

Detection of Gravitational Waves with LIGO, VIRGO, ...

On the Occasion of the Inauguration of LIGO

LIGO Livingston Observatory Livingston, Louisiana 11 November 1999

Albert Lazzarini LIGO Laboratory California Institute of Technology Pasadena, California 91125

LIGO-G990102-00-E

Ultimate Goals for the Detection of Gravitational Waves

- Tests of Relativity
 - Black holes & strong-field gravity (ringdown of excited BH)
 - Spin character of the radiation field (polarization of radiation from CW sources)
 - Wave propagation speed (delays in arrival time of bursts)
- Gravitational Wave Astronomy
 - Compact binary inspirals
 - Gravitational waves and gamma ray burst associations
 - Black hole formation
 - Supernovae in our galaxy
 - Newly formed neutron stars spin down in the first year
 - Pulsars and rapidly rotating neutron stars
 - LMXBs
 - Stochastic background

- Galileo Galilei, 1610
 - Improves on Lipperhey's opera glass to make a 9x telescope --
 - ! discovers Gallilean moons of Jupiter
- Karl Jansky, 1933
 - Builds directional radio antenna to study RF interference in trans-Atlantic telephone communications -
 - discovers radio emissions from our galaxy
- Penzias & Wilson, 1963
 - Investigate excess microwave receiver noise in satellite communications antenna --
 - ! observe cosmic microwave background
- Klebesadel & Olson, 1969
 - Study Vela satellite data for evidence of clandestine nuclear tests by Soviet Union
 - ! discover γ-ray burst of non-terrestrial origin

• ...

LIGO-G990102-00-E

• Galileo Galilei, 1610

 Improves on an invention by Hans Lipperhey to build a 9X telescope
 Discovers the "Gallilean" moons of Jupiter

http://es.rice.edu:80/ES/humsoc/Galileo//

http://photojournal.jpl.nasa.gov

LIGO-G990102-00-E

- Karl Janksy, 1933
 - Builds a radio antenna array to study interference in transatlantic telecommunications
 - ! Discovers radio emissions from the galactic center

//http://rsd-www.nrl.navy.mil/7213/lazio/GC/

LIGO-G990102-00-E

- Penzias & Wilson, 1963
 - Track down excess antenna noise
 - *! Observe the cosmic microwave background radiation (CMBR)*

http://www.gsfc.nasa.gov/astro/cobe/cobe_home.html

COBE-DMR Map of CMB Anisotropy

http://www.lucent.com/museum/1964bang.html

LIGO-G990102-00-E

- Klebesadel, Strong & Olsen (LANL), 1969
 - Review of Vela 5 satellite data from 1967.07.02 shows a γ event of non-terrestrial origin

LIGO LABORATORY CALTECH

! Discover γ-ray bursts (GRBs), X-ray sources

http://science.msfc.nasa.gov/newhome/headlines/ast19sep97_2.htm LIGO-G990102-00-E

http://www.batse.com/

Interferometer Data Channels

Data Flow: Pre-processing

Template Loop

Data Pre-processing: removing instrumental effects

 Cross channel regression will be used to improve signal to noise ratios when possible (need adequate SNR)

Interferometer Strain Signal (Simulated)

Frequency-Time Characteristics of GW Sources

- Bursts are short duration, broadband events
- Chirps explore the greatest timefrequency area
- BH Ringdowns expected to be associated with chirps
- CW sources have FM characteristics which depend on position on the sky (*and source parameters*)
- Stochastic background is stationary and broadband
- For each source, the optimal signal to noise ratio is obtained by integrating signal <u>along</u> the trajectory
 - •If SNR >> 1, kernel \propto |signal|^2
 - •If SNR ≤ 1 , kernel \propto
 - |template* signal| or |signal_i* signal_k|
 - •Optimal filter:
 - kernel ∝ 1/(noise power)

Optimal Wiener Filtering

- Matched filtering (optimal) looks for best overlap between a signal and a set of expected (template) signals in the presence of the instrument noise -- correlation filter
- Replace the data time series with an SNR time series
- Look for excess SNR to flag possible detection

Compact Binary Inspirals Data Analysis Flow

CW Sources Hierarchical (Constrained) Search

Search Approaches for Other GW Sources

- Burst events (unmodeled)
 - Cross correlate detector outputs
 over narrow time window
 - Look for excess power
 - Use environmental vetoes
 - Look for few parametric templates (e.g., wavelets)
 - CPU: Workstation(s)

Stochastic background search

- Correlate & integrate signals from pairs of interferometers
- Look for excess power in band consistent with baseline separation
- CPU: Workstation(s)

$$S(t) = \iint_{0}^{T_{B}} dt' dt'' s_{1}(t-t')Q(t''-t')s_{2}(t-t'')$$
$$Q(\tau) = \int df \ e^{-2\pi i f \tau} \frac{\hat{h}_{B,1}^{*}(f)\hat{h}_{B,2}(f)}{S_{1}(|f|)S_{2}(|f|)}$$

ref: Finn, Mohanty, Romano gr-qc/9903101

$$S_{(\alpha)} = T_{\text{int}} \int_{f_{\text{min}}}^{f_{\text{max}}} \frac{\hat{s}_1^*(f)\hat{s}_2(f)\Omega_{GW}^{(\alpha)}(|f|)\gamma(|f|)}{f^3 S_1(|f|)S_2(|f|)} df$$

ref: Michelson, 1987 Christensen, 1992 Flannigan, 1993 Allen & Romano gr-qc/9710117

Joint Data Analysis Among GW projects From detection to validation

- For a *putative* detection:
 - Environmental, instrumental vetoes?
 - $(\Delta t_i, \Delta \Omega_i)$: Seen by all detectors within consistent (time, position) windows?
 - Δh_i : Is the amplitude of the signal consistent among detectors*?
 - $\Delta \alpha_i$: Are the deduced model parameters consistent?
- Follow up analyses
 - Independent
 - Coherent multi-detector analysis -
 - maximum likelihood over all detectors: $\{t,\Omega,h,\alpha\}$
- $h_i \rightarrow \bar{h}$ $\ln \Lambda(h_i, \theta_i) \to \ln \Lambda(\dot{h}, \dot{\theta})$
- Discrepancies should be explainable, e.g.: $\sigma_i^2 \rightarrow C_{kl} \equiv \langle \vec{n}_k \otimes \vec{n}_l \rangle$
 - Not on line
 - Below noise floor
 - *Different polarization sensitivity, etc.

Coincidence windows among detectors

• Rejection of statistically <u>uncorrelated</u> random events

• Coincidence window duration determine by baselines

Event Localization With An Array of GW Interferometers

Joint Data Analysis Among GW projects

- Protocols being put in place by GWIC (Gravitational Wave International Committee)
 - Commonality of data
 - Formats
 - Reduced data sets
 - Standards for software, validation techniques
 - Techniques to combine data from the elements of a <u>network</u> for different types of searches
 - Event lists (first pass)
 - Phase coherent processing (second pass)
 - Shared computational facilities, resources
 - Concepts for a common publication policy
 - Concepts for establishing an astronomical alert

• LIGO, VIRGO, GEO, TAMA ... ca. 2003+

 4000m, 3000m, 2000m, 600m, 300m interferometers built to detect gravitational waves from compact objects

LIGO-G990102-00-E