

LIGO Data Analysis and Simulation Summary

7th Meeting of the LIGO PAC

Cambridge, Massachusetts 18 November 1999

> Albert Lazzarini LIGO Laboratory Caltech

LIGO-G990122-00-E

E2E Development Status

• Schedule is ~ 4 months behind plan

- Discovered an architectural issue in simulation engine- e.g. difficulty in dealing with servo loops
- Miscellaneous code improvements along the way
- Debugging of code elements more difficult than expected
- Scientist and Programmer shortage
 - Lost one programmer;

Goal for next 6 months

- Catch up to hardware configuration 2k FP or short Michelson
- Improve mechanical simulation (add realism)
- Greater LSC participation

LIGO-G990122-00-E

LDAS Development Status

- Implementation is behind plan
 - » $\alpha 1, \alpha 2$ releases will be combined to a single α release, ~6 month delay
 - » β released still planned for end of 2000
- Reasons
 - » Staffing ramp-up slower than expected
 - Learning curve
 - Programming staff retention (lost 3, looking for 2)
 - Development of infrastructure is a front-loading activity
 - Extensive core API module development
 - C++ frame library development (1/2 m-yr)
 - C++ code standardization to ANSI specification (egcs -> gnu 2.95.1 transition took ~ 2 months)
 - » Early investment of time to develop tools to leverage lean staff'
 - Developed www page online resources to assist new programmers
 - Extensive use of cfengine scripting utility to enforce OS installation configuration control across remote sites from Caltech

LIGO-G990122-00-E

LDAS Development Status

- Reasons
 - » Early investment of time to develop tools to leverage lean staff'
 - Extensive use of autoconfig/automake unix utilities to compile, build code releases
 - Difficult learning curve to implement well, correctly
 - Long term labor saver to permit automated code builds, releases, along with automated documentation generation (html)
 - Permits uniform code environment to be enforced across all LIGO sites, remotely managed from Caltech
- Solutions
 - » Add 2 senior programmers
 - Access to existing LIGO programmers coming off other work
 - Offloading existing programmer from system administration load
 - New hire
- » Development of new modules reuses much of code foundation

Laboratory - LSC Coordination

LSC White Paper on Data Analysis

- » Co-authored by Tom Prince
- » Draft released 27 October 1999, pending LSC review, adoption
- Draft specification for algorithm library software drafted, released for review
 - » LLAL: LIGO/LSC Algorithm Library
 - » C code implementation
 - » Interface to on-site & off-site analysis pipelines
 - » Test of specification through prototype code development

LIGO-G990122-00-E

Laboratory - LSC Coordination

- LSC Software Coordinator
 - » Role identified in white paper, no candidate identified
 - Interim role filled by committee appointed by LSC Spokesman, LIGO Director
 - S. Anderson (Chair, LIGO Lab), L. S. Finn (PSU),
 M. A. Papa (GEO/AEI Potsdam), T. Prince (LIGO Lab), A. Wiseman (UWM)
 - Charter:
 - Review/approve LLAL S/W specification
 - Coordinate SW development schedule with Lab.
 - Define code acceptance, validation criteria
 - Coordinate code archive with Laboratory
- International data analysis working group
 - Reports to GWIC regarding coordination of data analysis among major international programs
 - » Joint Lab, LSC representation
 - » 1st meeting scheduled for Rome on 4 Dec 1999

LIGO-G990122-00-E

Laboratory - LSC Coordination

- Mock data challenges
 - » LSC-led effort to organize a simulated 2interferometer analysis of 40m data (split run into two segments, shift second in time)
 - Reprocess data set for binary chirps
 - Develop event list
 - Use LDAS metadata tables to log events, perform queries, sorts
 - Pending announcement of proposed activity to LSC
 - Open to interested participants
 - » 40m + TAMA coincidence run
 - 3-day run coincided with TAMA run;
 - Coordinated at Caltech by University of Michigan and LIGO
 - Data transmission/storage to HPSS (900GB, 99.9+% availability; no lost data)

LIGO-G990122-00-E

40m - TAMA Run Summary

CACR Collaboration with LIGO

- Mass data storage technology for LIGO I
 - » Use of HPSS for LIGO prototype tests
 - Performance evaluation bandwidth, reliability, sizing for LIGO I
 - Direct (real time) archival of 40m datastream
 - LSC access to existing 40m databases
 - » Use of existing HPSS infrastructure for LIGO I
 - Space in CACR StorageTek robotic silo (100+TB, 2000 cassettes*)
 - Site license
 - Direct connection to Calren2, LIGO Caltech WAN
 - Enhancements by LIGO Laboratory for LIGO/LSC specific use
 - Robotic arm upgrade (?)
 - 4 tape heads (StorageTek 9840 tape drives
 - SP2 nodes to control tape heads
 - High Perf. Gateway Node for communication
 - Intermediate disk cache (SSA, ~400+GB)
 - » 1 LIGO FTE to support LIGO HPSS operations

LIGO-G990122-00-E

CACR Collaboration with LIGO

- Cluster computing
 - Access to CACR expertise in prototyping beowulf (linux cluster) at LIGO
 - » Site of LIGO I production beowulf under review (CACR vs. LIGO Lab)
- Supercomputing
 - » LSC access to CACR supercomputers
 - » LIGO Laboratory provides interface for LSC members to CACR
 - User accounts (includes HPSS databases)
 - Block time allocation
- Software development of user (www)interfaces
 - » Prototype of GUIs to view frame, xml data
 - » Write data to Matlab files for analysis

LIGO-G990122-00-E

LDAS Procurement Approach

- All items commercial, off-the-shelf
 - » Multiple vendor quotes, catalog items, etc.

٠.

- Flexible, extensible
- Tests on prototypes, loaners, etc.
- Networking/switching technology
 - » ATM (OC3/OC12) using LANE
 - LAN
 - Server-server connections
 - » Ethernet (100BT/1000BT)
 - Server connections to LAN
 - PC cluster interconnections

LIGO-G990122-00-E

LDAS Procurement Approach

- CPUs & workstations
 - » SUN
 - For licensed applications, databases
 - HPSS (v 4.2)
 - DB2 (IBM)
 - LDAS APIs
 - » Intel Pentium
 - Linux
 - LDAS APIs
- Mass storage technology
 - » Robotic tape systems
 - Large scale system for Caltech archive
 - HPSS (IBM or SUN)
 - 100+TB in campus StorageTek Silo
 - 4 9840 drives

LDAS Procurement Approach

Mass storage technology

- » Robotic tape systems
 - Medium volume system at each site for near term look-back (~20TB)
 - StorageTek Timberwolf with 9840 drives compatible with HPSS at Caltech
 - Small volume system for (few) tapes for experimenters at each site
 - AIT-2 (SONY/Cybernetics) technology
 - 10 20 cassette robot
- » Disk systems
 - Serverless RAID system (e.g., Network Appliances 760) for on-site data cache
 - ~1 TB for Hanford
 - Robust
 - High performance throughput
 - Does not need server
 - SSA (IBM) intermediate disk cache for HPSS (400+ GB)

LIGO-G990122-00-E