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GWs from Accretion Disk Instabilities

1 Introduction

We derive analytic estimates for the gravitational wave (GW) emission from the following analytic accretion
disk instability models in the context of Collapsar-type gamma-ray bursts and black-hole (BH) forming core-
collapse supernovae:

• The suspended-accretion-driven disk instability proposed by van Putten [1, 2].
In this instability, turbulence in a thick accretion torus is driven by strong coupling between the torus
and the ergosphere of the central BH by MHD effects. In this picture, the quadrupole components of
the disk turbulence lead to GW emission that (via the strong coupling) spin down the BH. The strong
coupling and the energetics of the associated GW emission proposed by van Putten are generally
regarded as too optimistic (possibly by orders of magnitude). Nevertheless, we include this model,
since it makes useful, falsifiable predictions.

We advise that authors wishing to use the waveforms predicted by our ad-hoc version of van Putten’s
model state clearly to their readers that it is unlikely that a realistic accretion disk instability will
produce a gravitational wave signal of the kind predicted by the model implemented here.

• Collapsar Disk Fragmentation by Piro & Pfahl [3].
Gravitational instability causes fragmentation of the massive accretion disk within a collapsing, rotat-
ing star. This fragment spirals into the newly-formed BH at the center of the accretion disk due to a
combination of disk viscosity and GW emission, producing a unique GW signature.

In the following, we work in physical units, including all relevant factors of the gravitational constant G and
of the speed of light c. Accompanying this technical report are two python scripts, vanPuttengw.py and
pirogw.py, that implement the models described here and provide both GW polarizations as output.

2 Suspended-Accretion Quadrupole Disk Instability

Following along the lines of van Putten’s ideas, we assume a spinning Kerr BH with dimensionless Kerr
spin parameter a? = (c/G)JBH/M

2
BH (0 ≤ a? < 1) with an accretion disk/torus of mass Mdisk. The disk

extends to the radius of the innermost stable orbit [4],

RISCO =

(
G

c2

)
MBH

(
3 + Z2 ∓ [(3− Z1)(3 + Z1 + 2Z2)]

1/2
)
, (1)

Z1 = 1 + (1− a?2)1/3
[
(1 + a?)1/3 + (1− a?)1/3

]
, (2)

Z2 =
[
3a?2 + Z2

1

]1/2
, (3)

where the ∓ sign indicates prograde and retrograde orbits, respectively. We will assume that the binary
orbits in the same direction as the BH spin and thus take the minus sign in equation 1. Disk and BH are
assumed to be coupled via strong magnetic fields and MHD turbulence in the disk is assumed to be driven
through this coupling. The inner disk near the ISCO is expected to be neutrino cooled and very thin. Further
out, at r0 + RISCO (where r0 = 100 km may be reasonable), the disk is a thick torus. We assume that
turbulence in the torus leads to two overdense regions (which, in itself, is unlikely, since turbulent power
will cascade to small scales) with masses M1 = M2 = εMdisk. ε ≈ 0.01− 0.5 (the latter is very unlikely).
These two ‘clumps’ form a ‘binary’ with separation 2(r0 + RISCO) that efficiently emits GWs and would
normally lose J by GW emission, leading to inspiral. The BH is located at the center of our coordinate
system and each of the clumps is located at a distance r0 +RISCO from the BH. Here, following van Putten,
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we assume that the lost energy and angular momentum is replenished by coupling to the central BH, so the
BH loses J and spin energy. This leads to an incremental change of RISCO and, consequentially, of the
binary separation 2(r0 +RISCO).

2.1 Gravitational Wave Emission using the Newtonian Binary Approximation

We assume, without loss of generality, that the BH angular momentum is oriented in the +z-direction. Two
overdense regions in the torus are approximated as point masses M1 and M2, where we assume m = M1 =
M2. The two point masses orbit the BH at the origin in the xy-plane with angular velocity Ω. The orbital
radius is d ≡ r0 +RISCO. We can compute the reduced mass quadrupole momentum of the system, defined
as

Iij = m
∑
A

(xAixAj −
1

3
δijd

2), (4)

where A is an index denoting overdense regions. Assuming that fragment 1 sits on the positive x axis at
t = 0, the time-dependent positions (xi, yi) of the two fragments are described by

x1 = d cos(Ωt) ,
y1 = d sin(Ωt) ,

x2 = −d cos(Ωt) ,
y2 = −d sin(Ωt) .

(5)

The quadrupole moment components we are interested in are Ixx, Ixy, and Iyy. Because of symmetry,
Ixy = Iyx. Using eq. (4), we have

Ixx = m(x21 + x22 −
2

3
d2) ,

= 2md2 cos2 Ωt− 2

3
d2 ,

= md2 cos 2Ωt+ const.

(6)

Similiarly, we obtain the remaining components:

Iij = md2
(

cos 2Ωt+ const. sin 2Ωt+ const
sin 2Ωt+ const. − cos 2Ωt+ const.

)
, (7)

Ïij = 4md2Ω2

(
− cos 2Ωt − sin 2Ωt
− sin 2Ωt cos 2Ωt

)
, (8)

...
I ij = 8md2Ω3

(
sin 2Ωt − cos 2Ωt
− cos 2Ωt − sin 2Ωt

)
. (9)

The gravitational wave signal emitted by the binary system and the change in angular momentum and energy
are given by

hTTij =
2

D

G

c4
ÏTTkl ,

dJi
dt

= −2

5

G

c5
εijk〈Ïjm

...
Imk〉 ,

dE

dt
= −1

5

G

c5
〈
...
I jk

...
I jk〉 . (10)

The change of orbital energy and angular moment straightforwardly evaluate to

dJGW

dt
= −128

5

G

c5
m2d4Ω5 , (11)

dEGW

dt
= PGW = −128

5

G

c5
m2d4Ω6 . (12)
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Next, we must carry out the transverse-traceless projection of Ï to obtain the two GW polarizations h+ and
h×. These depend on the position (polar angle θ azimutal angle φ and distance D) the observer has with
respect to the source. This is done most easily by expressing the GW strain in terms of spin-weighted tensor
spherical harmonics,

h+ − ih× =
1

D

∞∑
`=2

∑̀
m=−`

H`m(t)−2Y `m(θ, φ) . (13)

The expansion parametersHlm (` = 2 denotes the quadrupole) are complex functions of the retarded source
time t.
In order to express H2m in terms of Ïij , one first expresses h+(θ, φ) and h×(θ, φ) in terms of Ïkl, then
convolves these with −2Y ∗lm. The result [5] is

Hquad
20 =

√
32π

15

G

c4

(
Ïzz −

1

2
(Ïxx + Ïyy)

)
, (14)

Hquad
2±1 =

√
16π

5

G

c4

(
∓Ïxz + iÏyz

)
, (15)

Hquad
2±2 =

√
4π

5

G

c4

(
Ïxx − Ïyy ∓ 2iÏxy

)
. (16)

For completeness, we give the definitions of the relevant −2Y ∗lm:

−2Y 22 =

√
5

64π
(1 + cos θ)2e2iφ , (17)

−2Y 21 =

√
5

16π
sin θ(1 + cos θ)eiφ , (18)

−2Y 20 =

√
15

32π
sin2 θ , (19)

−2Y 2−1 =

√
5

16π
sin θ(1− cos θ)e−iφ , (20)

−2Y 2−2 =

√
5

64π
(1− cos θ)2e−2iφ . (21)

For example, assuming the detector is located along the positive z axis (θ = 0, φ = 0), we find:

h+ =
1

D

G

c4
(Ïxx − Ïyy) (22)

h× =
2

D

G

c4
Ïxy . (23)

2.2 The coupled system of Ordinary Differential Equations

We assume that the ‘binary’ stays at a fixed radius. Angular momentum J lost to GW emission is provide
from the BH spin. As a consequence, the BH is spun down and RISCO changes. We set J̇BH = J̇GW. The
change in the BH mass is

ṀBH =
PGW

c2
, (24)

4



GWs from Accretion Disk Instabilities

since the gravitational mass of the BH contains the contribution due to its rotational energy. The change in
RISCO can then be computed by differentiating equation 1,

dRISCO

dt
= ṘISCO =

(
G

c2

)[
ṀBH

(
3 + Z2 −

√
(3− Z1)(3 + Z1 + 2Z2)

)
+MBH

(
Ż2 +

(Z1 + Z2)Ż1 − (3− Z1)Ż2√
(3− Z1)(3 + Z1 + 2Z2)

)]
, (25)

where we can express Z1, Z2 and their derivatives as functions of JBH, MBH, J̇BH, ṀBH only,

Ż1 =
c
(
MBHJ̇BH − 2JBHṀBH

)
3G3M7

BH

(
1− a?2

)4/3 [
3c2J2

BH

(
(1 + a?)2/3 − (1− a?)2/3

)
−2cGJBHM

2
BH

(
(1 + a?)2/3 + (1− a?)2/3

)
+G2M4

BH

(
(1− a?)2/3 − (1 + a?)2/3

)]
, (26)

Ż2 =
3c2JBHMBHJ̇BH − 6c2J2

BHṀBH +G2M5
BHZ1Ż1

G2M5
BH

√
3c2J2

BH

G2M4
BH

+ Z2
1

. (27)

These expressions allows us to calculate the change in RISCO when the mass and angular momentum of the
central BH change.

2.3 Application of the coupled system

At every time t, Ïij and, thus, hTTij depend on (i) the orbital radius of the ‘binary’, d = r0 + RISCO, (ii)
the mass m of the chunks (assumed to be constant), and (iii) on the angular velocity, which, according to
Kepler’s law, we set to

Ω =

√
GM

d3
. (28)

Let us assume that the mass of the chunks forming the ‘binary’ is negligible with respect to the mass of
the central black hole, in which case Ω =

√
GMBH/(r0 +RISCO)3. The coupled system of ODEs is then

formed by equations 11, 24 and 25, with d = r0 + RISCO and Ω as in equation 28. PGW in equation 24
is given by equation 12. This system describes the evolution of RISCO, JBH and MBH. We integrate the
coupled system of ODEs with a fourth-order Runge-Kutta integrator.
Note that once all spin has been extracted from the hole, the ‘binary’ will inspiral. However, we stop our
integration when the BH is completelly spun down and do not calculate the subsequent chirp.

2.4 Astrophysically Meaningful Parameters

Mass BH of mass MBH = 5− 10M�
Initial BH spin a? = 0.3− 0.95
Fragment mass Assume Mdisk = 1.5M�, mchunk = εMdisk with ε = 0.01− 0.2

Const. separation of torus from ISCO r0 = 100 km
End integration When JBH = 0 or pre-specified run time is reached
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Figure 1: Waveform computed following the van Putten model. The parameters of the system are MBH =
10M�, a? = 0.95, ε = 0.2. The strain corresponds to a face-on, optimally-oriented system situated at 10

kpc. The main plot shows the absolute magnitude of the strain |h| =
√
h2+ + h2× and the inset plot shows

the two polarizations zooming into the first 0.1 s of evolution.

2.5 Usage of the python script

Code usage: $ python vanPutten.py
The code section below #physical parameters allows to specify the physical parameters of the sys-
tem as defined in subsection 2.4. The colatitude and azimuth of the system can be specified as well. The
code section under #parameters allows to change the total run time (in seconds) of the integration (pro-
vided that the BH is not completely spun down, in which case the integration stops) as well as the sampling
time dt of the output.
The script produces two output files:

• pmvp.dat is a diagnosis and debug output file, containing the following variables:
time RISCO JBH MBH a? Erad h+ h×

• M*a*eps*.dat, where the *’s denote the values of the physical parameters MBH, a? and ε given
as input, is the production output file, containing:
time h+ h×

An example of the antichirp-like signal obtained for the van Putten model is shown in figure 1.

3 Torus Fragmentation Instability and Inspiral of a Single Overdense Blob

When the core-collapse supernova mechanism fails to re-energize the stalled shock (see, e.g., [6]), the
protoneutron star collapses to a BH on a timescale of ∼500 ms − few s [7]. Provided that the star has
sufficient angular momentum, its collapse will eventually be halted and a massive accretion disk/torus will
form around the nascent stellar-mass BH. This collapsar scenario is the leading model for long duration
gamma-ray bursts and may also power an “engine driven” supernova [8].
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The inner regions of the accretion disk are geometrically thin due to neutrino cooling, but the outer parts
are unable to cool efficiently causing them to be thick. This potentially leads to fragmentation at large radii.
We investigate the expected gravitational radiation from such a system, inspired by the discussion by Piro
& Pfahl [3].

We assume a central BH of mass MBH surrounded by a Keplerian accretion disk with orbital frequency
Ωdisk = (GMBH/r

3)1/2 and vertical scale height H . The accretion rate is Ṁ = 3πνΣ, where Σ is the
disk’s surface density, ν = αcSH the usual α-viscosity prescription and cs the isothermal speed of sound.
We assume that H/r = η is a fixed parameter.

3.1 Gravitationaly instability and fragmentation

Gravitational instability arises when

Q ≡ Ωdiskcs
πGΣ

< Qcrit ' 1 . (29)

Even once a disk becomes gravitationally unstable, numerical simulations demonstrate that fragmentation
is only promoted if there is a sufficiently rapid cooling mechanism available to allow collapse to high den-
sities. Piro & Pfahl [3] argue that photodisintegration of 4He naturally leads to fragmentation because this
endothermic reaction removes energy at a rate that far exceeds the viscous dissipation in the disk. In addi-
tion, the photodisintegration is very temperature sensitive and sets a clear radius were it first becomes active
at around 100 gravitational radii (Rg = GM/(rc2)). As explained in [3], we can therefore identify the
quantity (QH)2Σ with the mass of the bound fragment, which is estimated to be

Mf ≈ 0.2
( η

0.5

)3 MBH

3
. (30)

3.2 Migration and associated gravitational waves

Due to it’s relatively large mass in comparison to surrounding disk material, the fragment accretes material
within a tidal radius of itself and opens a gap in the accretion disk. It then migrates inward toward the central
BH due to tidal interactions with the edges of the viscously accreting disk in a well-known process called
Type II migration. (This is opposed to Type I migration, which takes places when a fragment is too small
to open a gap and instead migrates inward via the generation of density waves in the disk.) This viscous
migration happens on the approximate viscous timescale given by Piro & Pfahl [3],

tν ≈
1

αη2Ω
. (31)

Note that since the mass of the fragment is not necessarily negligible, we use here Ω =
√
G(MBH +Mf )r−3,

whereas Ωdisk =
√
GMBHr−3.

Since the fragment-BH system is effectively a binary, there is associated GW emission that can also con-
tribute to the inward migration of the fragment. The timescale for this can be estimated to first order via the
quadrupole formula to be

tGW =
5

64Ω

(
GMΩ

c3

)−5/3
, (32)

whereM = µ3/5(MBH+Mf )2/5) is the chirp mass and µ = MBHMf/(MBH+Mf ) is the reduced mass of
the system. The evolution of the orbit under the influence of both GW and viscous effects can be computed
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by simply solving the differential equation

dr

dt
= −r

(
1

tGW
+

1

tv

)
, (33)

Generally the viscous processes dominate in causing migration at large radii, while GW emission dominates
at small radii. Together this leads to a unique GW signature from the fragment-BH system. This may allow
the physics of the disk to be probed via the GW signal by identifying when the inspiral switches from being
predominantly controlled by viscosity to being controlled by GWs.

We integrate Eq. (33) with a standard fourth-order Runge-Kutta integrator. The chirp-like gravitational wave
emission expected from the system via the quadrupole approximation as discussed in the next subsection.

3.3 Gravitational Wave Signal

As in §2.1, we consider two point masses, MBH and Mf , separated by distance r. The total mass is M =
MBH +Mf and the reduced mass is µ = MBHMf/M . The motion (arbitrarily assumed to be in the x− y
plane) of the two masses about their center of mass (at the origin) is described by the following equations:

xBH =
MBH

M
r cos(Ωt) ,

yBH =
MBH

M
r sin(Ωt) ,

xf = −
Mf

M
r cos(Ωt) ,

yf = −
Mf

M
r sin(Ωt) .

(34)

Here, Ω =
√
G(MBH +Mf )r−3. Now, using Eq. (4), we have

Iij =
µ

2
r2
(

cos 2Ωt+ const. sin 2Ωt+ const
sin 2Ωt+ const. − cos 2Ωt+ const.

)
, (35)

Ïij = 2µr2Ω2

(
− cos 2Ωt − sin 2Ωt
− sin 2Ωt cos 2Ωt

)
, (36)

...
I ij = 4µr2Ω3

(
sin 2Ωt − cos 2Ωt
− cos 2Ωt − sin 2Ωt

)
. (37)

The source-angle-dependent h+ and h× GW polarizations can then be obtained via Eqs. (14–16).

3.4 Astrophysically Meaningful Parameters

Mass BH of mass MBH = 3− 10M�
Viscosity Standard value of α = 0.1 [3]

Geometrical parameter η = 0.3− 0.6 [3]
Mass of the bound fragment The approximate factor 0.2 in Eq. (30) can be varied from 0.2− 0.5.

Starting Radius Start at r = 100rg, where rg = GM
c2

is the gravitational radius
End integration close to the ISCO

3.5 Usage of the python script

Code usage: $ python pirogw.py
The code section below #physical parameters allows to specify the physical parameters of the sys-
tem as defined in subsection 3.4. The colatitude and azimuth of the system can be specified as well. The code
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Figure 2: Waveform computed following the Piro & Pfahl model. The parameters of the system are MBH =
8M�, η = 0.3, factor for the mass of the bound fragment = 0.2. The strain corresponds to a face-on,
optimally-oriented system situated at 10 kpc.

section under #parameters allows to change the total run time (in seconds) of the integration (provided
that the orbital radius is larger than 2.5RISCO where we take a multiple of the ISCO radius of a non-spinning
black holeRISCO = 6GMBH/c

2 as a limit for the integration) as well as the sampling time dt of the output.
The script produces two output files:

• piro.dat is a diagnosis and debug output file, containing the following variables:
time r (cm) r (rS) h+ h× Ω tGW tv

• piroM*eta*fac*.dat, where * denote the values of the physical parameters MBH, η and the
factor in the RHS of equation 30 given as input, is the production output file, containing:
time h+ h×

An example of the chirp-like signal obtained for the Piro & Pfahl model is shown in figure 2.

4 Changes to this Document

T1100093-v2, update by C. D. Ott

• Added more details on the quadrupole approximation used in section 2.1.

• Added a caveat regarding the van Putten waveforms.

• Removed duplicate text at the end of section 3.

• Updated most of the text in section 3 based on input from Tony Piro.

• Improved description of how the gravitational wave signal is calculated for the Piro & Pfahl model.

• Updated text and pirogw.py script (now version 2) to correct a slight inconsistency in calculating
the orbital angular velocity. Previously only the black hole mass was taken into account. Now the
total system mass MBH +Mf is used.
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