A Renewal Proposal for the Stanford Program

Faculty

Robert Byer - Lasers and Interferometry Dan DeBra and Jonathan How - Suspensions, Isolation and Control Martin Fejer - Materials, Lasers and Interferometry James Harris - High Power Photodiode Development Robert Wagoner - Data Analysis and Sources

<u>History</u>

10 watt Laser Development 1991 -1995 GALILEO 1996 -1999 MRI Funding ETF Vacuum System 1998 Currently Proposed Stanford Program 1999 - 2002

SCANNED

Stanford Gravitational Wave Interferometry Group

<u>Faculty</u> Robert Byer Dan DeBra James Harris Bert Auld**

Martin Fejer Jonathan How Robert Wagoner Norio Nakagawa**

<u>Senior Staff</u> Roger Route

Eric Gustafson

Post Doctoral Scholars Sheila Rowan Brian Lantz Benno Willke* Charles Harb* Ke Xun Sun*

Graduate Students

Bill Tulloch Justin Mansell Jonathan Kurz Hong Sang Bae Robert Yi Todd Rutherford Matthew Lawrence Peter Beyersdorf Corwin Hardham Matt Hussman*

Visiting Scholars Ray Beausoleil

Outline of Presentation

Martin Fejer

- Previous work
- •Lasers and Optics
- •Suspension and Core Optic Materials
- •High Power Photodiode Development
- Advanced Configuration

Daniel DeBra

- •Previous Work
- •Suspensions, Isolation, Alignment and Control
- •Engineering Test Facility

Prior Work on Lasers and Optics

Prior Work on Suspensions and Test Mass Materials

Hydroxy-catalysis bonding

Silica - silica Silica - sapphire Silica - YAG Sapphire - sapphire YAG - YAG Optical absorption measurements by common path photo-thermal interferometry

Sapphire 50 ppm/cm

YAG 100 ppm/cm

Sapphire cantilever

Prior Work on Advanced Configurations

- Proposed using Sagnac as A GW detector and showed low frequency sensitivity (Sun PRL 1996)
- Common path local oscillator signal extraction (Sun OL 1997)
- Reciprocal port signal extraction (Beyersdorf 1998)

All Reflective Interferometers

Lasers Amplifier Module

Dual Double-Pass Amplifier Calculation

Master Oscillator - 10 W PSL

Power Amplifier #1 - 40 W Output Power

Power Amplifier #2 - 117 W Output Power

Adaptive Optics

Limits to sensitivity: test masses and suspensions

- Thermal noise due to mechanical loss
- Thermal loading due to optical absorption
- Candidate materials: Sapphire, Silicon, YAG (Y₃Al₅O₁₂), Spinel (MgAl₅O₄)

Important to characterize:

- Absorption loss in transmissive substrates

Surface loss

loss

Loss associated

with flexing

fibers

of suspension

Loss associated

with joints

Bulk material

– Mechanical quality (Q) factors of : bulk substrate materials

materials in form of fibers and flexures

– Bonding techniques for jointing crystalline materials and fused silica

Coating

loss

- Effects of surface preparation and coatings on Q factors and optical losses

Advanced Materials: Optical Absorption

Common-path photothermal interferometry

Simple highly sensitive absorption measurements

0.1 ppm/cm in Sapphire @ 4 W 0.1x0.1x0.3 mm³ resolution

Potential Core Optics Mat'ls

- Sapphire (Al_2O_3)
- YAG $(Y_3AI_5O_{12})$
- Spinel (MgAl₂O₄)

Sapphire Development

Current losses: 50 ppm/cm

Suspect: Ti³⁺/Ti⁴⁺ equilibria

Compare: doped/undoped oxidized/reduced absorption/fluores.

Test mass Q

- Q of resonant mode measures $\phi(\omega_0)$
 - Ideally influenced only by bulk properties
 - Can be influenced by processing and mounting
- Loss measurements
 - Ringdown: Stanford;GEO (Glasgow);LIGO
 - Anelastic aftereffect : Syracuse
- Characterize candidate materials
 - Silicon, YAG
- Monitor improvements in processing and bonding
 - Fused silica, Sapphire

Bulk material loss

Bonding and Q measurements

- Low-loss, low-creep suspension attachment essential
- <u>Silicate bonding</u> (J. Gwo) developed for all-fused silica telescope in GPB project
 - High strength room temperature process attractive for suspension fabrication
 - Extremely low loss demonstrated(Glasgow/Stanford)
- Fused silica/fused silica studies
 - Systematics of strength and loss
 - Creep
- Advanced materials
 - Fused silica crystalline materials
 - Crystalline crystalline materials
 - Bonds to metals (?)

Suspension materials

- Advanced LIGO baseline: cylindrical fused silica fibers
 - Reduced low frequency noise vs wire
- LIGO III issues: cylindrical fused silica
 - Room temperature strength/loss too low
 - Cryogenic silica loss increases rapidly
- Potential solutions
 - Room temperature : fused silica ribbons
 - Cryogenic: crystalline fiber/ribbon
- Research directions
 - Fabricate:
 - Variety of methods
 - Characterize:
 - Flexure ringdown
 - Violin mode Q
- Collaborate with Glasgow and LIGO on silica ribbons

Surface preparation and coating

- Surface preparation and coating may affect Q
 - Lossy layer due to surface damage
 - Polycrystalline coating may be lossier than bulk substrate
 - Strongest effect for largest surface to volume ratio
- Study small resonators
 - Easier characterization of processing effects
 - Develop low loss flexures
 - Silica and advanced materials

Surface loss

- Original development relating Green function and two point correlation function (Nakagawa et al, RSI 1997)
- Current and Future Work with Nakagawa (Ames Lab)
 - Delay line and Fabry-Perot
 - Anisotropic materials (Sapphire)
 - Spatially inhomogeneous loss
 - Intuitive model problems

High power photodiode development

Proposed Photodiode

- Back-side Illumination Structure
 - Decrease Series Resistance between absorption Layer and contacts
 - Very short carrier transient length
 - Constant resistance independent of intensity and illumination area
- Low Temperature Growth Material
 - High Resistance : 10⁶ ~10⁹ M
 - High Breakdown Electric Field : 4 *10⁵ Vcm⁻¹
 - Adjustable Carrier Life Time : ns to ps
 - High Mobility : $2000 \text{ cm}^2 \text{V}^{-1} \text{ s}^{-1}$
 - Controllability of Electrical and Optical Properties by Annealing
 - High Thermal Conductivity due to Better Crystal Structure
 - Extremely Low Background Doping level (less than 10¹⁰cm⁻³)
 - Adjustable Bandgap Energy due to Deep Defects
 - Ability to decrease capacitance by thick intrinsic layer

Suspensions, Isolation Alignment and Control

Dan DeBra

Aeronautics and Astronautics and Mechanical Engineering Department Stanford University

Previous Work Suspensions Isolation and Control

One -DOF active strut on test stand

Five wire coaxial double suspension

Low frequency Barn door seismic sensor

> Six -DOF active platform

LI GO II and LIGO III

- LIGO II Minimum
 - Active isolation to lower RMS motion of test mass
 - Eliminate (or minimize) actuation on test mass
- LIGO II Advanced
 - Improve isolation via active/passive isolation to realize benefit
 - of lower thermal noise
- LIGO III Minimum
 - Additional active isolation and possibly extra sensor/actuator layers
 - Integration of auxilary interferometric length measurement beams
- LIGO III Advanced
 - Extra low-frequency isolation

- Pendulum thermal noise
- Test mass thermal noise
- Actuator noise
- Low frequency (<10 Hz) alignment
- Vertical isolation in the measurement band

Effect control as far from the test mass as possible

Benefits

- minimizes sensor and actuator noise
- a clean test mass has lower thermal noise
 - If command to test mass cannot be eliminated then at least reduce to the point where electrostatic or radiation pressure can be used
- compatible with feed forward

Current and Proposed Active Alignment and Isolation

- Very high gain required to achieve out of band seismic reduction
- Hexapod for low frequency alignment and high frequency isolation
 - 6 DOF Isolation and alignment
 - Collocated sensors and actuators
- Possible insert for LIGO II

Six DOF Active platform with five wire coaxial double suspension

Systems Level Design of LIGO III

Sensing

Alignment sensor priorities

- Length
- pitch and yaw
- lateral translation
- roll sensors

Relative stage displacement Low frequency seismometers

Actuation

Minimum authority near test mass

Plant

Low stress (>10 Hz natural frequency) Kinematic Design Structure damping

Control laws

- Mimo
- Control authority reallocation
- Feedforward

ETF Schedule for Fall 1998 - Fall 2002

