	\checkmark
CH4 Positive	12.21	CH4 IC1	39.2	\checkmark
CH4 Negative		CH4 IC5	42.1	\checkmark

Unit......T_TOP_P41.....Serial No Test EngineerXen..... Date28/7/10.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	- 60dB =
Ch1	-160dB	-100.5	-160.5
Ch2	-160dB	-100.3	-160.3
Ch3	-160dB	-99.2	-159.2
Ch4	-160dB	-101.1	-161.1

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P41.....Serial No Test EngineerXen..... Date23/7/10.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP41P.....Serial No Test EngineerRMC Date23/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP41P
Driver board ID	TTOP41P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP41P
Monitor board ID	MON102
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON102

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect.√

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. \checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Unit......T_TOP_P42.....Serial No Test EngineerXen..... Date9/8/10.....

Drive Card ID.....T_TOP42P..... Monitor Card ID...Mon103.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P42....Serial No Test EngineerXen..... Date9/8/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH4.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P42.....Serial No Test EngineerXen.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_P42.....Serial No Test EngineerXen..... Date19/1/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P42.....Serial No Test EngineerXen..... Date19/1/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P42	Serial No	D
Test Engineer	Xen		
Date	.19/1/10		

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 1	RMS Current	0.75v dc	0.755	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.753	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.754	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.757	\checkmark

1v across load resistor

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.16	2.9µV√Hz	\checkmark
2		0.96	2.9µV√Hz	\checkmark
3		1.48	2.9µV√Hz	\checkmark
4		1.81	2.9µV√Hz	\checkmark

Unit	T_TOP_	P42	Serial No	
Test Engineer	Xen	-		
Date				

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.9		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	40.4	\checkmark
CH1 Negative		CH1 IC5	43.3	\checkmark
CH2 Positive	12.19	CH2 IC1	41.1	\checkmark
CH2 Negative		CH2 IC5	42.1	\checkmark
CH3 Positive	12.19	CH3 IC1	41.8	\checkmark
CH3 Negative		CH3 IC5	42.6	\checkmark
CH4 Positive	12.19	CH4 IC1	40.4	\checkmark
CH4 Negative		CH4 IC5	41.6	\checkmark

Unit......T_TOP_P42.....Serial No Test EngineerXen..... Date28/7/10.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	- 60dB =
Ch1	-160dB	-98.3	-158.3
Ch2	-160dB	-100.7	-160.7
Ch3	-160dB	-100.6	-160.6
Ch4	-160dB	-100.8	-160.8

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P42.....Serial No Test EngineerXen..... Date23/7/10.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.27	83.2mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit...... TTOP 42PSerial No Test EngineerRMC Date23/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP 42P
Driver board ID	TTOP 42P
Driver board Drawing No/Issue No	D0902747 V6
Driver board Serial Number	TTOP 42P
Monitor board ID	MON103
Monitor board Drawing No/Issue No	D070480_04_K
Monitor board Serial Number	MON103

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP43P..... Monitor Card ID...Mon104.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit	.T_TOP_	P43	.Serial No	
Test Engineer	.Xen			
Date	.10/9/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CHs 1 & 4.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P43.....Serial No Test EngineerXen.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out to AA	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_P43.....Serial No Test EngineerXen..... Date19/1/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P43	Serial No	
Test Engineer	Xen		
Date	19/1/10		

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	T_TOP_P43	Serial No
Test Engineer	Xen	
Date	19/1/10	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.756	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.754	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 7	RMS Current	0.75v dc	0.755	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 10	RMS Current	0.75v dc	0.756	\checkmark

1v across load resistor

Unit	.T_TOP_P43	Serial No
Test Engineer	Xen	
Date	.19/1/10	

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
		Pin	output:	value	
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.67	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.47	2.9µV√Hz	\checkmark
2		1.14	2.9µV√Hz	\checkmark
3		1.23	2.9µV√Hz	\checkmark
4		1.34	2.9µV√Hz	\checkmark

Unit	T_TOP_P43	Serial No
Test Engineer	Xen	
Date		

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	40.4	\checkmark
CH1 Negative		CH1 IC5	43.6	\checkmark
CH2 Positive	12.20	CH2 IC1	42.3	\checkmark
CH2 Negative		CH2 IC5	42.3	\checkmark
CH3 Positive	12.20	CH3 IC1	40.4	\checkmark
CH3 Negative		CH3 IC5	41.1	\checkmark
CH4 Positive	12.20	CH4 IC1	40.6	\checkmark
CH4 Negative		CH4 IC5	42.3	\checkmark

Unit......T_TOP_P43.....Serial No Test EngineerXen..... Date28/7/10.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-102.9	-162.9
Ch2	-160dB	-100.8	-160.8
Ch3	-160dB	-100.5	-160.5
Ch4	-160dB	-102.1	-162.1

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit	TTOP43P	Serial No
Test Engineer	RMC	
Date	30/9/10	

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP43P
Driver board ID	TTOP43P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP43P
Monitor board ID	MON104
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON104

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. $\sqrt{}$

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP44P..... Monitor Card ID...Mon105.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_	P44	Serial No	
Test Engineer	.Xen			
Date	.21/7/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH 2.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected the joints on the Mantis microscope.

Unit	.T_TOP_P44	Serial No
Test Engineer	.Xen	
Date	.18/1/10	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	$\overline{\mathbf{v}}$
25	0V	Return	A2	

Unit	T_TOP_P44	Serial No	
Test Engineer	Xen		
Date	18/1/10		

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P44.....Serial No Test EngineerXen..... Date18/1/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P44	Serial No	
Test Engineer	Xen		
Date	18/1/10		

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	T_TOP_P44	.Serial No
Test Engineer	Xen	
Date	18/1/10	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.756	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.757	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 7	RMS Current	0.75v dc	0.755	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.752	\checkmark

1v across load resistor

Unit	T_TOP_P44	Serial No	
Test Engineer	Xen		
Date	18/1/10		

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	Pin	output?	value	
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.79	2.9µV√Hz	\checkmark
2		1.45	2.9µV√Hz	\checkmark
3		0.83	2.9µV√Hz	\checkmark
4		1.54	2.9µV√Hz	\checkmark

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail	
1Hz	1.4			
10Hz	-30.0			
100Hz	-42.8			
1kHz	-43.3			

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	40.4	\checkmark
CH1 Negative		CH1 IC5	40.6	\checkmark
CH2 Positive	12.19	CH2 IC1	41.8	\checkmark
CH2 Negative		CH2 IC5	42.1	\checkmark
CH3 Positive	12.19	CH3 IC1	41.4	\checkmark
CH3 Negative		CH3 IC5	42.3	\checkmark
CH4 Positive	12.19	CH4 IC1	41.1	\checkmark
CH4 Negative		CH4 IC5	42.8	\checkmark

Unit......T_TOP_P44.....Serial No Test EngineerXen..... Date22/7/10.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.1	-160.1
Ch2	-160dB	-103.1	-163.1
Ch3	-160dB	-97.6	-157.6
Ch4	-160dB	-103.1	-163.1

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit......TTOP44P.....Serial No Test EngineerRMC Date5/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP44P
Driver board ID	TTOP44P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP44P
Monitor board ID	MON105
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON105

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP45P..... Monitor Card ID...Mon106.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit	.T_TOP_	P45	Serial No	
Test Engineer	.Xen			
Date	.18/1/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit.......T_TOP_P45.....Serial No Test EngineerXen..... Date18/1/10.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CHs 2 & 3.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected the joints on the Mantis microscope.

Unit	T_TOP_P45	Serial No
Test Engineer	Xen	
Date	18/1/10	

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V			
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	$\overline{\mathbf{v}}$
25	0V	Return	A2	

Unit	.T_TOP_P4	5Serial No
Test Engineer	Xen	
Date	.18/1/10	

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P45.....Serial No Test EngineerXen..... Date18/1/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_P45	Serial No	
Test Engineer	Xen		
Date	18/1/10		

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	T_TOP_F	P45	Serial No	
Test Engineer	Xen			
Date				

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 1	RMS Current	0.75v dc	0.752	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 4	RMS Current	0.75v dc	0.749	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.750	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.751	\checkmark

1v across load resistor

Unit	.T_TOP_P45	Serial No
Test Engineer	.Xen	
Date	.18/1/10	

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.67	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.42	2.9µV√Hz	\checkmark
2		0.95	2.9µV√Hz	\checkmark
3		1.05	2.9µV√Hz	\checkmark
4		1.03	2.9µV√Hz	\checkmark

Unit	.T_TOP_	P45	.Serial No .	
Test Engineer	.Xen			
Date	.18/1/10			

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail			
1Hz	1.2					
10Hz	-30.3					
100Hz	-42.9					
1kHz	-43.3					

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	39.7	\checkmark
CH1 Negative		CH1 IC5	41.6	\checkmark
CH2 Positive	12.19	CH2 IC1	40.6	\checkmark
CH2 Negative		CH2 IC5	42.8	\checkmark
CH3 Positive	12.19	CH3 IC1	40.4	\checkmark
CH3 Negative		CH3 IC5	42.1	\checkmark
CH4 Positive	12.19	CH4 IC1	38.9	\checkmark
CH4 Negative		CH4 IC5	40.6	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-99.3	-159.3
Ch2	-160dB	-100.9	-160.9
Ch3	-160dB	-97.8	-157.8
Ch4	-160dB	-100.9	-160.9

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP45P.....Serial No Test EngineerRMC Date5/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP46P
Driver board ID	TTOP46P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP46P
Monitor board ID	MON107P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON107P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP46P..... Monitor Card ID...Mon107.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P46.....Serial No Test Engineer....Xen.... Date......16/7/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P46.....Serial No Test Engineer....Xen..... Date......16/7/10.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH4.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected the joints on the Mantis microscope.

Unit.....T_TOP_P46.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1		Photodiode A+	1	~
1				
2	PD2P	Photodiode B+	2	N
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P46.....Serial No Test Engineer....Xen..... Date......16/7/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P46.....Serial No Test Engineer....Xen..... Date......16/7/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T TOP P4	6Serial No
Test Engineer	Xen	
Date	.16/7/10	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit......T_TOP_P46.....Serial No Test Engineer....Xen.... Date......16/7/10....

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 1	RMS Current	0.75v dc	0.758	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.759	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.757	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.755	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		PIN			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.81	2.9µV√Hz	\checkmark
2		1.20	2.9µV√Hz	\checkmark
3		1.65	2.9µV√Hz	\checkmark
4		1.86	2.9µV√Hz	\checkmark

Unit......T_TOP_P46.....Serial No Test Engineer....Xen....

Date.....16/7/10..... 10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

Unit	T_TOP_P46	.Serial No
Test Engineer	Xen	
Date	.16/7/10	

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	40.4	\checkmark
CH1 Negative		CH1 IC5	43.3	\checkmark
CH2 Positive	12.20	CH2 IC1	42.1	\checkmark
CH2 Negative		CH2 IC5	42.3	\checkmark
CH3 Positive	12.20	CH3 IC1	43.6	\checkmark
CH3 Negative		CH3 IC5	42.6	\checkmark
CH4 Positive	12.20	CH4 IC1	42.8	\checkmark
CH4 Negative		CH4 IC5	44.3	\checkmark

Unit	T TOP	P46	.Serial No	
Test Engineer	Xen			
Date	.16/7/10			

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.0	-160.0
Ch2	-160dB	-100.7	-160.7
Ch3	-160dB	-100.3	-160.3
Ch4	-160dB	-100.6	-160.6

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P46.....Serial No Test Engineer....Xen.... Date......16/7/10.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/-2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP46P.....Serial No Test Engineer.....RMC Date......5/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. \checkmark
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP46P
Driver board ID	TTOP46P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP46P
Monitor board ID	MON107
Monitor board Drawing No/Issue No	D070480_4_k
Monitor board Serial Number	MON107

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP47P..... Monitor Card ID...Mon108.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit......T_TOP_P47.....Serial No Test Engineer....Xen..... Date......16/7/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P47.....Serial No Test Engineer....Xen..... Date......15/7/10.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH1.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected the joints on the Mantis microscope.

Unit.....T_TOP_P47.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1		Photodiode A+	1	~
1				
2	PD2P	Photodiode B+	2	N
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P47.....Serial No Test Engineer....Xen..... Date......15/7/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P47.....Serial No Test Engineer....Xen..... Date......15/7/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_	P47	Serial No	
Test Engineer	Xen	•••••		
Date				

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indi	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator		
	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 1	RMS Current	0.75v dc	0.753	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.752	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 7	RMS Current	0.75v dc	0.755	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.749	\checkmark
	Pin 10	RMS Current	0.75v dc	0.753	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.44	2.9µV√Hz	\checkmark
2		1.75	2.9µV√Hz	\checkmark
3		0.91	2.9µV√Hz	\checkmark
4		1.17	2.9µV√Hz	\checkmark

Unit......T_TOP_P47.....Serial No Test Engineer....Xen

Date......16/7/10.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.2		

Channel 2

••. =			
Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-29.9		
100Hz	-42.8		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.83		
Ch2	4.83		
Ch3	4.83		
Ch4	4.83		

Unit	.T TOP P47	Serial No
Test Engineer	Xen	
Date	.16/7/10	

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	38.2	\checkmark
CH1 Negative		CH1 IC5	41.6	\checkmark
CH2 Positive	12.19	CH2 IC1	40.1	\checkmark
CH2 Negative		CH2 IC5	40.1	\checkmark
CH3 Positive	12.19	CH3 IC1	43.3	\checkmark
CH3 Negative		CH3 IC5	43.3	\checkmark
CH4 Positive	12.19	CH4 IC1	43.1	\checkmark
CH4 Negative		CH4 IC5	41.1	\checkmark

Unit	.T TOP P	7Serial No
Test Engineer	Xen	
Date	.16/7/10	

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.8	-161.8
Ch2	-160dB	-100.1	-160.1
Ch3	-160dB	-100.8	-160.8
Ch4	-160dB	-100.3	-160.3

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/-2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP47P.....Serial No Test Engineer.....RMC Date.....18/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP47P
Driver board ID	TTOP47P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP47P
Monitor board ID	MON108
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON108

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP48P..... Monitor Card ID...Mon109....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P48.....Serial No Test Engineer....Xen..... Date......15/6/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P48.....Serial No Test Engineer....Xen..... Date......15/6/10.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected the joints on the Mantis microscope.

Unit.....T_TOP_P48.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1		Photodiode A+	1	~
1				
2	PD2P	Photodiode B+	2	N
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P48.....Serial No Test Engineer....Xen..... Date......15/6/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P48.....Serial No Test Engineer....Xen..... Date......15/6/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_	P48	Serial No	
Test Engineer	Xen			
Date	15/6/10			

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator		
	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	

Unit......T_TOP_P48.....Serial No Test Engineer....Xen.... Date......15/6/10....

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.756	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.753	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 7	RMS Current	0.75v dc	0.748	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.752	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.01	2.9µV√Hz	\checkmark
2		1.22	2.9µV√Hz	\checkmark
3		1.33	2.9µV√Hz	\checkmark
4		1.10	2.9µV√Hz	\checkmark

Unit......T_TOP_P48.....Serial No Test Engineer....Xen....

Date......15/6/10.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.2		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.2		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.83		
Ch2	4.83		
Ch3	4.83		
Ch4	4.83		

Unit	.T TOP P48	Serial No
Test Engineer	Xen	
Date	.15/6/10	

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	42.1	\checkmark
CH1 Negative		CH1 IC5	41.4	\checkmark
CH2 Positive	12.19	CH2 IC1	44.8	\checkmark
CH2 Negative		CH2 IC5	45.5	\checkmark
CH3 Positive	12.19	CH3 IC1	44.5	\checkmark
CH3 Negative		CH3 IC5	43.8	\checkmark
CH4 Positive	12.19	CH4 IC1	42.1	\checkmark
CH4 Negative		CH4 IC5	43.3	\checkmark

Unit	T TOP	P48	.Serial No .	
Test Engineer	Xen			
Date	.15/6/10			

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-99.5	-159.5
Ch2	-160dB	-100.8	-160.8
Ch3	-160dB	-97.8	-157.8
Ch4	-160dB	-100.8	-160.8

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P48.....Serial No Test Engineer....Xen..... Date......15/6/10.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/-2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit......TTOP48P.....Serial No Test Engineer.....RMC Date.....18/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP48P
Driver board ID	D0902747_V9
Driver board Drawing No/Issue No	TTOP48P
Driver board Serial Number	TTOP48P
Monitor board ID	MON109
Monitor board Drawing No/Issue No	D070480_04_K
Monitor board Serial Number	MON109

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP49P...... Monitor Card ID...Mon110.....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit......T_TOP_P49.....Serial No Test Engineer....Xen.... Date......15/7/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH3.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected the joints on the Mantis microscope.

Unit.....T_TOP_P49.....Serial No Test Engineer....Xen.... Date.....14/7/10.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1		Photodiode A+	1	~
1				
2	PD2P	Photodiode B+	2	N
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_P49.....Serial No Test Engineer....Xen..... Date......14/7/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P49.....Serial No Test Engineer....Xen.... Date......14/7/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_	P49	.Serial No	
Test Engineer	Xen	•••••		
Date	14/7/10			

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator		
	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.749	\checkmark
	Pin 1	RMS Current	0.75v dc	0.746	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 4	RMS Current	0.75v dc	0.751	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 7	RMS Current	0.75v dc	0.752	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.749	\checkmark
	Pin 10	RMS Current	0.75v dc	0.751	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.33	2.9µV√Hz	\checkmark
2		1.04	2.9µV√Hz	\checkmark
3		0.95	2.9µV√Hz	\checkmark
4		1.04	2.9µV√Hz	\checkmark

Unit......T_TOP_P49.....Serial No Test Engineer....Xen

Date......14/7/10.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.5		
100Hz	-42.8		
1kHz	-43.2		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.83		
Ch2	4.83		
Ch3	4.83		
Ch4	4.83		

Unit	.T TOP P49	Serial No
Test Engineer	Xen	
Date	.14/7/10	

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	37.2	\checkmark
CH1 Negative		CH1 IC5	40.6	\checkmark
CH2 Positive	12.20	CH2 IC1	40.1	\checkmark
CH2 Negative		CH2 IC5	40.6	\checkmark
CH3 Positive	12.20	CH3 IC1	40.6	\checkmark
CH3 Negative		CH3 IC5	42.6	\checkmark
CH4 Positive	12.20	CH4 IC1	40.4	\checkmark
CH4 Negative		CH4 IC5	41.6	\checkmark

Unit	T TOP	P49	.Serial No	
Test Engineer	Xen			
Date	15/7/10			

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.1	-160.1
Ch2	-160dB	-98.5	-158.5
Ch3	-160dB	-101.0	-161.0
Ch4	-160dB	-102.3	-162.3

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P49.....Serial No Test Engineer....Xen.... Date......14/7/10.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/-2.5mA	Pass?
1	39.3	3.27	83.2mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit......TTOP49P.....Serial No Test Engineer.....RMC Date.....18/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP49P
Driver board ID	TTOP49P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP49P
Monitor board ID	MON110
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON110

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP50P..... Monitor Card ID...Mon111....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P50.....Serial No Test Engineer....Xen..... Date......14/7/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P50.....Serial No Test Engineer....Xen.... Date......13/7/10.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected.

Unit......T_TOP_P50.....Serial No Test Engineer....Xen.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1		Photodiode A+	1	~
1				
2	PD2P	Photodiode B+	2	N
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_P50......Serial No Test Engineer....Xen..... Date......13/7/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P50.....Serial No Test Engineer....Xen.... Date......13/7/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_	P50	.Serial No	
Test Engineer	Xen	-		
Date	13/7/10.			

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indi	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator		
	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.729	\checkmark
	Pin 1	RMS Current	0.75v dc	0.735	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.729	\checkmark
	Pin 4	RMS Current	0.75v dc	0.730	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.729	\checkmark
	Pin 7	RMS Current	0.75v dc	0.737	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.730	\checkmark
	Pin 10	RMS Current	0.75v dc	0.731	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.14	2.9µV√Hz	\checkmark
2		1.31	2.9µV√Hz	\checkmark
3		1.36	2.9µV√Hz	\checkmark
4		1.72	2.9µV√Hz	\checkmark

Unit......T_TOP_P50.....Serial No Test Engineer....Xen.....

Date.....14/7/10.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.2		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.2		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

Unit	.T TOP F	P50	.Serial No
Test Engineer	Xen		
Date	.14/7/10		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	41.1	\checkmark
CH1 Negative		CH1 IC5	41.6	\checkmark
CH2 Positive	12.20	CH2 IC1	42.8	\checkmark
CH2 Negative		CH2 IC5	43.6	\checkmark
CH3 Positive	12.20	CH3 IC1	43.6	\checkmark
CH3 Negative		CH3 IC5	43.8	\checkmark
CH4 Positive	12.20	CH4 IC1	40.9	\checkmark
CH4 Negative		CH4 IC5	41.8	\checkmark

Unit	T TOP	P50	.Serial No	
Test Engineer	Xen	•		
Date	.14/7/10.			

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.3	-160.3
Ch2	-160dB	-100.8	-160.8
Ch3	-160dB	-100.8	-160.8
Ch4	-160dB	-100.2	-160.2

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P50.....Serial No Test Engineer....Xen..... Date......14/7/10.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/-2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.25	82.5mA	120mA	84.8mA	\checkmark

Unit......TTOP50P.....Serial No Test Engineer.....RMC Date.....19/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP50P
Driver board ID	TTOP50P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP50P
Monitor board ID	MON111
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON111

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP51P..... Monitor Card ID...Mon112....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit......T_TOP_P51.....Serial No Test Engineer....Xen.... Date......13/7/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit.......T_TOP_P51.....Serial No Test Engineer....Xen..... Date......12/7/10.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CHs 3 & 4.

The four 0.39uF filter capacitors C200 were added, and checked for short circuits and open circuit resistor joints. Visually inspected.

Unit.....T_TOP_P51.....Serial No Test Engineer....Xen.... Date.....12/7/10.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1		Photodiode A+	1	~
1				
2	PD2P	Photodiode B+	2	N
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P51.....Serial No Test Engineer....Xen..... Date......12/7/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P51.....Serial No Test Engineer....Xen.... Date......12/7/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_	P51	.Serial No	
Test Engineer	Xen	•••••		
Date	.12/7/10.			

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indi	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.755	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.753	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.752	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 10	RMS Current	0.75v dc	0.756	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.72	2.9µV√Hz	\checkmark
2		1.53	2.9µV√Hz	\checkmark
3		1.82	2.9µV√Hz	\checkmark
4		1.61	2.9µV√Hz	\checkmark

Unit......T_TOP_P51.....Serial No Test Engineer....Xen

Date......13/7/10.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.2		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.83		
Ch2	4.83		
Ch3	4.83		
Ch4	4.83		

Unit	.T_TOP_P	51Serial No
Test Engineer	Xen	
Date	.13/7/10	

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.17	CH1 IC1	37.9	\checkmark
CH1 Negative		CH1 IC5	40.9	\checkmark
CH2 Positive	12.18	CH2 IC1	40.6	\checkmark
CH2 Negative		CH2 IC5	40.6	\checkmark
CH3 Positive	12.17	CH3 IC1	41.8	\checkmark
CH3 Negative		CH3 IC5	41.4	\checkmark
CH4 Positive	12.18	CH4 IC1	40.4	\checkmark
CH4 Negative		CH4 IC5	40.6	\checkmark

Unit	T TOP F	P51	Serial No	
Test Engineer	.Xen			
Date	.13/7/10			

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.0	-161.0
Ch2	-160dB	-100.5	-160.5
Ch3	-160dB	-100.5	-160.5
Ch4	-160dB	-101.6	-161.6

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P51.....Serial No Test Engineer....Xen..... Date......13/7/10.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/-2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit......TTOP51P.....Serial No Test Engineer.....RMC Date.....19.6/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. \checkmark

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP51P
Driver board ID	TTOP51P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP51P
Monitor board ID	MON112
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON112

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP52P.... Monitor Card ID...Mon113....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P52.....Serial No Test Engineer....Xen..... Date......12/7/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P52.....Serial No Test Engineer....Xen..... Date......9/7/10.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CHs 3 & 4.

The four 0.39uF filter capacitors C200 were added, and checked for short circuits and open circuit resistor joints. Visually inspected.

Unit......T_TOP_P52.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P52.....Serial No Test Engineer....Xen..... Date......9/7/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P52.....Serial No Test Engineer....Xen..... Date......9/7/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit......T_TOP_P52.....Serial No Test Engineer....Xen..... Date......9/7/10.....

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indie	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator		
	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	
Ch4		\checkmark	\checkmark	

Unit......T_TOP_P52.....Serial No Test Engineer....Xen.... Date......9/7/10....

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 1	RMS Current	0.75v dc	0.749	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.754	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 7	RMS Current	0.75v dc	0.748	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 10	RMS Current	0.75v dc	0.754	\checkmark

Unit......T_TOP_P52.....Serial No Test Engineer....Xen.... Date......9/7/10....

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.25	2.9µV√Hz	\checkmark
2		1.20	2.9µV√Hz	\checkmark
3		1.32	2.9µV√Hz	\checkmark
4		1.46	2.9µV√Hz	\checkmark

Unit......T_TOP_P52.....Serial No Test Engineer....Xen.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.2		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.6		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.5		
10Hz	-29.9		
100Hz	-42.8		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.83		
Ch2	4.83		
Ch3	4.83		
Ch4	4.83		

Unit	.T TOP I	P52	Serial No
Test Engineer	Xen		
Date	.12/7/10		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	39.7	\checkmark
CH1 Negative		CH1 IC5	41.6	\checkmark
CH2 Positive	12.20	CH2 IC1	41.4	\checkmark
CH2 Negative		CH2 IC5	40.6	\checkmark
CH3 Positive	12.20	CH3 IC1	40.1	\checkmark
CH3 Negative		CH3 IC5	41.4	\checkmark
CH4 Positive	12.20	CH4 IC1	40.9	\checkmark
CH4 Negative		CH4 IC5	42.3	\checkmark

Unit	T TOP	P52	.Serial No	
Test Engineer	.Xen			
Date	.12/7/10.			

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.1	-160.1
Ch2	-160dB	-100.8	-160.8
Ch3	-160dB	-100.7	-160.7
Ch4	-160dB	-100.7	-160.7

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P52.....Serial No Test Engineer....Xen..... Date......12/7/10.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/-2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP52P.....Serial No Test Engineer.....RMC Date.....19/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP52P
Driver board ID	TTOP52P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP52P
Monitor board ID	MON113
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON113

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect.√

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP53P..... Monitor Card ID...Mon114....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH1.

Four 0.39uF filter capacitors C200 added, and checked for short circuits and open circuit resistor joints. Visually inspected.

Unit......T_TOP_P53.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1		Photodiode A+	1	~
1				
2	PD2P	Photodiode B+	2	N
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter Theoretic		Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 1	RMS Current	0.75v dc	0.755	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.756	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.761	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 10	RMS Current	0.75v dc	0.754	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.09	2.9µV√Hz	\checkmark
2		1.07	2.9µV√Hz	\checkmark
3		0.88	2.9µV√Hz	\checkmark
4		1.64	2.9µV√Hz	\checkmark

Unit......T_TOP_P53.....Serial No Test Engineer....Xen.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.2		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.2		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.83		
Ch2	4.83		
Ch3	4.83		
Ch4	4.83		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	40.1	\checkmark
CH1 Negative		CH1 IC5	40.4	\checkmark
CH2 Positive	12.20	CH2 IC1	42.6	\checkmark
CH2 Negative		CH2 IC5	41.1	\checkmark
CH3 Positive	12.20	CH3 IC1	42.6	\checkmark
CH3 Negative		CH3 IC5	41.6	\checkmark
CH4 Positive	12.20	CH4 IC1	42.6	\checkmark
CH4 Negative		CH4 IC5	42.3	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.1	-161.1
Ch2	-160dB	-101.0	-161.0
Ch3	-160dB	-100.2	-160.2
Ch4	-160dB	-101.8	-161.8

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/-2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit......TTOP53P.....Serial No Test Engineer......RMC Date......19/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP53P
Driver board ID	TTOP53P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP53P
Monitor board ID	MON114
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON114

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Unit......T_TOP_P54.....Serial No Test Engineer....Xen..... Date......8/7/10....

Drive Card ID.....T_TOP54P..... Monitor Card ID...Mon115....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope ISO-TECH		ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer Agilent		35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CHs 1 & 2.

Four 0.39uF filter capacitors C200 added, and checked for short circuits and open circuit resistor joints. Visually inspected.

Unit.....T_TOP_P54.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	EDs Plus Minus	
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.756	\checkmark
	Pin 1	RMS Current	0.75v dc	0.762	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 4	RMS Current	0.75v dc	0.760	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 7	RMS Current	0.75v dc	0.757	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 10	RMS Current	0.75v dc	0.759	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.68	2.9µV√Hz	\checkmark
2		1.06	2.9µV√Hz	\checkmark
3		0.91	2.9µV√Hz	\checkmark
4		0.94	2.9µV√Hz	\checkmark

Unit......T_TOP_P54.....Serial No Test Engineer....Xen.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	45.3	\checkmark
CH1 Negative		CH1 IC5	45.5	\checkmark
CH2 Positive	12.20	CH2 IC1	44.0	\checkmark
CH2 Negative		CH2 IC5	42.1	\checkmark
CH3 Positive	12.19	CH3 IC1	42.8	\checkmark
CH3 Negative		CH3 IC5	45.0	\checkmark
CH4 Positive	12.20	CH4 IC1	43.3	\checkmark
CH4 Negative		CH4 IC5	42.3	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.5	-160.5
Ch2	-160dB	-100.6	-160.6
Ch3	-160dB	-99.8	-159.8
Ch4	-160dB	-100.3	-160.3

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/-2.5mA	Pass?
1	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.25	82.5mA	120mA	84.8mA	\checkmark

Unit.....TTOP54P.....Serial No Test Engineer.....RMC Date.....19/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis.

7. Check that all the LEDs are nicely centred.

8. Check that links W4 and W5 are in place.

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	
Driver board ID	
Driver board Drawing No/Issue No	
Driver board Serial Number	
Monitor board ID	
Monitor board Drawing No/Issue No	
Monitor board Serial Number	

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect.
- 12. Put the lid on and fasten all screws,

Check all external screws for tightness.

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP55P.... Monitor Card ID...Mon116....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CHs 3 & 4.

Four 0.39uF filter capacitors C200 added, and checked for short circuits and open circuit resistor joints. Visually inspected.

Unit.....T_TOP_P55.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter Theoretical		Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 1	RMS Current	0.75v dc	0.753	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.755	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 7	RMS Current	0.75v dc	0.754	\checkmark
4	Pin 11	Current Monitor 0.75v r.m.s		0.750	\checkmark
	Pin 10	RMS Current	0.75v dc	0.752	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.67	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.02	2.9µV√Hz	\checkmark
2		1.02	2.9µV√Hz	\checkmark
3		1.46	2.9µV√Hz	\checkmark
4		1.09	2.9µV√Hz	\checkmark

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.83		
Ch2	4.83		
Ch3	4.83		
Ch4	4.83		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	40.4	\checkmark
CH1 Negative		CH1 IC5	43.3	\checkmark
CH2 Positive	12.19	CH2 IC1	45.7	\checkmark
CH2 Negative		CH2 IC5	43.1	\checkmark
CH3 Positive	12.20	CH3 IC1	42.8	\checkmark
CH3 Negative		CH3 IC5	43.6	\checkmark
CH4 Positive	12.20	CH4 IC1	42.1	\checkmark
CH4 Negative		CH4 IC5	42.6	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-98.1	-158.1
Ch2	-160dB	-98.4	-158.4
Ch3	-160dB	-99.0	-159.0
Ch4	-160dB	-98.3	-158.3

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/-2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit.....TTOP55P.....Serial No Test Engineer.....RMC Date.....19/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP55P
Driver board ID	D0902747_V9
Driver board Drawing No/Issue No	TTOP55P
Driver board Serial Number	TTOP55P
Monitor board ID	MON116P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON116P

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP56P.... Monitor Card ID...Mon117....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope ISO-TECH		ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer Agilent		35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

•

Channel	Indie	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	Indicator		
	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.755	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.758	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.754	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.60	2.9µV√Hz	\checkmark
2		0.80	2.9µV√Hz	\checkmark
3		0.98	2.9µV√Hz	\checkmark
4		1.66	2.9µV√Hz	\checkmark

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.2		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.8		
1kHz	-43.2		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.81		
Ch2	4.81		
Ch3	4.81		
Ch4	4.81		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	42.3	\checkmark
CH1 Negative		CH1 IC5	44.5	\checkmark
CH2 Positive	12.19	CH2 IC1	44.0	\checkmark
CH2 Negative		CH2 IC5	46.2	\checkmark
CH3 Positive	12.19	CH3 IC1	43.6	\checkmark
CH3 Negative		CH3 IC5	44.5	\checkmark
CH4 Positive	12.19	CH4 IC1	43.8	\checkmark
CH4 Negative		CH4 IC5	43.3	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-98.9	-158.9
Ch2	-160dB	-99.1	-159.1
Ch3	-160dB	-101.1	-161.1
Ch4	-160dB	-101.5	-161.5

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.25	82.5mA	120mA	84.8mA	\checkmark

Unit......TTOP56P.....Serial No Test Engineer.....RMC Date.....19/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP56P
Driver board ID	D0902747_V9
Driver board Drawing No/Issue No	TTOP56P
Driver board Serial Number	TTOP56P
Monitor board ID	MON117
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON117

10. Check the security of any modification wires.

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP57P..... Monitor Card ID...Mon118....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit	.T_TOP_	P57	.Serial No .	
Test Engineer	.Xen			
Date	7/7/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: \checkmark

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED	SIGNAL	Monitors:	In from	OK?	
Mon			Sat		
1	Imon1P	Current Source 1+	5	\checkmark	
2	Imon2P	Current Source 2+	6	\checkmark	
3	Imon3P	Current Source 3+	7	\checkmark	
4	Imon4P	Current Source 4+	8	\checkmark	
5	0V	\checkmark			
6	Imon1N	Current Source 1-	18	\checkmark	
7	Imon2N	Current Source 2-	19	\checkmark	
8	Imon3N	Current Source 3-	20	\checkmark	
9	Imon4N	Current Source 4-	21	$\overline{\mathbf{v}}$	

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor	4
2	Current Monitor	4
3	R.M.S Current	4
4	Voltage Monitor	3
5	Current Monitor	3
6	R.M.S Current	3
7	Voltage Monitor	2
8	Current Monitor	2
9	R.M.S Current	2
10	Voltage Monitor	1
11	Current Monitor	1
12	R.M.S Current	1
13 to 25	0v	

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	T_TOP_F	P57	Serial No	
Test Engineer	Xen			
Date				

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	T_TOP_P5	7Serial No
Test Engineer	Xen	
Date		

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to DC.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.755	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.757	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 10	RMS Current	0.75v dc	0.753	\checkmark

1v across load resistor

Unit	.T_TOP_F	P57	.Serial No .	
Test Engineer	Xen			
Date	.27/1/10			

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.67	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.02	2.9µV√Hz	\checkmark
2		1.13	2.9µV√Hz	\checkmark
3		1.56	2.9µV√Hz	\checkmark
4		1.01	2.9µV√Hz	\checkmark

Unit	T_TOP_P57	Serial No
Test Engineer	Xen	
Date	27/1/10	

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. Ensure that links W4 and W5 are present.

Use the dynamic signal analyser and the signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output (V)	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	38.2	\checkmark
CH1 Negative		CH1 IC5	40.1	\checkmark
CH2 Positive	12.21	CH2 IC1	39.2	\checkmark
CH2 Negative		CH2 IC5	40.4	\checkmark
CH3 Positive	12.20	CH3 IC1	37.5	\checkmark
CH3 Negative		CH3 IC5	39.9	\checkmark
CH4 Positive	12.21	CH4 IC1	39.4	\checkmark
CH4 Negative		CH4 IC5	37.5	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.4	-161.4
Ch2	-160dB	-101.5	-161.5
Ch3	-160dB	-101.4	-161.4
Ch4	-160dB	-99.5	-159.5

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit	TTOP57P	Serial No	
Test Engineer	RMC		
Date	19/8/10		

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. $\sqrt{}$
- 8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP57P
Driver board ID	TTOP57P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP57P
Monitor board ID	MON118P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON118P

10. Check the security of any modification wires. $\sqrt{}$

- 11. Visually inspect. √
- 12. Put the lid on and fasten all screws $\sqrt{}$,

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP58P.... Monitor Card ID...Mon69....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_	P58	.Serial No	
Test Engineer	Xen			
Date	.21/7/10.			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected the joints on the Mantis microscope.

Unit......T_TOP_P58.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1		Photodiode A+	1	~
1				
2	PD2P	Photodiode B+	2	N
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_P58	Serial No	
Test Engineer	.Xen		
Date	.18/3/10		

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.756	\checkmark
	Pin 1	RMS Current	0.75v dc	0.759	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.756	\checkmark
	Pin 4	RMS Current	0.75v dc	0.755	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 7	RMS Current	0.75v dc	0.758	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 10	RMS Current	0.75v dc	0.758	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.55	2.9µV√Hz	\checkmark
2		1.35	2.9µV√Hz	\checkmark
3		1.62	2.9µV√Hz	\checkmark
4		1.60	2.9µV√Hz	\checkmark

Unit......T_TOP_P58.....Serial No Test Engineer....Xen.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.21	CH1 IC1	38.9	\checkmark
CH1 Negative		CH1 IC5	43.3	\checkmark
CH2 Positive	12.21	CH2 IC1	43.8	\checkmark
CH2 Negative		CH2 IC5	43.6	\checkmark
CH3 Positive	12.21	CH3 IC1	43.1	\checkmark
CH3 Negative		CH3 IC5	44.0	\checkmark
CH4 Positive	12.21	CH4 IC1	42.1	\checkmark
CH4 Negative		CH4 IC5	42.1	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-99.2	-159.2
Ch2	-160dB	-99.7	-159.7
Ch3	-160dB	-101.8	-161.8
Ch4	-160dB	-99.7	-159.7

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.25	82.5mA	120mA	84.8mA	\checkmark

Unit.....TTOP58P.....Serial No Test Engineer.....RMC Date.....18/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP58P
Driver board ID	TTOP58P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP58P
Monitor board ID	MON69
Monitor board Drawing No/Issue No	D070480_04_K
Monitor board Serial Number	MON69

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP59P.... Monitor Card ID...Mon70....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- **15. Noise Monitors**
- 16. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit	.T_TOP_	P59	.Serial No	
Test Engineer	Xen	•••••		
Date	.18/3/10.			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P59.....Serial No Test Engineer....Xen.... Date......18/3/10....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Unit......T_TOP_P59.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P59.....Serial No Test Engineer....Xen.... Date......18/3/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P59.....Serial No Test Engineer....Xen.... Date......18/3/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_P59	Serial No
Test Engineer	Xen	
Date	.18/3/10	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2		\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		Indicator OK		OK?
	ON	OFF			
Ch1	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark		

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.753	\checkmark
2	Pin 5	Current Monitor	Current Monitor 0.75v r.m.s		\checkmark
	Pin 4	RMS Current	0.75v dc	0.754	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 10	RMS Current	0.75v dc	0.753	\checkmark

Unit.......T_TOP_P59.....Serial No Test Engineer....Xen.... Date.......18/3/10.....

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs. Record the peak voltage on each Voltage Monitor pin, and check against the

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Unit......T_TOP_P59.....Serial No

Test Engineer....Xen....

Date......18/3/10..... 10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.2		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.21	CH1 IC1	41.4	\checkmark
CH1 Negative		CH1 IC5	43.8	\checkmark
CH2 Positive	12.21	CH2 IC1	43.8	\checkmark
CH2 Negative		CH2 IC5	42.1	\checkmark
CH3 Positive	12.20	CH3 IC1	43.1	\checkmark
CH3 Negative		CH3 IC5	43.3	\checkmark
CH4 Positive	12.21	CH4 IC1	42.6	\checkmark
CH4 Negative		CH4 IC5	43.1	\checkmark

Unit.....Serial No Test Engineer..... Date.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-99.15	-159.15
Ch2	-160dB	-100.59	-160.59
Ch3	-160dB	-101.36	-161.36
Ch4	-160dB	-100.0	-160.0

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
2	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark
3	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
4	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark

15. Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V/\sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain.

Ch.	Output	/(Pre-amplifier gain)	Maximum value	Pass/Fail
1	26.3	2.63	2.9	Pass
2	14.1	1.41	2.9	Pass
3	11.4	1.14	2.9	Pass
4	15.9	1.59	2.9	Pass

Unit.....Serial No Test Engineer..... Date.....

16. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. \checkmark

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP59P
Driver board ID	TTOP59P
Driver board Drawing No/Issue No	D0902747 V 6
Driver board Serial Number	TTOP59P
Monitor board ID	MON70
Monitor board Drawing No/Issue No	D070480_04_K
Monitor board Serial Number	MON70

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP60P.... Monitor Card ID...Mon164....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P60.....Serial No Test Engineer....Xen.... Date......18/3/10.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH1.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_P60.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1		Photodiode A+	1	~
1				
2	PD2P	Photodiode B+	2	N
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_P60......Serial No Test Engineer....Xen..... Date.......18/3/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P60.....Serial No Test Engineer....Xen.... Date......18/3/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_P60	Serial No
Test Engineer	.Xen	
Date	.18/3/10	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit......T_TOP_P60.....Serial No Test Engineer....Xen.... Date......18/3/10.....

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 1	RMS Current	0.75v dc	0.756	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.752	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.753	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 10	RMS Current	0.75v dc	0.753	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.67	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.39	2.9µV√Hz	\checkmark
2		1.28	2.9µV√Hz	\checkmark
3		1.25	2.9µV√Hz	\checkmark
4		1.33	2.9µV√Hz	\checkmark

Unit......T_TOP_P60.....Serial No Test Engineer....Xen.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.2		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	39.7	\checkmark
CH1 Negative		CH1 IC5	41.6	\checkmark
CH2 Positive	12.19	CH2 IC1	41.6	\checkmark
CH2 Negative		CH2 IC5	41.4	\checkmark
CH3 Positive	12.19	CH3 IC1	41.1	\checkmark
CH3 Negative		CH3 IC5	41.8	\checkmark
CH4 Positive	12.19	CH4 IC1	40.1	\checkmark
CH4 Negative		CH4 IC5	41.4	\checkmark

Unit......T_TOP_P60.....Serial No Test Engineer....Xen.... Date.......28/7/10.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.7	-161.7
Ch2	-160dB	-98.7	-158.7
Ch3	-160dB	-98.6	-158.6
Ch4	-160dB	-100.5	-160.5

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.27	83.2mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark

Unit.....TTOP60P.....Serial No Test Engineer.....RMC Date.....23/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. \checkmark
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP60P
Driver board ID	TTOP60P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP60P
Monitor board ID	MON164
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON164

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP61P.... Monitor Card ID...Mon165....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- **15. Noise Monitor tests**
- 16. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit	.T_TOP_F	P <mark>61</mark>	.Serial No	
Test Engineer	.Xen			
Date	.18/3/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P61.....Serial No Test Engineer....Xen.... Date......18/3/10....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Unit......T_TOP_P61.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P61.....Serial No Test Engineer....Xen.... Date......18/3/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P61.....Serial No Test Engineer....Xen.... Date......18/3/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_P61	Serial No
Test Engineer	.Xen	
Date	.18/3/10	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2		\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 1	RMS Current	0.75v dc	0.752	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.757	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 7	RMS Current	0.75v dc	0.751	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.754	\checkmark

Unit	.T TOP P61	Serial No
Test Engineer	Xen	
Date	.18/3/10	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs. Record the peak voltage on each Voltage Monitor pin, and check against the

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Unit......T_TOP_P61.....Serial No

Test Engineer....Xen....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-29.9		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.9		
10Hz	-30.7		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	39.2	\checkmark
CH1 Negative		CH1 IC5	40.6	\checkmark
CH2 Positive	12.19	CH2 IC1	38.4	\checkmark
CH2 Negative		CH2 IC5	40.9	\checkmark
CH3 Positive	12.19	CH3 IC1	42.8	\checkmark
CH3 Negative		CH3 IC5	42.1	\checkmark
CH4 Positive	12.19	CH4 IC1	38.7	\checkmark
CH4 Negative		CH4 IC5	41.6	\checkmark

Unit.....Serial No Test Engineer..... Date.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.28	-161.28
Ch2	-160dB	-99.46	-159.46
Ch3	-160dB	-101.28	-161.28
Ch4	-160dB	-100.82	-160.82

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P61.....Serial No Test Engineer....Xen.... Date......18/3/10.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
2	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark
3	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
4	39.4	3.35	85.0mA	120mA	84.8mA	\checkmark

15. Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V/\sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain.

Ch.	Output	/(Pre-amplifier gain)	Maximum value	Pass/Fail
1	14.3	1.43	2.9	Pass
2	15.3	1.53	2.9	Pass
3	18.7	1.87	2.9	Pass
4	16.5	1.65	2.9	Pass

Unit.....Serial No Test Engineer..... Date.....

16. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. \checkmark

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP 61P
Driver board ID	TTOP 61P
Driver board Drawing No/Issue No	D0902747 V6
Driver board Serial Number	TTOP 61P
Monitor board ID	MON165
Monitor board Drawing No/Issue No	D070480_04_K
Monitor board Serial Number	MON165

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP62P.... Monitor Card ID...Mon67....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- **15. Noise Monitor tests**
- 16. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_	P62	.Serial No	
Test Engineer	Xen	•••••		
Date	.17/3/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P62.....Serial No Test Engineer....Xen.... Date......17/3/10....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Unit.....T_TOP_P62.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out to AA	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_P62.....Serial No Test Engineer....Xen.... Date......17/3/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P62.....Serial No Test Engineer....Xen.... Date......17/3/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_F	P <mark>62</mark>	.Serial No	
Test Engineer	.Xen			
Date	.17/3/10			

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indie	OK?	
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2		\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 1	RMS Current	0.75v dc	0.757	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.755	\checkmark
	Pin 4	RMS Current	0.75v dc	0.754	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.757	\checkmark
	Pin 7	RMS Current	0.75v dc	0.759	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 10	RMS Current	0.75v dc	0.757	\checkmark

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs. Record the peak voltage on each Voltage Monitor pin, and check against the

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Unit......T_TOP_P62.....Serial No

Test Engineer....Xen.....

Date.....17/3/10.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	41.8	\checkmark
CH1 Negative		CH1 IC5	44.5	\checkmark
CH2 Positive	12.19	CH2 IC1	43.3	\checkmark
CH2 Negative		CH2 IC5	41.4	\checkmark
CH3 Positive	12.19	CH3 IC1	43.8	\checkmark
CH3 Negative		CH3 IC5	42.3	\checkmark
CH4 Positive	12.19	CH4 IC1	41.4	\checkmark
CH4 Negative		CH4 IC5	41.6	\checkmark

Unit.....Serial No Test Engineer..... Date.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.6	-160.6
Ch2	-160dB	-99.7	-159.7
Ch3	-160dB	-99.0	-159.0
Ch4	-160dB	-101.6	-161.6

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.34	85.0mA	120mA	84.8mA	\checkmark
2	39.4	3.35	85.0mA	120mA	84.8mA	\checkmark
3	39.3	3.33	84.7mA	120mA	84.8mA	\checkmark
4	39.4	3.34	84.8mA	120mA	84.8mA	\checkmark

15. Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V/\sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain.

Ch.	Output	/(Pre-amplifier gain)	Maximum value	Pass/Fail
1	17.2	1.72	2.9	Pass
2	18	1.8	2.9	Pass
3	21	2.1	2.9	Pass
4	15.8	1.58	2.9	Pass

Unit.....Serial No Test Engineer..... Date.....

16. Final Assembly Checks

- 1. Remove the lid of the box. \checkmark
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. \checkmark

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	
Driver board ID	
Driver board Drawing No/Issue No	
Driver board Serial Number	
Monitor board ID	
Monitor board Drawing No/Issue No	
Monitor board Serial Number	

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. \checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP63P.... Monitor Card ID...Mon126....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit	.T_TOP_	P63	.Serial No	
Test Engineer	Xen			
Date	.17/3/10.			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P63.....Serial No Test Engineer....Xen.... Date......17/3/10.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected the joints on the Mantis microscope.

Unit......T_TOP_P63.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1		Photodiode A+	1	~
1				
2	PD2P	Photodiode B+	2	N
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P63.....Serial No Test Engineer....Xen.... Date......17/3/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P63.....Serial No Test Engineer....Xen.... Date......17/3/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_P63	.Serial No
Test Engineer	.Xen	
Date	.17/3/10	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.755	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.752	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.755	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 10	RMS Current	0.75v dc	0.753	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.40	2.9µV√Hz	\checkmark
2		1.61	2.9µV√Hz	\checkmark
3		1.54	2.9µV√Hz	\checkmark
4		1.10	2.9µV√Hz	\checkmark

Test Engineer....Xen..... Date......17/3/10.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.8		
10Hz	-30.8		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	38.4	\checkmark
CH1 Negative		CH1 IC5	42.6	\checkmark
CH2 Positive	12.20	CH2 IC1	42.1	\checkmark
CH2 Negative		CH2 IC5	41.8	\checkmark
CH3 Positive	12.20	CH3 IC1	42.1	\checkmark
CH3 Negative		CH3 IC5	44.0	\checkmark
CH4 Positive	12.20	CH4 IC1	40.1	\checkmark
CH4 Negative		CH4 IC5	40.9	\checkmark

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.6	-160.6
Ch2	-160dB	-97.9	-157.9
Ch3	-160dB	-101.1	-161.1
Ch4	-160dB	-97.3	-157.3

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit......TTOP63P.....Serial No Test Engineer.....RMC Date.....18/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis.

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP63P
Driver board ID	TTOP63P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP63P
Monitor board ID	MON126
Monitor board Drawing No/Issue No	D070480_04_K
Monitor board Serial Number	MON126

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP64P.... Monitor Card ID...Mon68....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit......T_TOP_P64.....Serial No Test Engineer....Xen.... Date......21/7/10.....

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CHs 1 & 2.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected the joints on the Mantis microscope.

Unit......T_TOP_P64.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P64.....Serial No Test Engineer....Xen.... Date......17/3/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P64.....Serial No Test Engineer....Xen.... Date......17/3/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus	
Front Panel	\checkmark	\checkmark	
Rear Panel	\checkmark	\checkmark	

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_P64	Serial No	
Test Engineer	.Xen		
Date	.17/3/10		

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 1	RMS Current	0.75v dc	0.755	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.753	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 10	RMS Current	0.75v dc	0.751	\checkmark

Unit.......T_TOP_P64.....Serial No Test Engineer....Xen..... Date......17/3/10.....

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		0.97	2.9µV√Hz	\checkmark
2		0.94	2.9µV√Hz	\checkmark
3		1.26	2.9µV√Hz	\checkmark
4		1.48	2.9µV√Hz	\checkmark

Test Engineer.....Xen..... Date.......17/3/10.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.0		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	0.9		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	38.9	\checkmark
CH1 Negative		CH1 IC5	40.9	\checkmark
CH2 Positive	12.18	CH2 IC1	43.1	\checkmark
CH2 Negative		CH2 IC5	42.3	\checkmark
CH3 Positive	12.18	CH3 IC1	41.4	\checkmark
CH3 Negative		CH3 IC5	39.7	\checkmark
CH4 Positive	12.18	CH4 IC1	39.7	\checkmark
CH4 Negative		CH4 IC5	41.4	\checkmark

Unit......T_TOP_P64.....Serial No Test Engineer....Xen.... Date......21/7/10.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-101.8	-161.8
Ch2	-160dB	-101.9	-161.9
Ch3	-160dB	-101.3	-161.3
Ch4	-160dB	-98.9	-158.9

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB Unit......T_TOP_P64.....Serial No Test Engineer....Xen.... Date......20/7/10.....

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.0mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.25	82.5mA	120mA	84.8mA	\checkmark

Unit.....TTOP64P.....Serial No Test Engineer.....RMC Date.....18/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP64P
Driver board ID	TTOP64P
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP64P
Monitor board ID	MON68P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON68P

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP65P.... Monitor Card ID...Mon127....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit	.T_TOP_	P65	Serial No	
Test Engineer	.Xen	•••••		
Date	.17/3/10.			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit......T_TOP_P65.....Serial No Test Engineer....Xen.... Date......17/3/10....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Unit......T_TOP_P65.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out to AA	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	$\overline{\mathbf{v}}$

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit......T_TOP_P65.....Serial No Test Engineer....Xen.... Date......17/3/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P65.....Serial No Test Engineer....Xen.... Date......17/3/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_F	P65	.Serial No	
Test Engineer	.Xen			
Date	.17/3/10			

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indio	OK?	
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2		\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 1	RMS Current	0.75v dc	0.752	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.750	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 7	RMS Current	0.75v dc	0.748	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.750	\checkmark
	Pin 10	RMS Current	0.75v dc	0.755	\checkmark

Unit	.T TOP P65	Serial No
Test Engineer	Xen	
Date	.17/3/10	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs. Record the peak voltage on each Voltage Monitor pin, and check against the

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	

Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V/\sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain.

Ch.	Output	/(Pre-amplifier gain)	Maximum value	Pass/Fail
1	19.7	1.97	2.9	Pass
2	16.5	1.65	2.9	Pass
3	13.4	1.34	2.9	Pass
4	14.9	1.49	2.9	Pass

Unit......T_TOP_P65.....Serial No

Test Engineer....Xen.....

Date.....17/3/10.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.4		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	38.9	\checkmark
CH1 Negative		CH1 IC5	41.1	\checkmark
CH2 Positive	12.18	CH2 IC1	41.1	\checkmark
CH2 Negative		CH2 IC5	41.4	\checkmark
CH3 Positive	12.18	CH3 IC1	43.6	\checkmark
CH3 Negative		CH3 IC5	43.6	\checkmark
CH4 Positive	12.18	CH4 IC1	39.2	\checkmark
CH4 Negative		CH4 IC5	42.1	\checkmark

Unit.....Serial No Test Engineer..... Date.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	100.74	-160.74
Ch2	-160dB	-99.3	-159.3
Ch3	-160dB	-100.3	-160.3
Ch4	-160dB	-101.4	-101.4

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.36	85.5mA	120mA	84.8mA	\checkmark
2	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark
3	39.3	3.34	85.0mA	120mA	84.8mA	\checkmark
4	39.4	3.35	85.0mA	120mA	84.8mA	\checkmark

Unit.....Serial No Test Engineer..... Date.....

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. \checkmark

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP65P
Driver board ID	TTOP65P
Driver board Drawing No/Issue No	D0902747 V6
Driver board Serial Number	TTOP65P
Monitor board ID	MON127
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON127

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP66P..... Monitor Card ID.....Mon170....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage and Noise Monitor Tests
- **10. Corner Frequency Tests**
- **11. Distortion**
- 12. Full Load Test
- 13. Noise Tests
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_F	P <u>66</u>	.Serial No	
Test Engineer	.Xen			
Date	.16/3/10			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

Unit.......T_TOP_P66......Serial No Test Engineer....Xen.... Date......16/3/10.....

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Unit......T_TOP_P66.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out to AA	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_P66......Serial No Test Engineer....Xen..... Date.......16/3/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P66.....Serial No Test Engineer....Xen.... Date......16/3/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	LEDs Plus	
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

|--|

Channel	Indio	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indi	OK?	
	ON OFF		
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 1	RMS Current	0.75v dc	0.750	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.751	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.756	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.756	\checkmark

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket	Monitor output?	Expected value	OK?
		Pin			
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V/\sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain.

Ch.	Output	/(Pre-amplifier gain)	Maximum value	Pass/Fail
1		1.65	2.9	Pass
2		2.28	2.9	Pass
3		1.72	2.9	Pass
4		1.38	2.9	Pass

Unit......T_TOP_P66.....Serial No

Test Engineer....Xen....

Date......16/3/10.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.3		
10Hz	-30.1		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.8		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.3		
100Hz	-42.8		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	41.8	\checkmark
CH1 Negative		CH1 IC5	43.6	\checkmark
CH2 Positive	12.19	CH2 IC1	41.6	\checkmark
CH2 Negative		CH2 IC5	42.1	\checkmark
CH3 Positive	12.19	CH3 IC1	40.6	\checkmark
CH3 Negative		CH3 IC5	41.8	\checkmark
CH4 Positive	12.19	CH4 IC1	39.7	\checkmark
CH4 Negative		CH4 IC5	42.6	\checkmark

Unit.....Serial No Test Engineer..... Date.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.5	-160.5
Ch2	-160dB	-100.5	-160.5
Ch3	-160dB	-98.0	-158.0
Ch4	-160dB	-98.3	-158.3

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s)	Pass?
1	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
2	39.4	3.37	85.5mA	120mA	84.8mA	\checkmark
3	39.3	3.35	85.2mA	120mA	84.8mA	\checkmark
4	39.4	3.36	85.3mA	120mA	84.8mA	\checkmark

Unit.....Serial No Test Engineer.....RMC Date.....

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP66P
Driver board ID	TTOP66P
Driver board Drawing No/Issue No	D0902747 V6
Driver board Serial Number	TTOP66P
Monitor board ID	MON 170
Monitor board Drawing No/Issue No	D070480_04_K
Monitor board Serial Number	MON 170

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP67P.... Monitor Card ID...Mon66.

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel
Unit	T_TOP_67P	Serial No
Test Engineer	Xen	
Date	.13/8/10	

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CHs 3 & 4.

Four 0.39uF filter capacitors have been added to the driver board (C200). Visually checked for open circuit resistor joints and using the DVM checked for short circuits and double checked for open circuits.

Unit......T_TOP_67P.....Serial No Test Engineer....Xen....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1		Photodiode A+	1	~
1				
2	PD2P	Photodiode B+	2	N
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_67P.....Serial No Test Engineer....Xen.... Date.......16/3/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit.......T_TOP_67P.....Serial No Test Engineer....Xen.... Date.......16/3/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
600mA	500mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_67P	Serial No
Test Engineer	.Xen	
Date	.16/3/10	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to dc.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 1	RMS Current	0.75v dc	0.755	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 4	RMS Current	0.75v dc	0.753	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 7	RMS Current	0.75v dc	0.7512	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.751	\checkmark
	Pin 10	RMS Current	0.75v dc	0.756	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.67	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.67	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.67	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.48	2.9µV√Hz	\checkmark
2		1.46	2.9µV√Hz	\checkmark
3		1.15	2.9µV√Hz	\checkmark
4		1.63	2.9µV√Hz	\checkmark

Unit......T_TOP_67P.....Serial No

Test Engineer....Xen.....

Date......17/3/10.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Use the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.3		
100Hz	-42.9		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.2		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.1		
10Hz	-30.4		
100Hz	-42.9		
1kHz	-43.3		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.82		
Ch2	4.82		
Ch3	4.82		
Ch4	4.82		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.19	CH1 IC1	37.5	\checkmark
CH1 Negative		CH1 IC5	39.9	\checkmark
CH2 Positive	12.19	CH2 IC1	40.4	\checkmark
CH2 Negative		CH2 IC5	44.0	\checkmark
CH3 Positive	12.19	CH3 IC1	38.2	\checkmark
CH3 Negative		CH3 IC5	39.7	\checkmark
CH4 Positive	12.19	CH4 IC1	37.0	\checkmark
CH4 Negative		CH4 IC5	41.6	\checkmark

Unit......T_TOP_67P.....Serial No Test Engineer....Xen.... Date.......28/7/10.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-99.3	-159.3
Ch2	-160dB	-102.2	-162.2
Ch3	-160dB	-101.3	-161.3
Ch4	-160dB	-101.5	-161.5

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark
3	39.3	3.25	82.7mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7Ma	120mA	84.8mA	\checkmark

Unit......TTOP67P.....Serial No Test Engineer.....RMC Date.....23/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP 67P
Driver board ID	TTOP 67P
Driver board Drawing No/Issue No	D0902747 V6
Driver board Serial Number	TTOP 67P
Monitor board ID	MON66
Monitor board Drawing No/Issue No	D070480_04_K
Monitor board Serial Number	MON66

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0xxx

Advanced LIGO UK

11 November 2009

Triple TOP Coil Drive Unit Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

<u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

TRIPLE TOP DRIVER COMPLETED UNIT TEST PLAN

Drive Card ID.....T_TOP69P.... Monitor Card ID...Mon171....

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity and Isolation Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Distortion
- 12. Full Load Test
- **13. Noise Monitor Tests**
- 14. Full Current tests
- 15. Final Assembly

1. Description

The TOP Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the TOP mirror in a Triple assembly. It works in conjunction with the OSEM coil and position sensor units. One TOP unit controls four OSEMs.

The TOP Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The TOP Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the TOP mirror, back to the control electronics without processing them in any way.

FIG. 1 TOP Driver Unit Block Diagram

Each TOP Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

Unit	.T_TOP_	P69	.Serial No	
Test Engineer	Xen			
Date	.21/7/10.			

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

Capacitors C102 and C103 have been replaced by a 33pF polypropylene capacitor on all channels.

IC8 and IC4 have been replaced by the AD8671 op-amp on CH2.

Added the four 0.39uF filter capacitors C200, and checked for short circuits and open circuit resistor joints. Visually inspected the joints on the Mantis microscope.

Unit......T_TOP_P69.....Serial No Test Engineer....Xen.... Date......15/3/10.....

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1		Photodiode A+	1	~
1				
2	PD2P	Photodiode B+	2	N
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

Unit.......T_TOP_P69.....Serial No Test Engineer....Xen.... Date......15/3/10.....

Isolation Checks

Check that the driver ICs IC11 and IC12 are isolated from chassis on all channels. Apply a DVM on ohms range and measure the resistance between each transistor tab and the chassis.

IC Tab	Resistance	OK?
IC11 Channel 1	OL	\checkmark
IC12 Channel 1	OL	\checkmark
IC11 Channel 2	OL	\checkmark
IC12 Channel 2	OL	\checkmark
IC11 Channel 3	OL	\checkmark
IC12 Channel 3	OL	\checkmark
IC11 Channel 4	OL	\checkmark
IC12 Channel 4	OL	\checkmark

OL = Overload

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in A1
Pd In from Sat pin 11, 12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1- = Coil out to Sat pin 9
Ch2- = Coil out to Sat pin 11
Ch3- = Coil out to Sat pin 13
Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	R.M.S Current 1
2	Current Monitor 1
3	Voltage Monitor 1
4	R.M.S Current 2
5	Current Monitor 2
6	Voltage Monitor 2
7	R.M.S Current 3
8	Current Monitor 3
9	Voltage Monitor 3
10	R.M.S Current 4
11	Current Monitor 4
12	Voltage Monitor 4
13 to 25	0v -

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit......T_TOP_P69.....Serial No Test Engineer....Xen.... Date......15/3/10.....

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
600mA	500mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.T_TOP_P69	.Serial No
Test Engineer	Xen	
Date	.15/3/10	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST SWITCHES

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

To do this, we need to draw a known current from each coil drive output. This is done by plugging the 39 ohm loads into each output, then adjusting the signal generator until the required voltage appears across each load resistor.

Remove all links W4 and W5.

Plug the power 39 ohm dummy load plug into the coil drive output.

Set the signal generator output to 2.5v at 100Hz.

Connect a scope probe to each end of one of the load resistors. Check that a sine wave of around 2v peak appears across each resistor.

Connect a true r.m.s meter across the channel 4 resistor, and carefully adjust the signal generator to give an r.m.s reading of 1.5 volts.

Record the peak output from each of the current monitors using the true r.m.s dvm, and each of the RMS circuits with the meter set to d.c..

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value (+/1v)	Value	Fail
1	Pin 2	Current Monitor	0.75v r.m.s	0.754	\checkmark
	Pin 1	RMS Current	0.75v dc	0.754	\checkmark
2	Pin 5	Current Monitor	0.75v r.m.s	0.752	\checkmark
	Pin 4	RMS Current	0.75v dc	0.757	\checkmark
3	Pin 8	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 7	RMS Current	0.75v dc	0.753	\checkmark
4	Pin 11	Current Monitor	0.75v r.m.s	0.753	\checkmark
	Pin 10	RMS Current	0.75v dc	0.759	\checkmark

9. Voltage and noise monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs at 100 Hz. Adjust the signal generator to give a voltage to 5v on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket	Monitor output?	Expected value	OK?
		Pin			
1	Pins 1,9	Pin 3	1.66	1.6v to 1.7v	\checkmark
2	Pins 3,11	Pin 6	1.66	1.6v to 1.7v	\checkmark
3	Pins 5,13	Pin 9	1.66	1.6v to 1.7v	\checkmark
4	Pins 7, 15	Pin 12	1.66	1.6v to 1.7v	\checkmark

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.09	2.9µV√Hz	\checkmark
2		1.51	2.9µV√Hz	\checkmark
3		0.93	2.9µV√Hz	\checkmark
4		1.09	2.9µV√Hz	\checkmark

Test Engineer.....Xen..... Date.......15/3/10.....

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct.

Ensure that links W4 and W5 in place.

Using the Dynamic Signal Analyser and signal generator.

With the filter switched in, measure the frequency response of each channel in turn between 1 Hz and 1 kHz. Measure the gain at the spot frequencies below and record them. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output. In each case the output is measured differentially between TP9 and TP13. Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.5		
100Hz	-42.9		
1kHz	-43.3		

Channel 2

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.2		
10Hz	-30.2		
100Hz	-42.8		
1kHz	-43.3		

Channel 3

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.3		

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
1Hz	1.0		
10Hz	-30.6		
100Hz	-42.9		
1kHz	-43.2		

0.1 Hz measurements with the signal generator and oscilloscope

Frequency	Output	Expected O/P	Pass/Fail
Ch1	4.85		
Ch2	4.85		
Ch3	4.85		
Ch4	4.85		

11. Distortion

Remove links W4 and W5. Plug in the 5 Watt 39 Ohm dummy loads. Increase input voltage to 10v peak, f = 1kHz. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

12. Full Load Test

Apply the DC source to the input to the differential amplifier. Connect the 39 Ohm 5 watt loads to the outputs.

Increase the input voltage to 5v with respect to 0v, and monitor the temperatures of the drive amplifiers. If their temperature increases above 100°C, flag a problem!

Leave running for 10 minutes, then record the temperatures of drive amplifiers, and the differential output voltages from the amplifier (TP9 and TP13).

The output voltages should be recorded.

Output	Voltage	DRIVER	Temperature	<60°C?
CH1 Positive	12.20	CH1 IC1	40.6	\checkmark
CH1 Negative		CH1 IC5	41.4	\checkmark
CH2 Positive	12.20	CH2 IC1	41.4	\checkmark
CH2 Negative		CH2 IC5	40.6	\checkmark
CH3 Positive	12.20	CH3 IC1	41.6	\checkmark
CH3 Negative		CH3 IC5	40.1	\checkmark
CH4 Positive	12.20	CH4 IC1	39.2	\checkmark
CH4 Negative		CH4 IC5	38.9	\checkmark

Unit......T_TOP_P69.....Serial No Test Engineer....Xen.... Date......21/7/10.....

13. Noise Tests

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter links W4 and W5 on each channel.

Replace the lid of the box, and replace screws.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-160dB	-100.7	-160.7
Ch2	-160dB	-102.1	-162.1
Ch3	-160dB	-101.2	-161.2
Ch4	-160dB	-102.2	-162.2

Notes:

Specified noise output current at 10 Hz = 100 pA/ \sqrt{Hz} (IMC & cavity) and 3nA / \sqrt{Hz} (BS & FM). Total output resistance = 100 Ohms (BOSEM) Amplifier noise voltage should therefore < 10nA/ \sqrt{Hz} (tightest spec) or -160dB

14. Full Current Tests

High power dummy loads are needed for this test.

With the dummy loads removed, measure and record the value of each resistor. Nominal 39 Ohm power resistors should be used.

Plug in the dummy load.

Remove the filter links.

Drive the unit with a 5v peak sine wave input on each channel, which should measure 3.353 volts on a true r.m.s meter.

Measure the voltage across each load resistor and record it. Calculate the current through each resistor, and compare with the specification. If a true r.m.s meter is used to make the measurement, compare with the r.m.s specification.

Channel	R =	V=	Therefore I =	Spec (peak)	Spec (r.m.s) +/- 2.5mA	Pass?
1	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
2	39.4	3.27	83.2mA	120mA	84.8mA	\checkmark
3	39.3	3.26	83.0mA	120mA	84.8mA	\checkmark
4	39.4	3.26	82.7mA	120mA	84.8mA	\checkmark

Unit......TTOP69P.....Serial No Test Engineer.....RMC Date.....18/8/10

15. Final Assembly Checks

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that links W4 and W5 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TTOP69P
Driver board ID	TTOP69P[
Driver board Drawing No/Issue No	D0902747_V9
Driver board Serial Number	TTOP69P
Monitor board ID	MON171P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON171P

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$