# LIGO Advanced System Test Interferometer

# PAC meeting 16 Nov 98 David Shoemaker

### **Initial steps**

- System proposed at PAC MIT June 97
- Plan for vacuum system adopted by LIGO in Fall 97
- Space approved by MIT in Fall 97
- order placed Fall 97 with PSI (LIGO Vacuum Equipment vendor)

### Since last PAC meeting

- envelope completed in May 98
- MIT Lab, high bay completed; Lab moved 15 July 98
- vacuum equipment in high bay 5 Nov 98
- seismic isolation equipment ordered; some delivered

### Update on research and infrastructure

- activities at MIT, in LIGO Lab, in Ligo Science Collaboration
- LASTI: where it stands, where it is going



# LSC Suspension/Isolation Working Group

### 2004: First opportunity for significant changes

- first science run finishing in ~2003
- allows a ~5 year cycle of research, development, engineering, test

### Low-Frequency Performance goals dictated by thermal noise

- target materials (quartz, sapphire) loss characterized
- practical techniques needed for assembly
- isolation goal: let optimistic level for thermal noise dominate
- only moderate improvements in isolation required

### Leads to near-term plan for research:

- model and plan the system: requirements, trades
- leave LIGO I passive isolation in place, augmented by...
- multiple-pendulum suspension, and
- modest active isolation system

### Long-term goal: gravity gradient limited performance

probably rather limited by pendulum thermal noise

interest in LIGO and community for aggressive application of sensing/servo techniques, but all approaches to be considered

## Performance goals



### Considerable progress in defining strawman and models

- realistic parameters for losses
- · design concepts for control hierarchy, mechanical assembly
- some staging of implementation possible (test mass material)

# Roadmap to Stochastic forces research



### LIGO Science Collaboration Suspension Working Group

- important force in planning for LASTI
- steering group meeting monthly, larger physical meetings ~2-3 months
- coordinated effort to develop near, far-term solutions
- here, discuss ways that the Full-Scale Test Interferometer contributes

### **Active Seismic Isolation**

### Plan to re-use the bulk of LIGO I passive isolation system

- with double pendulum, allows thermal noise to dominate in GW band
- considerable cost/complexity savings if incorporated in new design
- will be well-understood and characterized system
- changes (e.g., damping of springs) if indicated by experience

### **Active pre-isolation system**

- Objective: to reduce required dynamic range in suspension; goal: factor 30 reduction, 0.1-10 Hz
- target design is (principally) external to vacuum
  - > may include sensors in vacuum to control stack dynamics
- MIT contributing commercial system for test to help make MIT LIGO campus site workable

### Servo-control aspects

- fuly digital system
- payload sensors, internal sensors, ground sensors
- commercial system comes with expert control development help

### Goal: element of LIGO II isolation system

off-load actuators on test mass (to zero!)

### **Active Isolation**

#### Status

- working relationship established with Integrated Dynamics Engineering (IDE)
- in design, with some funcamental choices still unresolved
- MIT staff/faculty working with IDE to reduce noise in air-bearings
- possible change in design to horizontal-only air bearing
- December: fix the basic design choices



### Passive Isolation

### LIGO II objective: thermal/quantum noise to dominate

- put 'seismic wall' intercept >10x above sensitivity limit
- combination of LIGO I stack, multiple pendulum, pre-isolator sufficient for horizontal isolation

### Additional vertical isolation required

- earth's curvature gives vertical-horizontal coupling
  - $\rightarrow$  best case:  $3\times10^{-4}$ ; difficult to measure, and likely greater
  - > LIGO I passive isolation ~1000x worse in vertical than horizontal
- simple pendulum has ~10-15 Hz 'bounce mode'; no real isolation
- additional isolation must be close to test mass to filter passive stack internally generated thermal noise
- development work in GEO and LIGO/Caltech

#### **LASTI** activities

- modify test-mass chamber isolation/suspension interface
- raise optics table without modification of stack
  - > spacers between support tubes and support table
  - > spacers between support table and first stack element
- tests in LASTI of target system for vertical isolation (once integrated with suspension)

# Suspension Prototypes

### Transfer of GEO double pendulum to MIT Lab

- fused-quartz system with masses comparable to LIGO II
- requires vertical compliant member
- requires instrumentation for testing

### Separate test setup

- in Phase Noise Interferometer tank
- · allows early start
- allows 'dirty' tests and instrumentation

### Measurement of transfer functions, cross coupling

- looking at particularities of fused quartz connections
- difficulties/improvements in static alignment strategy

### Charge monitoring and control

- need to track static charge and time varying charge
- electrometer with oscillating probe near surface
- will probably need means to discharge in situ, non-destructively
- ultraviolet probably not permissable solution



### System tests

### Once design well developed, need end-to-end testing

- tests of modifications of interfaces to LIGO Seismic Isolation
- acquisition with coupled cavities; alignment control
- noise performance

### Complete LASTI to enable this research

- isolation systems in Test Mass Chamber, HAMs
- active isolation customized for suspension, isolation designs
- fabrication of suspension systems

### Tests as required to qualify design

- transfer functions
- control issues: length [distribution of authority], alignment
- thermal noise (upper limits---small laser beam diameters)
- internally-generated noise
- installation problems/procedures
- · reliability

### Any optics/configurations issues

• as lab, LSC see appropriate

### Test Interferometer



- Shown in place in new MIT Lab high-bay
  - > overhead clearance ~4' less than LIGO sites
  - > would require segmenting Test Mass Chamber cover for internals of maximum height; PSI sees no problem

LIGO-G980129-00-M

- > no problem with LIGO I/II seismic installation
- · overhead crane for manipulating covers, tops
- control room, supporting labs on same floor
- staff, visitors' offices on two floors above

# Vacuum system layout



### LASTI Seismic Isolation elements

### **Objectives:**

- give LIGO-like environment for tests (LIGO II, possibly LIGO I)
- keep costs for re-engineering/startup minimal (add on to LIGO orders)
- not interfere with LIGO fab/install (put at end of queue)

### BSC (test mass chamber):

- complete support and isolation system, except
- no 'fine actuator' or 'coarse actuator' (replaced by IDE system)
- additional spacers to create headroom for multiple suspension

#### **HAM #1:**

complete support and isolation system

#### **HAM #2, 3:**

• complete support system and optics table; no masses, springs





# View of BSC, GEO Suspension



# Scheduling/staffing

### LASTI schedule tied to LSC Suspension development plans:

| LSC Suspension Group                                                                       | Epoch          | LASTI                                                      |
|--------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------|
| Top-level Requirements review                                                              | 4th qtr '98    | start envelope installation                                |
| Conceptual design; Design summit                                                           | 1st qtr '99    | complete envelope installation; start pier installation    |
| Internal requirements, component research, configuration trades; Preliminary Design Review | 2nd qtr<br>'99 | start seismic isolation installation; start prototype fab  |
|                                                                                            | 4th qtr '99    | pre-isolation functional;<br>start partial prototype tests |
| Component Prototypes; Test Review                                                          | 3rd qtr '00    | add isolation/infrastructure as needed for system tests    |
| Fabrication of Engineering Prototypes                                                      | 1st qtr '01    | install engineering prototypes                             |
| System tests; Final Design Review                                                          | 3rd qtr '02    | start to plan for LIGO III                                 |

#### **Staff**

- Joe Giaime (50%), Andrea Stolte (grad), post-doc (search), dhs
- Mike Zucker, tech help on vacuum envelope design/install/shakedown

# State of the Art







