LIGO-G1100174

Enhanced LIGO

- Try out Advanced LIGO technologies
- Bet that increased sensitivity outweighs the downtime exposure = time * (range)^3

More Power — New Laser

New Input optics

New Thermal Compensation

New Alignment Control

Output Mode Cleaner DC Readout

Interferometer

DC Readout: sideband view

laser carrier

DC Readout

Junk Light

DC Readout with OMC

DC Readout promises

- fundamental improvement in SNR
- technical improvement in SNR
- perfect overlap of local oscillator and signal beams
- junk light removal by OMC
- independence from RF oscillator noises
 - exploit the amazing filtering ability of the interferometer
- Easier platform for squeezed light injection
- Easier to handle higher power

DC Readout: phasor view

How do we choose the DARM offset?

- Must be much greater than residual DARM displacement
- Must overcome contrast defect and electronics noise
- But not excessively detrimental to power recycling

In practice: turn the knob to get the best sensitivity

monolithic, suspended, in-vacuum

Dither Locking

OMC Length Control

Cavity length dithered at ~10 kHz via PZT actuator

PZT offloaded onto slow, long-range thermal actuator

OMC Alignment Control

The mode cleaner will clean the modes if you can identify what mode you want to keep.

Initial idea: maximize transmission through the OMC

Junk light confuses simple servo

Drumhead Beacon Dither Idea: Tag the photons in the arm by modulating the ETM Excite the test-mass drumhead mode (9 kHz) Dither the "tip tilt" mirrors at low frequency (~3 Hz) detect power in demodulate at drumhead mode dither frequency M. Evans/Nicolás(LHO)

Optical Gain vs Jitter

But if we optimize alignment for optical gain...

...and best optical gain does not correspond to maximum transmission

...then we introduce a beam jitter coupling

Beam Jitter Noise

Most significant new noise source

A closer look at 130 Hz

A closer look at 130 Hz

Quick check: overlay the spectra

Can we predict the timeseries?

One of several possible bilinear couplings.

Yes. Good coherence shows this is a real coupling.

(bilinear wiener filtering?)
have to be careful to not subtract
DARM from DARM

QPD YAW SUM" HP(YAW)

Beam jitter mitigation

- Remove the offending resonance or increase isolation i.e. tip-tilt blade springs, no fixed mirror
- Reduce sensitivity to the motion i.e. clever telescope design
- Cancel the motion (feedback/forward)
 i.e. 60 Hz magnetometer FF
- Reshape the output beam i.e. use WFS1 to push on the ASC

Noise Couplings

- * Oscillator amplitude
- * Oscillator phase
- * Laser intensity
- * Laser frequency

Oscillator Amplitude noise

Oscillator Phase noise

Anatomy of intensity noise coupling

Anatomy of intensity noise coupling II

Laser intensity noise

Laser frequency noise

Noise Couplings To-Do

- Wrap control loops around Optickle results (Pickle) and around measured results to see effect of cross-coupling.
- Tune parameters to fit results as well as possible
- Be informed by / compare with other methods:
 - Zach's mode tracking absorption msmts
 - Mode scans
 - Arm cavity pole (ringdown) measurements

* Not new!

* But we keep 'rediscovering' them!

Digital Gotchas

Digital Gotchas: Synchronization

- * synchronization of communication

LSC

Digital Gotchas: Other

- * Quantization noise in DACs
 - -- "dark noise" not enough
- * Floating point dynamic range/oddities
 - -- don't add small numbers to big numbers
 - -- use double precision
 - -- beware denormalized numbers (slow)
- * Nondeterministic runtimes
 - -- need to leave headroom in cycle time

Commissioning

Shot noise

