LIGO Data Analysis System (LDAS)

A. Lazzarini

LDAS Software

J.K. Blackburn

LIGO WAN

A. Lazzarini

LSC Meeting LIGO Hanford Observatory (LHO) 12 - 14 March 1998

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIGO-G980124-00-E

/home/lazz/Presentations/LSC/LSC_980312.fm5

- 1. Design Requirements Review completed 12/97
 - >> Provide on-line analysis at the observatories; data distribution from on-line cache -- diagnostics.
 - >> Process and reduce the raw LIGO datasets at the off-line center to prepare the data for archival storage and retrieval.
 - >> Provide computational and storage resources for off-line analysis using the archived data
 - >> Provide a flexible design which can be reconfigured to reflect new analysis or computational requirements as they evolve.
 - Provide access to LIGO data from all LIGO Laboratory sites and also from member institutions of the LIGO Scientific Collaboration for the LIGO I search.

2

2. Testing & prototyping

- Target 40m prototype -- identify & confront practical issues
- >> Collaborative involvement
 - CACR/Caltech, Michigan, Northwestern, Wisconsin
- >> Data distribution
 - Hardware: RAID/UNIX Server configuration
 - Software: Web-based data retrieval/conditioning/distribution/ display
 - Data Model definition
 - Size: what is needed?
 - Media: how soon?
 - Cache: how often?
- >> Compute server
 - Hardware: PC/Linux (Alpha/Linux?) Fibrechannel/Ethernet cluster -- BEOWULF
 - 10+ GFLOPS @ observatories (on-line);
 - 3 x observatory @ Caltech (off-line);
 - Performance:cost ~ 5X 10X shared memory parallel processors;
 - Software:
 - MPI distributed processing

CALIFORNIA INSTITUTE OF TECHNOLOGY

- Benchmark of inspiral searches optimal Wiener filter
- Evolution of GRASP elements to LIGO filters for LDAS

3. Data type definition

- >> Frame format for raw data (time series)
 - coordinated effort with VIRGO
 - structured/highly generalized/extensible
 - API in C/C++ being developed for I/O
 - interface to MATLAB available, being tested
- >> Lightweight (LW) format
 - defined implementation
 - SDF (ASCII) standard developed/used at CACR (J. Salmon author)
 - netCDF (binary) implementation -- commercial standard
 - suitable for single/few channels; spectra; reduced datasets, ...
 - implementable/manipulable by individual researchers less comprehensive, easier to code on one's own.
 - interfaces to MATLAB/IDL/...

3. Data type definition (cont.)

- >> Metadata -- "Data about data"
 - developed (preliminary, non-comprehensive) list
 - machine state vector/configuration/operational modes
 - calibrations/triggers/vetoes/...
 - operator logs -- electronic notebook
 - non-LIGO (collateral) data/links -- seismic reports; weather EM storm activities; other astrophysics - GRBs/v
 - heterogeneous: series, vectors, files, text, binary, images,...
 - will likely be distributed across LIGO Laboratory/LSC
 - still need to define environment -- cost.
- >> LIGO Event Data
 - pending definition
 - archive of "events" discovered in LIGO data -- anomalies & true
 - time series excerpts -- raw data, striped across many channels for brief epochs containing the events

- collateral data -- environmental, other GW detectors, other astrophysical observatories...
- parametric descriptions
- templates, algorithms,...

4. Software system design

Data analysis -- scope: LSC + LIGO Laboratory

- >> Data analysis flows sizing of requirements:
- >> Data analysis software prototyping GRASP code
- >> Data usage model

Data management -- scope: LIGO Laboratory

- >> Design and definition of architecture & components:
- >> Data distribution & access
 - Storage systems & archives
 - Data transmission & downloading
- >> Metadata creation/archival/retrieval
- >> API design/development
 - Data ingestion (incorporation of new/recent data)
 - LDAS command language
 - Interprocess communications -- LDAS distributed data analysis manager
 - Disk cache management
 - Access to data libraries Frame/LW/Metadata/Event
 - Filtering/MPI/Conditioning

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Control/Reporting

LIGO Data Analysis System (LDAS) Design

Two LDAS components

- >> Observatory LDAS (on-line)
 - Two systems, one for Hanford, and one for Livingston
 - Hanford system handles 2 interferometers
- >> Caltech LDAS (off-line)
 - Collaborative arrangement with CACR
 - Dedicated LIGO hardware within CACR on scale of observatory systems
 - Database archive
 - Strategic use of other CACR facilities as available
 - Transparent access for off-line analysis of archived data
 - LIGO Laboratory
 - LIGO Scientific Collaboration
- Wide area network (WAN) to enable inter-site communications
 - >> University scientific and engineering support to Observatories
 - >> Access to archive database

CALIFORNIA INSTITUTE OF TECHNOLOGY

- >> Access to real-time data from observatories
- >> Inter-observatory event sharing

LIGO Data Analysis System (LDAS) On-line Functions

LIGO Data Analysis System (LDAS) Off-Line Functions

LIGO Data Analysis System On-line architecture

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LIGO Data Analysis System Off-line Architecture

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LIGO Data Analysis System To-Do List

Design & definition

- >> Data -- channel lists/frame contents/types of frames/...
- >> Metadata -- contents/environment
- >> Algorithms -- hierarchical searches/periodic searches/f-t processing/wavelets/...
- >> Events -- definition
- >> LDAS architecture -- complete design/definition

Development & prototyping

- >> LDAS command language syntax
- Scripting language implementation -- interprocess control & communication
- >> Data distribution -- 40m implementation
- >> Compute server -- BEOWULF cluster; integrate ~8 node cluster
- >> Algorithms -- same as above

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

- >> Benchmarks -- algorithms; data distribution;...
- >> Visualization tools
 - Applets
 - Plug-ins
 - AP Interfaces to commercial/extant products
 - Matlab, IDL, Triana(GEO), ...
- >> Data transmission -- quantify WAN performance/ limitations

LIGO Wide Area Network

Plan

WAN/LAN Connectivity among LIGO Laboratory Sites

Site	Livingston, LA	Hanford, WA	MIT	Caltech
Caltech	vBNS(OC3)	ESnet (4 X T1) <-> vBNS(OC3)	vBNS(OC3)	OC3/ATM 100BT
MIT	vBNS(OC3)	MIT<->Caltech<->Hanford	100BT OC3/ATM(?)	
		ESnet (4 X T1) <-> vBNS(OC3)		
Hanford, WA	ESnet (4 X T1) <-> vBNS(OC3)	OC3/ATM 100BT		J
Livingston, LA	OC3/ATM 100BT			

13

LIGO Wide Area Network

Status

- LIGO proposed & drafted an MOU between NSF/DOE to provide access to ESnet at Hanford
 - >> Final MOU complete: awaiting signatures at NSF, DOE
 - Proceeding to implement initial (T1) capability; requested up to 4 x T1 BW (cost is an issue).
 - >> SOW/PO with PNNL & Lockheed-Martin to procure switching & routing equipment almost complete
 - Cross-over between ESnet and vBNS takes place at CACR/Caltech-HEP
 - >> MIT may be added later as a separate action
- Exploring with PNNL (EMSL) and WSU/ Richland possibility of a consortium to propose to NSF a direct vBNS hookup in Tri-Cities area
 - >> Follows model in place at Livingston
 - >> EMSL needs better connectivity to Seattle, Caltech, SDSC

14

LIGO Wide Area Network

Status

• T1 link to Livingston Observatory in place

- >> LSU provides gateway service
- >> Recent proposal by LSU to NSF for vBNS connection includes LIGO access at Livingston
- >> FO link from observatory to campus via Bell South switch near Livingston

LIGO Hanford WAN

Link to ESnet

LIGO-G980124-00-E

LIGO

LDAS Development Timeline

 Highest priority: staged implementation of online systems to support detector commissioning:

Detector Milestone:	Date	LDAS Need
>> Data Acquisition System, 2km:	9/98	Min. data dist.
>> PSL/Input Optics	2/99	"
>> Vertex Michelson, first light	7/99	Full data dist.
>> 2km operational	6/00	On-line system

- 4 km interferometers staggered in time by 3 & 6 mos.
- Staged installation at CACR of off-line system in period 6/99 12/01

