LIGO II:

REQUIREMENTS & CONFIGURATIONS

Peter Fritschel
PAC 6 Meeting
May 20-21, 1999
LIGO Hanford Observatory

Working Group Intersections (1)

☐ Thermal lensing in the core optics (all 3)	
 Iimits optical power in the interferometer, & thus sensing noise new materials: optical properties vs. mechanical (thermal noise) properties the development of configurations more tolerant to thermal distortions (readout techniques, or all-reflective configurations) 	Э.
 □ Phase modulators (L&O & AIC) ○ location(s) determined by sensing system design ○ sensing noise produced by modulator imperfections 	
□ Photodiodes (L&O & AIC) ○ configuration affects: power; uniformity & scattering requirements	
 Optics fabrication (L&O & AIC) mirror coatings: signal recycling design specifies the transmittance of input test masses optical quality determines the power & signal recycling gains 	the
 Mirror size/mass (all 3) thermal noise radiation pressure noise optical losses impacts suspension design constrained by fabrication capabilities 	
S contract by talking the contract of the cont	

Working Group Intersections (2)

- □ Dark fringe lock (all 3)
 - O trade-off between laser amplitude noise & tightness of dark fringe lock
 - O readout scheme affects the requirement on the above product
 - O suspension & isolation design: determines the un-servoed relative motions; affects the control system design via the actuator characteristics
- ☐ Thermal noise (AIC & SWG)

O projected thermal noise contributions are taken as top-level design inputs by the AIC (more later)

AIC Design & Development Ingredients

N 4			
- IN /I	lod		
11//		_	 (1
IVI			 ч

- >> Frequency response & sensitivity
- >> Sensing schemes
 - O gravitational-wave readout
 - O other length & alignment degrees-of-freedom
- >> Optical noise couplings (laser frequency & amplitude noise, etc)
 - >> Effects of optical distortions
 - O thermal lensing
 - O optical polishing/coating imperfections
 - >> Many useful models exist or are in development
 - O End-2-End; FFT; Modal; Melody (opto-thermal)

Prototyping

- >> Table-top interferometers
 - O 'efficient' way of examining sensing schemes
 - O good for concentrating intellectual effort on these problems
- Suspended interferometers
 - O required before installing a new configuration in LIGO
 - O 1st prototype to test signal recycling mirror sensing/control schemes
 - O followed by a full-up engineering test of final optical configuration

AIC Top level requirements

□ Performance should not be significantly limited by sensing noise (shot noise + radiation pressure)
 thermal noise should be limiting noise source may be difficult to get radiation pressure 'out of the way'
☐ Feasibility of meeting this goal is evaluated against observability of potential signals
 binary inspiral signals pulsar signals (known or unknown), at any frequency within 0 to ~1kHz unknown wideband (pulse) signals
Clearly, meeting this goal for all source types with a single interferometer type is not possible
O design should allow some flexibility in the response shape O hopefully, we find that some choice of interferometer configuration that covers all cases with a core set of parameters
☐ Signal recycling of the initial LIGO configuration forms the basis for LIGO IIb upgrade – other candidates are LIGO III
Sagnac interferometersSqueezingQuantum non-demolition

Binary Inspiral

☐ Calculate normalized (to LIGO I) observation range:

$$R \propto \sqrt{\int_{1}^{1} \text{kHz} h^{-2} f^{-7/3} df}$$
 (R = 5.9 for WP curve 2)

T _{ITM}	T _{SRM}	ФSRM	Input Power	Rel. Range R
10%	40%	2.3 rad	50 W	6.9
3%	45%	0.86 rad	100 W	7.1
1%	20%	0.27 rad	100 W	6.6
0.3%	4.5%	0.07 rad	100 W	5.7

Pulsars & Bursts

☐ Again, try to make thermal noise dominant

- O narrow the bandwidth; tune center frequency to anticipated signal frequency
- O bandwidth depends on signal recycling mirror reflectivity; choice depends on science goals

		strain/√Hz (x10 ⁻²⁴) / Hz			
T _{ITM}	T _{SRM}	250 Hz sens/ BW	500 Hz sens/ BW	1 kHz sens/BW	
1%	1%	3 / 65	2.3 / 90	2.4 / 200	
1%	3%	3 / 90	2.7 / 200	4.0 / 500	
1%	10%	4 150	4.2 / 500	not reached	
3%	1%	3 / 30	2.2 / 40	2.1 / 80	
3%	3%	3 / 50	2.4 / 80	3.0 / 190	
3%	30%	4 / 200	5.5 / 600	not reached	

Burst sources

- O can't really optimize not enough power to get thermal noise limited performance over whole frequency range
- O alternative: starting with inspiral-optimized response, improve the wideband performance with only a small degradation of the inspiral sensitivity
- O given the thermal noise assumptions used in these examples, designs performing like this can be found. E.g., T_{ITM} = 1%, T_{SRM} = 20%, 0.15 rad detuning has improved sensitivity up to 1 kHz.

Signal Recycling Strategy

Early intersection with L&O

- O Given the time & expense of new mirrors, the new input mirrors installed in the first upgrade should be compatible with later signal recycling
- \bigcirc ITM choice must give good non-signal recycled performance; looks to be possible with a T_{ITM} of 1–3 %

□ Given that we determine best T_{ITM}, how best to achieve science goals?

- One SRM: compromise design, with some weighting given to sensitivity loss for the various source types
 - O Multiple signal recycling mirrors

Technical status

- Table-top experiments underway
 - >> Caltech, J. Mason et al.
 - >> University of Florida, T. Delker, et al.
 - >> Australian National University, D. Shaddock et al.
- Suspended prototype test plan
 - >> First stage testing at Glasgow 10m prototype; starts with RSE, no power recycling (Glasgow group + U Fla)
 - >> Engineering test of chosen configuration at Caltech 40m prototype; follows an infrastructure upgrade of the system (A Weinstein et al.)
- ☐ Primary remaining technical challenges/work:
 - >> sensing scheme for the signal recycling mirror position
 - >> readout scheme for the gravitational-wave
 - >> evaluation of 'technical' sensing noise sources
 - >> continued evaluation of configurations

AIC Tasks, Coordinators, Groups

Task (Coordinator)	Active Groups		
Dual Recycling/Resonant Sideband Extraction (K Strain)	ACIGA/ANU: table-top ifo + 18m prototype		
exploration of techniques	LIGO/Caltech: table-top + 40m		
	GEO: Glasgow 10m		
	UFI: table-top; Glasgow 10m LIGO/MIT: output mode cleaner		
Selection/Optimization (P Fritschel)	LIGO/MIT \	<u> </u>	
propose design for LIGO	LIGO/Caltech	readout & control	
	UFI	schemes	
	GEO /	J	
Sagnac Interferometers (M Fejer)	Stanford		
Squeezing (D McClelland)	ACIGA/ANU		
QND (Braginsky)	MSU, CaRT		

AIC Timetable

Event	Description	Date
Top level requirements	establish science goals; sensi- tivity	Q2 1999
Grant applications	UF continued support; Glas- gow prototype	Q3 1999
Conceptual design summit	choose configuration; sensing scheme design study; input from table-top tests	Q1 2000
Design review	establish prototype test plans; start of installation in Glas- gow; table-top complete	Q3 2000
Performance review	Glasgow signal recycling tests; planning for 40m tests	Q3 2001
Prototype test & preliminary design review	completion of Glasgow tests; set ITM transmission; design of 40m experiment	Q4 2002
Engineering review	review of 40m experiment; design for LIGO II	Q2 2004
Final design review	completion of 40m tests; LIGO sensing/control design com- plete	Q1 2005