Laboratory Update

LIGO Hanford Observatory [LHO]

LIGO Livingston Observatory [LLO]

Albert Lazzarini LIGO Laboratory, Caltech

2ND TAMA Workshop on Gravitational Wave Detection October 19 - 22, 1999 Tokyo, Japan

Overview

- construction project:
 - complete (except for beam tube bakeout at Livingston)
 - within budget and on schedule
- detector installation:
 - in progress at both observatories
 - close to schedule
 - will be completed in 2000
- commissioning of interferometers
 - follows installation for period of ~ 1 year
- first astrophysical data run
 - planned for 2002

Outline

- Status of observatory facilities and infrastructure at Hanford (LHO) and Livingston (LLO)
- Status of beam tube bakeout
- Status of detector subsystem installation
 - Laser
 - Input Optics
 - Core optics
 - Seismic systems & suspension systems
 - Data acquisition and control system (DAQ)
- Simulation environment & Data Analysis System

Facilities status

- facility construction is complete at both sites
 - All vacuum equipment, beam tubes
 - All civil construction
 - Bakeout of beam tubes now underway at LLO; X-2 complete; X-1 starts by 11/99
- both observatories have on-site support labs and shops
- data acquisition networks installed, fiber optic data links between corner, mid, and end stations installed
- data acquisition racks positioned and now being stuffed
- data collection software installed and operational at both sites

LIGO

Beam Tube [BT] Bakeout

- BT is baked in 2km sections using Ohmic heating of 3 mm 304L SS
 - heating current ~1500 2000 A (depends of ambient conditions wind, temperature)
 - ~ 600 sensors mounted along each 2km module to monitor activity and ensure uniform heating:
 - thermocouples, pressure transducers, strain gauges, RGA, cryopump controllers
- Hanford bakeout of 4 beam tube modules complete [8 km total]
- Results of each bake <u>meet or exceed</u> LIGO goals for *advanced* LIGO *interferometers*
- Bakes became more efficient and results more sensitive as we learned
 - higher temperature bakeout (168C vs. 150C) requires shorter duration to achieve pressure goal
- Bake equipment move from LHO to LLO took 3 months to complete
 - 1ST of 4 modules at LLO complete [9/99];
 - Bakeout will be completed in ~1 year

LIGO Electrical Layout for Beam Tube Bakeout

LIGO Total of 16 km of beam tube insulated!

LIGO-G990093-00-E

Hanford beam tube bakeout results

LIGO-G990093-00-E

LIGO

LIGO

Beam Tube Bakeout Results^a

NOTE: All results except for H 2 are upper limits								
		Hanford				Livingston		
Species	Goal⁵	HY2	HY1	HX1	HX2	LX2		
H ₂	4.7	4.8	6.3	5.2	4.6	4.3	x 10 ⁻¹⁴ torr liters/sec/cm ²	
C H₄	48000	< 900	< 220	< 8.8	< 95	< 40	x 10 ⁻²⁰ torr liters/sec/cm ²	
H₂O	1500	< 4	< 20	< 1.8	< 0.8	< 10	x 10 ⁻¹⁸ torr liters/sec/cm ²	
CO	650	< 14	< 9	< 5.7	< 2	< 5	x 10 ⁻¹⁸ torr liters/sec/cm ²	
	2200	< 40	< 18	< 2.9	< 8.5	< 8	x 10 ⁻¹⁹ torr liters/sec/cm ²	
$NO+C_2H_6$	7000	< 2	< 14	< 6.6	< 1.0	< 1.1	x 10 ⁻¹⁹ torr liters/sec/cm ²	
H _n C _p O _q	50-2 °	< 15	< 8.5	< 5.3	< 0.4	< 4.3	x 10 ⁻¹⁹ torr liters/sec/cm ²	
air leak	1000	< 20	< 10	< 3.5	< 16	< 7	x 10 ⁻¹¹ torr liter/sec	

^a Outgassing results correct to 23 C

 $^{\rm b}$ Goal: maximum outgassing to achieve pressure equivalent to 10 $^{-9}\,$ torr H $_2\,$ using only pumps at stations

^c Goal for hydrocarbons depends on weight of parent molecule; range given corresponds with 100-300 AMU

Detector: Seismic Isolation Systems

• LHO:

- All 2km chambers, except X-mid station complete
- Coarse actuation systems validated
- Work started on 4km interferometer
- Problem with fluorel seat on bases of metal springs:
 - H₂O outgassing load too large for LN₂ pumps
 - Do not want to risk contaminating BT subsystem
 - Need to pre-bake seats & control exposure to ambient air (< 8 days total after insertion)
 - Requires replacement of previously installed seats -- requires re-alignment of large optics
 - Rework at LHO to be complete by end of 11/99

Detector: Seismic Isolation Systems

• LLO:

- All HAMs complete, 3 of 5 BSCs
 - Still to-do: BS and X-end
- Coarse actuation servo electronics installation in November
- In vacuo test of seismic isolation systems completed to validate and extend previous in-air results
- Fluorel seat replacement required
- <u>Lessons learned @ LHO permit faster</u> progress

HAM seismic isolation system tests measured in air at LHO

LIGO-G990093-00-E

Tests of BSC prototype seismic isolation system

•Initial measurements of BSC isolation transfer function made in air at Hytec.

•Measurements in vacuum completed at LLO

Detector: Suspension Systems

• LHO:

- 2km All large optics, except X-mid installed & aligned once
 - Several issues identified & resolved:
 - Sensor/actuator heads shorted required re-work & retrofits
 - Magnet/standoff assys. on 3 large optics failed, needed re-work, changes to procedures.
 - No further problems encountered
 - Realignment needed after fluorel seat baking & replacement
- LLO:
 - IO assembly begun
 - Suspension electronics test in optics lab; controllers for IO installed
 - MMT3 suspended
 - RM mirror assy. begun

LIGO

Detector: Input Optics

- LHO 2km Interferometer:
 - IO installation complete, characterization under way.
 - Mode cleaner (15 m) locks for 12+ hours at a time
 - Cavity length : 15251 mm
 - Linewidth: 6.26 kHz
 - Finesse : 1550
 - Scatter+absorption+transmission as expected
 - few 10s of ppm
 - Length & frequency control servos operate as expected
 - Small optics suspension/servos now being characterized

Detector: Input Optics

- LHO 2km Interferometer:
 - Uncovered local alignment/damping system (OSEM) issue
 - DC-coupled sensors have spectral overlap with PSL high power laser
 - Scatter from resonant build up [expected] leads to conflicting sensor signal, affecting alignment stability, local damping
 - Short term (masks) solution iden tree
 - Long term correction planned (change sensor wavelength, bandpass optical filter, etc.)
- LO:
 - Installation has started
 - assembling and suspending small optics

LIGO 15 m Mode Cleaner Angular Fluctuations

Detector: Large Core Optics

- All 40 optics polished, coated
 - Microroughness within spec. (<10 ppm scatter)
 - ROC within spec. ($\delta R/R < 5\%$, except for BS)
 - Hand-selection of matched pairs gives $\delta R/R < 3\%$,
 - Coating defects within spec. (pt. defects < 2 ppm, 10 optics tested)
 - Two optics rejected due to coating imperfections - need to be re-polished, re-coated
 - Coating absorption within spec. (<1 ppm, 40 optics tested)
- LHO 2km interferometer:
 - All optics at site, complete
- LLO:

- Characterization in progress at Caltech
- Recycling mirror delivered for installation

LIGO-G990093-00-E

Detector: Prestabilized Laser Subsystem [PSL]

- Output power > 8W in TEM00 mode @ 1.064 μm
- Frequency noise: $\delta n(f) < 10^{-2} \text{ Hz/Hz}^{1/2}$, 40 Hz < f < 10 Hz
- Intensity noise: δI(f)/I <10⁻⁶/ Hz^{1/2}, 40 Hz<f<10 kHz
- 5 delivered of 10 ordered
- 2 total installed at LHO and LLO
 - LHO frequency and intensity control servos implemented
 - LHO PSL subsystem routinely locks for days
 - LHO PSL integration with 15 m mode cleaner successfully tested
 - LLO installation nearing completion, incorporated lessons learned from LHO
 - Intensity servo modified (use PA current shunt vs.. AO cell)
 - Frequency control servo changes

Detector: Length/Alignment Sensing & Control

- LHO installations completed:
 - All electronics, software for 15 m M.C.
 - EO shutter for MC photodiode protection
 - Pico-motors for MC steering
 - Vertex control/electronics racks for 2 km interferometer
 - Alignment control&sensing subsystems tested, signals transferred to diagnostics subsystem
 - Digital control performance timing tests on PIII Intel processor validated
 - Design complete, fabrication started for servo boards for 2 km single arm FP testing

Detector: Data Acquisition & Control System Status

- LHO:
 - DAQS for mid, end stations complete
 - Video systems (cavity modes) complete
 - Testing framed data multicasting for diagnostics access
 - Anti-aliasing filters for controls being fabricated, installed
 - Timing system being fabricated, installed
 - Converted C frame library to C++ (LDAS source)

LIGO-G990093-00-E

Detector: Data Acquisition & Control System Status

• LLO

- Installation of network servers electronics complete
- DAQS installation at Y-end complete
- Control & data systems for PSL and vacuum equipment complete
- ATM network switch in control room installed

Detector: Physical Environment Monitoring [PEM]

- All PEM hardware procured
- LHO

LIGO

- All stay-clear zones near interferometers at LHO identified for sensitive equipment
- X1 BT module instrumented (vibration/scattered light tests)
- All accelerometers, microphones for 2 km interferometer installed
- All seismometers, tiltmeters installed
- B[f] measurements made at LHO (also LLO)

• LLO

- High frequency transmission test performed on BSC SEI
- Seismicity measurements ongoing (also at LHO)

LIGO-G990093-00-E

Detector: Global Diagnostics System [GDS]

• LHO:

- Low level data monitoring tool (DMT: 1ST level triggers) running at LHO
- Demonstrated high BW data transmission on CDS network
- Diagnostic software tests (for DMT)
- Frame data multicasting interface on data server
- Excitation (sine, swept sine, random time series) drivers for diagnostics completed
- Continued development of ROOT interface for diagnostics analysis
- Installed compute server for diagnostics analysis

LIGO

LIGO Data Analysis System [LDAS]

•On-site systems dedicated to processing 100% of the GW channel

•Design is now complete

•Layered, modular design allows future extensions and revisions of analysis flows as experience grows

- •optimal filters
- •transients
- •frequency- time analyses

end- to- end detector diagnostics
data distribution to local and remote users

•remote system dedicated to archiving data, distribution,

computationally intensive re-analysis of the GW channel

LIGO Data Analysis System [LDAS]

Under

- Release 0.0.3 (α) of a subset of LDAS components installed at LHO
 - APIs will permit users to:
 - Ingest metadata (e.g., diagnostics trigger data) in DB2
 - Retrieve/sort metadata
 - Retrieve frame data
 - Create frame subsets (fewer channels)
 - Retrieve channel data in XML (LIGO_LW format)
 - System integrated with GDS/CDS networks & servers
 - Presently doing: validation/debug/performance timing

LIGO Data Analysis System [LDAS]

- Data challenge activities
 - Carried out in concert with LSC members
 - LIGO/LSC Algorithm Library [LLAL] defines software C library coding style, conventions for software contributed by LSC membership for incorporation into LDAS
 - I/O behavior
 - Exception handling
 - Data types/data objects (time series, power spectrum, arrays, matrix objects, physical constants, ...)
 - November 1994 40m data re-analysis (mock coincidence)
 - Extract events, ancillary channel vetoes (triggers)
 - Ingest into relational database
 - Perform correlation/coincidence studies using LDAS environment as much as possible
 - September 1999 40m+TAMA 300m coincidence run
 - Similar activities, develop protocols for true full coincidence analysis

LDAS Off-site system architecture

LIGO-G990093-00-E

LIGO

LDAS On-site system architecture

LIGO-G990093-00-E

LIGO

LIGO Simulation and Modeling

- End-to-end model is complete and has been released for use to build up LIGO model elements:
 - Simulation Engine
 - Time domain (arbitrarily large signal response), written in C++
 - Modular design for flexibility (software components map hardware)
 - Develop new models beyond LIGO I
 - Modal model permits spatio-temporal calculation of EM field almost complete
 - Mechanics model
 - Primitive fixed configuration for LIGO I almost complete
 - Modular, extensible model for LIGO I and beyond almost complete (G. Cella, Univ. of Pisa)
 - Thermal noise model (phenomenological) almost complete (L.S. Finn, PSU)

LIGO Simulation and Modeling

- End-to-end model is complete and has been released for use to build up LIGO model elements:
 - LIGO I Modeling: PSL+IO+COC+SEI/SUS+LSC/ASC
 - PSL almost completed, includes frequency, amplitude noise
 - IO length control, frequency control complete, completing angular alignment part
 - Build up model to support subsystem-by-subsystem commissioning
 - Integrate & Validate model for 2 km FP arm tests
 - Extend model for vertex Michelson tests
 - Extend model for full 2km, 4km tests

LIGO Hanford:

tests of laser and mode cleaner	summer/fall 1999
"first lock" down one arm	fall 1999
• complete installation/commissioning of 2K and 4K IFOs	2000
LIGO Livingston:	
Complete optics suspension & installation	2000
complete installation and commissioning of 4K IFO	2000
Simultaneous operation:	
Engineering run to improve strain sensitivity	2001
first coincidence operation	2001
Improve reliability and sensitivity	2001
First Astrophysics Run	2002

- Expect uptime > 50% over 2 years operating at h_{RMS}~10⁻²¹