Ionic Neutralization of Mirror Surface Charge

Lisa Barsotti Matt Evans John Miller Richard Mittleman Brett Shapiro Rainer Weiss Mike Zucker

LSC Meeting Pasadena, California March 14 – 17, 2011

Primitive model of electrostatic fluctuating forces on insulators

Markov Process: Charge hopping on surface driven by surface charge electric fields.

Step time or relaxation time: $\tau_0 = \frac{\varepsilon}{\sigma} = \varepsilon_0 \kappa \rho$ on clean SiO₂: weeks to years in vacuum

Average Force:

$$\langle F \rangle = \frac{E^2 \text{surface A}}{16\pi^2}$$

Fluctuating Force from charge hopping

$$F^{2}(f) = \frac{2\langle F^{2} \rangle}{\pi \tau_{0} \left(\left(\frac{1}{\tau_{0}} \right)^{2} + (2\pi f)^{2} \right)}$$

Leads to

$$x(f) \propto \frac{1}{f^3}$$

when
$$f >> 1/\tau_0$$

Typical surface charge densities in good vacuum

 $10^{-14} < \sigma_{\text{surface}} < 10^{-10} \text{Coulombs/cm}^2$ $10^5 < e_{\text{surface}} < 10^9 \text{electrons/cm}^2$

IONIC NEUTRALIZATION OF SURFACE CHARGE ON MIRRORS

• Technique

- + and nitrogen ions introduced from outside
- Boil off from liquid nitrogen
- Neutralization by E field driven thermal diffusion
- Advantages
 - Easy to do all external
- Disadvantages
 - Requires stopping run ~ 1 day
 - Requires written procedure to avoid mistakes

R.Weiss 03/13/2010 VLSC Mtg Pasadena

Paschen Discharge Curves

Schematic diagram of neutralization technique

Physics

- In source and aperture:
 - competition between recombination and diffusion to walls
 - source pressure above ionization minimum of Paschen curve
 - turbulent flow in aperture reduces diffusion to wall
- In test mass chamber:
 - ions flow with neutral gas
 - E field driven diffusion to surfaces dominates,
 - recombination unimportant

surrogate for lon current in 0.1 torr chamber - the test mass chamber

Nitrogen pressure in the source chamber

Quad-Triple Cavity Error Signal

Brett Shapiro

Estimates

If recombination rate << diffusion rate P(neutrals) < 1 torr

and

mean free path of ions in neutral gas << mirror diam P(neutrals) $> 10^{-4}$ torr

 $t_{\rm fill} > \frac{A_{\rm surface}\sigma_{\rm mirror}}{\frac{dN_{\rm in}}{dt}}$

t _{fill}	Fill time in seconds	1000 sec
A _{surface}	Surface area in chamber	6 x 10 ⁵ cm ²
$\frac{dN_{in}}{dt}$	Ion current in	3 x 10 ⁻⁸ amp
σ _{mirror}	Surface charge on mirror	5 x 10 ⁻¹¹ coulombs/cm ² varies between 10 ⁻¹⁴ to 10 ⁻¹⁰