LIGO Data Analysis and Simulation

Overview and Status

Albert Lazzarini

NSF Fall Review 28 October 1998

LIGO Hanford Observatory Hanford, WA

Outline

Datastream description

- >> Datastream characteristics
- >> Data analysis challenges

Data types & data products

- >> Framed data
- >> Lightweight format
- >> Metadata
- >> Events

• LIGO Data Analysis System (LDAS)

- >> Requirements
- >> Software
- >> Databases
- >> Hardware
- >> WAN

Simulation environment

>> End-to-End (E2E)

LIGO Datastream Characteristics

- LIGO datastream consists of continuous broadband signals
 - Audio frequency (16384 samples/s, 16 bit) digitization & acquisition of key channels (lower sample rates for ancillary channels)
 - >> LIGO detection band: 40 Hz < f < 3 kHz
- No directionality
 - >> Require signal processing to deduce source locations
 - modulation of CW sources due to Earth motion
 - Time delay between coincident responses along 3000km baseline

LIGO Datastream Characteristics (cont.)

- LIGO signals expected to be at limits of detectability
 - Instantaneous SNR ~ 10⁻⁴(strong chirp; pulsars) (weakest EM pulsars: SNR ~ 5 x 10⁻³, require T_{int}~ hours to detect)
 - >> Need to integrate over entire (most) of the waveform to generate detectable SNRs (~ 10).
 - >> Requires coherent detection & signal processing
 - >> False alarms: validation of an "event" requires ability to preclude all other (terrestrial) interpretations -- vetoes [Ref. LIGO Sources charts, A1,2 at end of talk]

• LIGO acquisition data rates are high

- Many parallel channels of instrumentation to monitor instrument behavior, environment, anthropogenic disturbances, ...
- >> GW channel: 100kB/s for three interferometers (IFOs)
 -- 16384 samples/s @ 2bytes = 32kB/s per IFO
- >> Data acquisition is ~ 10 MB/s for 3 IFOs
 - 573 channels per IFO (only 1 is GW channel)
 - 610 channels on physical environment monitors (PEM) (at each site)
- Science (astrophysics) channels constitute as little as ~ [100 kB/s]/[10MB/s] ~ 1%

LIGO Data Analysis Challenges

- Techniques are those for detecting the possible presence of weak signals embedded in noise (radar, sonar, pulsar searches, ...):
 - >> Continuous processing of interferometer output
 - >> Parallelization
 - >> Frequency-domain spectral analysis (spectral crosscorrelation)
 - Optimal matched filtering; [1-3] x 10⁴ physics-based templates; 90+% of CPU time spent of Fourier transformations.
 - Frequency-time analyses (spectrograms, Wigner-Ville distributions, etc.); pattern/ridge detection (2-D)
 - >> Wavelet analysis; novelty detection; phenomenology
 - >> Kalman filtering to remove instrumental signatures -- data conditioning

[Ref. LIGO Data Flow chart, A3 at end of talk]

Data archival & Distribution

- >> volume reduction by 10X => reduction/veto algorithms
- >> access to archived data => database engine/network tools
- >> 100% processing => computational power
 - LIGO inspiral search requires ~300 kFLOP/Byte of data
 - This is higher than typical processing requirements
 - radar/sonar ~ 100 FLOP/Byte (many fewer templates, shorter durations!)
 - directed EM pulsar searches ~ 1 kFLOP/Byte
 - Compare: blind EM pulsar searches ~ 100 -1000 kFLOP/Byte

LIGO Data Products/Types

- The full [raw] detector datastream will be acquired and recorded as data frames.
 - >> Format for data frames has been unified with VIRGO in anticipation of being able to share software (now) and data (at some future date)
 - Other major interferometer projects have adopted standard
 - GEO
 - TAMA

• Frame Class Library (C++ implementation)

- >> Implements Frame Format Specification
- >> Progress to date:
 - v1.01 released 98.10.16
 - Documentation available on web (http://docuserv.ligo.caltech.edu/~wmajid/fcl/index.html):
 - HowTo's, Sources
 - Compatible and interfaced with CERN's ROOT package
 - Fcl to LigoLW(XML) translation module completed
- >> Planned work (next quarter):
 - Implement interface to Matlab
 - Provide additional UNIX shell tools
 - Develop Tcl level Frame API

LIGO Datastream Frame Design

[Ref. LIGO Frame Format chart, B1 at end of talk]

Frame is (structured) self-contained snapshot of data for a period of time

- GW channel & ancillary IFO channels
- Environmental monitoring (veto) channels
- Facilities/Vacuum health & status
- Hierarchical organization of data reflects IFO subsystems for more efficient veto utilization
- Full datastream could be ~ 300TB/yr

- Plan to reduce (and compress) to ~ 50 TB/yr

Lightweight Data Format

- Reduced, processed, or otherwise non-frame data will be recorded in a LIGO-standard lightweight data format (LigoLW)
 - >> Metadata (data about data: frame catalog indices, operator logs, textual data, etc.)
 - >> Event data [event specification still TBD]
 - Spectra, time series snippets, intermediate analyses performed with commercial/public-domain tools (MATLAB, Mathematica, ROOT, Triana, ...)
 - >> LigoLW is based on XML to anticipate web-distribution, network distributed processing
 - Metadata: tags, keywords, elements, attributes
 - Data: encoded binary; ASCII; raw binary(?); other objects; ...

Need a lightweight format to complement frames:

- >> interprocess data communications (@ socket level)
- >> easily readable/parsable format for end users
 - quick-look products, single channels
 - spectra
 - plots
 - events
 - metadata
- >> estimated data volume: ~600 GB/yr reduced data;

~135 MB/yr metadata [Ref. LIGO Reduced & Meta Data Estimate charts, C1,2 at end of talk]

Lightweight Data Format

• Status:

- >> Specification released
 - LIGO-defined data objects with defaults enable simple utilization [http://www.cacr.caltech.edu/ligo/ligolw]
 - tables (ntuplets: points in a hyperspace)
 - arrays (indexed elements of data)
 - matrix
 - vector, time-series, power-spectrum, ...
- >> First implementations
 - Directed pulsar search results from 40m dataset summer student project
 - Socket-to-socket and Tcl-C++ LDAS interprocess communications prototyped
- Parser built to extract metadata from frames and to create LigoLW metadata catalog
- >> Revise specification over next 3 months as experience dictates

[Ref. LigoLW XML example, D1,2 at end of talk]

LigoLW Parsed LW data object

/home/lazz/Presentations/NSF_Reviews/NSF_98_10/NSF_98_10_v2.fm5

Frame - LigoLW Conversion Parsed frame object [XML <-> Fcl]

LIGO Data Analysis System

EXPLOIT THE GW CHANNEL TO THE MAXIMUM EXTENT POSSIBLE TO DETECT GRAVITATIONAL WAVES FROM ASTROPHYSICAL PROCESSES

- Provide on-line analysis capability at the observatories; data distribution from on-line data cache -- astrophysics, diagnostics.
- >> Process and reduce the raw LIGO datasets at the off-line center to prepare the data for archival storage and retrieval.
- >> Provide computational and storage resources for off-line analysis using the archived data
- >> Provide a flexible design which can be reconfigured to reflect new analysis or computational requirements as they evolve.
- Provide access to LIGO data from all LIGO Laboratory sites and also from member institutions of the LIGO Scientific Collaboration for the LIGO I search.

LDAS Development Timeline

• Highest priority: staged implementation of online systems to support detector testing:

Detector Milestone:	Date	LDAS Need
PSL/Input Optics	4/99	Min. data dist.
Vertex Michelson, "first light"	9/99	Full data dist.
2km operational	8/00	On-line system

 Staged installation at CACR of off-line system in period 9/99 - 12/01

LDAS Summary

- Software design complete -- design requirements review held 12/97
- Software components specification for Application Programmer Interfaces (APIs) complete
- Work under way to develop Generic (template) API, from which specific APIs may be extended
- Prototyping activities under way in several important areas:
 - >> Software module development
 - >> Data distribution using web tools
 - >> Interprocess communications, data transmission
 - >> Data flow for (directed) pulsar searches
- Hardware configuration definition complete
 - >> On-line systems at observatories
 - >> Off-line system at data repository (CACR/Caltech)
 - >> Wide area network for inter-site connectivity

Data Analysis System for LIGO I Software Design

SOFTWARE DESIGN MUST SUPPORT A DISTRIBUTED NETWORK-BASED COMPUTING ENVIRONMENT

• Software Specific Requirements:

- >> Portability:
 - Portable Operating System Interface compliant (POSIX) on Unix Platforms
 - ANSI Languages Compliant Code (C++ Standard, 11/14/97! - http://www.research.att.com/~bs/ iso_release.html)
- >> Extensible:
 - Object Oriented Programming Techniques in C++
 - Modular, Reusable Code Units elsewhere
 - Distributed Computing based on MPI
- >> Maintainability:
 - Source Code Management using Concurrent Version System (CVS configured in client-server mode using CVSH)
 - Expressly Coded in Object Oriented C++ Language whenever possible
 - Keep It Simple Style (KISS) Guidelines for Coding Constructs
- >> Flexibility:
 - Object Oriented Design (C++)
 - Modular Libraries (C, C++, others: e.g Fortran...)
 - Centralized Server-Client(s) paradigm for program control
 - Remaining infrastructure based on Standard Libraries (STL)

Data Analysis System for LIGO I Software Design

LDAS SOFTWARE DESIGN FEATURES -- LAYERED DESIGN

Languages:

- ANSI C++
- ANSI C for wrappers to C, FORTRAN and TCL
- TCL (Tool Control Language) for control of resources.processes
- TK for Graphical User Interfaces
- Tclets (TCL/TK plug-ins) for web browser connectivity
- TBD database for data/metadata

<u>Communications</u>:

- TCL layer sockets to communicate commands and messages between processes
- C++ socket class library to communicate data between processes
- MPI (Message Passing Interface) for numerically intense parallel [scientific] computing.

Libraries:

 Shared C++ Class Libraries, numerical libraries and I/O libraries on supporting platforms for efficient use of hardware resources

[Ref. LDAS Software Design chart, E1 at end of talk]

Data Analysis System for LIGO I Software Design

- >> Application Programmer Interfaces (APIs)
 - 1. Frame Data
 - Manipulates framed data; I/O; channel extraction/ insertion; concatenation;
 - 2. Metadata API
 - Interacts with the DB environment; data entry/extraction; data searches/sorts/queries.
 - 3. Event Data API
 - Updates event lists; classifies events; searches on events;
 - 4. LigoLW Data
 - Frame->LigoLW translator; data object extraction/ insertion.
 - 5. Data Conditioning API
 - Data pre-processing; calibration; filtering; regression; computation either done using filter kernels or within this API (depends on complexity);
 - 6. Event Mànagement API
 - Receives output from the MPI based filter kernels; reports events; displays; ...
 - 7. Control & Monitoring API
 - LDAS configuration, monitoring, exception handling, resource allocation; user interaction;
 - 8. Disk Cache API
 - Stages data from archive/large disk farm to intermediate cache for efficient retrieval; queues data requests.
 - 9. Data Ingestion API
 - Incorporates new data into archive; filter; reduce; compress.

LIGO Data Analysis System Software Design

Data Analysis System for LIGO I Software Development - Status

• GenericAPI [15 October status]:

- >> Basis for all other APIs. Initial investment in prototyping and design will allow rapid diversification into specific APIs by extension of the generic class.
- >> 90% complete

The first APIs to be developed will support Detector Installation milestones for the first interferometer

• FrameAPI [15 October status]:

- >> Fcl I/O Library: complete
- >> Fcl Specification: complete
- >> FrameAPI 5% complete, expect mid-Nov completion date

• ManagerAPI:

>> FrameAPI 5% complete, expect mid-late Nov completion date

• DataConditioningAPI:

- >> DataCondAPI 5% complete, expect mid-late Dec completion date
- Preliminary Design Review:
 - >> Develop prototype UserAPI by end of Dec.
 - >> Hold Preliminary Design Review Late December/Early January

Database Management Systems DBMS

- LIGO has four data types that need to be managed:
 - >> raw, framed data -- HPSS or equivalent network file system
 - ightweight data -- HPSS or database management system (DBMS)
 - >> events (as they are generated, cataloged) -- DBMS
 - >> metadata -- DBMS
 - catalogs & indices
 - operator logs
 - trends and high-level descriptions of detector performance
- Still in process of deciding DBMS for LIGO
 - Recent workshop (22,23 October) with representatives from CERN, SDSC, CACR, Astronomy(IPAC/CIT) to review LIGO needs, compare with other programs from HEP, Astronomy
 - >> Choices being considered:
 - relational [deemed sufficient for LIGO needs]
 - ORACLE (CIT license for campus MIS)
 - PostgresSQL (INFORMIX precursor; public domain 'free')
 - miniSQL (similar to above)
 - object-oriented DBMS
 - Objectivity
 - >> Issues: Buy-in costs; operational costs; upgrades if we start too low; metadata only vs (metadata+data); ...
 - >> Plan to have a decision by PDR

Database Management Systems DBMS prototyping activities

- Ongoing BT Bakeout activity is generating 4 disparate DBs
 - temperature, current, pressure data along BT
 - Microsoft ACCESS DB
 - residual gas data from RGA
 - Proprietary SW from RGA vendor: spreadsheet compatible
 - partial pressure vs time scans
 - mass spectra
 - calibrations
 - weather station/environmental data: proprietary SW with station vendor: spreadsheet compatible
 - operator logs
 - text (ASCII) files

• Data arrive weekly as (~80MB files)

- >> 700 channels x 10000 rows
- >> data are ingested (transformed) and metadata produced for indexing into archive -- 3 hour ingestion process on NT server @ CACR
- Need to make data available at future dates for intercomparisons as bakeout progresses
 - >> DB will eventually grow to ~ 2GB, indexed by timestamp
 - >> Metadata+data co-located in DB

Database Management Systems DBMS prototyping activities

- Developed a GUI using the tools being developed for LDAS to allow web-based (via browser-plus-plugins) access to DBs
- Data server independent of GUI
- Communications through query standard protocol
- Present: temperature data now available
- Next:
 - remaining datasets -- RGA data, weather data, operator logs
 - >> return LigoLW objects [XML]

Database distribution tools BT Bakeout Data Distribution Prototype

23

LIGO Data Analysis System

On-line architecture [Ref. LDAS Off-line Hardware chart, F1, Hardware Spec. charts, F2-5 at end of talk]

Hardware Status

- Network based data transmission at LIGO BW demonstrated
 - ATM<->ATM is adequate (6 15 MB/s; depends on platform, TCP/IP vs UDP).
 - 100BT<->100BT (needed for MPI, Beowulf cluster inter-node communications) is acceptable (>4.5 MB/s)
 - HIPPI<->HIPPI (with supercomputer mainframes) is superior (>30MB/s)
- >> Beowulf and MPI has been implemented on LIGOscalable data flows for inspiral detection
 - Joint effort with CACR (Paragon) & Univ. Wisc. (PC/linux)
 - 8 node/16CPU integrated cluster ordered, due end October.
- >> Directed pulsar search prototype code has been developed using 40m data and CACR machines.
- Data archival technology choice deferred as late as possible (2001) letting CACR lead way
 - Exploring optical tape technology replacement for magnetic media in HPSS (LOTS)
 - 1TB/cassette (same form factor as present IBM robot cassettes)
 - ~\$250/cassette (\$0.25/GB)
 - Optical heads replace magnetic tape heads in same cabinetry.

LIGO Wide Area Network

WAN Topology

WAN/LAN Connectivity among LIGO Laboratory Sites

Site	Livingston, LA	Hanford, WA	MIT	Caltech
Caltech	vBNS(OC3)	ESnet (4 X T1) <-> vBNS(OC3)	vBNS(OC3)	OC3/ATM 100BT
		MIT<->Caltech<->Hanford	400DT	
MIT	vBNS(OC3)	ESnet (4 X T1) <-> vBNS(OC3)	OC3/ATM(?)	
Hanford, WA	ESnet (4 X T1) <-> vBNS(OC3)	OC3/ATM 100BT		
Livingston, LA	OC3/ATM 100BT			

LIGO Wide Area Network

Status

- LIGO proposed & drafted an MOU between NSF/DOE to provide access to ESnet at Hanford
- Authorized as of October 1998
- Implementing initial (T1) capability; requested up to 4 x T1 BW (cost is an issue).
 - >> Routing: LHO-PNNL-SDSC-CACR-LIGO/Caltech
 - >> In Progress:
 - DNS in process of being turned over to Caltech ligo-wa.caltech.edu
 - T1 connectivity tested and working
 - Move workstations over to new IP addresses
 - Setup E-mail and Web services
 - >> Planned:
 - MOU covers 4 T1 connections -- may take advantage of contingency.
 - WSU/Pullman (~ 100km NE) awarded an NSF grant to establish a vBNS hook-up
 - UW/Seattle (~350 km W) has vBNS at present
 - PNNL is investigating future high speed connections via Seattle -- LIGO will participate if costs are acceptable.
- MIT may be added later as a separate addendum to MOU

[Ref. LDAS WAN Toplogy.charts, G1,2 at end of talk]

LIGO Wide Area Network

Status

• T1 link to Livingston Observatory is in place

- LSU awarded vBNS access in latest round of NSF awards
 -- includes LIGO access at Livingston
- >> LSU provides gateway service
 - Caltech providing DNS services ligo-la.caltech.edu
 - E-mail and Web services in process of being setup (last week)
- >> Planned:
 - Finalize hardware logistics with LSC
 - Install main server
 - Establish modem services and contingency plan
 - Establish OC3 Connectivity in the next 1-2 years depending on fiber availability (present connection is Cu)
 - LIGO will have to install FO lines from Livingston to the Observatory
 - Upgrade the routing equipment to accommodate new connectivity

End-to-End (e2e) Simulation

- Time domain simulation of LIGO interferometer output(s)
- Object Oriented structure using C++
 - >> Modular and expandable
 - >> Support for plug-ins using FORTRAN/C/C++

• No low level language (i.e., C++) needed to use

- >> Easy to use high level language
- >> GUI

• "Toolbox" Primitives

- >> mirror reflection, transmission, tilt, ...
- >> field propagator time delay, Guoy phase, ...
- >> modulator and demodulator arbitrary number of sidebands, ...
- >> digital filter models servos, electronics, linearized response, ...
- >> mechanical components
 - test mass, beam, clamp...

Support to Detector Installation e2e simulation

Plan

- >> When the vertex Michelson at Hanford is available, E2E will provide the minimum set of subsystems so that semiquantitative comparison of performance can be made.
- Construct the simulation models to map into the real hardware
 - >> Implement phenomenological models for those parts which cannot be simulated using primitives.
 - >> PSL 4/99
 - >> IOO 7/99 [with UFI]
 - >> SUS/SEI 7/99
- Collaborative participation [e.g., U. Fl.] to develop LIGO physics modules using available toolbox primitives
- Simulation team will participate in shakedown of hardware alongside detector subsystem teams

Status Overview e2e simulation

Primitive tools completed

Example e2e simulation

Status e2e simulation

• Single mode time domain model

- >> Improved capabilities
- >> Validation alost completed

Modal model in time domain

- >> Field expanded by finite Hermite-Gaussian modes
 - Mirror tilt and displacement
 - Mode mismatching
 - Thermal lensing
- >> Implementation in progress
 - validation for FP case done
- Primitives (toolbox components) complete except for mechanical subsystems

Status e2e simulation

Mechanics module development

- Any simple linearized model can be built using Digital Filter
- >> A more detailed simulation needs physical model implementation
- >> S. Mohanty Penn. State Univ. (visitor 1997/1998)
 - Formulation of dynamics of a mechanical structure
 - Self-consistent inclusion of thermal noise sources
 - Explicit formula for a single pendulum derived
- >> G. Cella Pisa Univ. (formerly with VIRGO)
 - Author of simulation program of mechanics model for VIRGO
 - C++ based, modular and expandable
 - Similar syntax as e2e -- easily adapted to e2e environment

E2E incorporation of mechanics models

- Integrate framework of Cella into e2e framework
- Include dynamics and thermal noise formulation developed by Mohanty as appropriate
- Use the same GUI as LIGO e2e
- >> Short term implementation strategy
 - Implement single pendulum model by Mohanty
 - Validate dynamics of model
 - Use for simulating a simple SEI model
 - Validate modular model of Cella

Initial LIGO Sources - A1

		Initial LIGO	Data Analysis Requirements		
	Sources	Performance Estimate	CPU	Storage	Comments
Burst Signals $\Delta T < 1s$	Supernovae & Accretion-induced collapse of white dwarfs	$\Re_0 \sim 2 - 3/$ yr @ 15 Mpc If sufficiently asymmet- ric; however, ΔE_{GW} expected to be signifi- cantly less than $10^{-7} M_{solar}$	Minimal	Minimal Need PEM/houskeep- ing data for veto	 On-line analysis desirable for correlation with other astrophysics: EW visible/radio/γ V Gravity VIRGO/GEO Resonant bars
	BH/BH Collisions	ℜ ₀ ~ 1∕ yr(?) @ 500 Mpc;			 Waveforms unknown 2x/3x IFO correlation of events
.veform < 1000s	NS/NS Inspirals	$\Re_0 \sim 3/ \text{ yr } (?)$ @ 23 Mpc; for $M_{NS} \sim M_{solar}$ $\Delta T \sim 36 \times T_{inspiral}$ = 360s	~ 7.2 GFLOPS (WA)	Templates/Data ~5 GB /~24 MB	 On-line analysis appears feasible down to ~ 1 M_{solar} 1x/2x/3x correlations feasible depending on SNR. Coalescence event may
Chirped Wa $10s < \Delta T$	BH/BH & NS/BH Inspirals	$\Re_0 \sim 1/\text{ yr}$ @ 150 Mpc; for $M_{BH} \sim 3M_{solar}$ $\Delta T \sim 36 \text{ x } T_{inspiral}$ = 60 s	~ 330 MFLOPS (WA)	~ 41 MB /~4 MB	 generate correlated (EW) signals as above. PEM/housekeeping needed for vetoing Template matching (Wiener filtering) or wavelet analysis in f-t domain.

Table 1: Initial LIGO Sources and Estimated Analysis Capability Requirements

Initial LIGO Sources - A2

	_	Initial LIGO	Data Analysis Requirements			
	Sources	Performance Estimate	CPU	Storage	Comments	
$\begin{array}{c} \text{Periodic} \\ \text{Signal} \\ \Delta T \sim 10^{6} \text{ - } 10^{7} \text{ s} \end{array}$	Pulsars with mass asymmetry $\frac{S}{N} \approx 1.5 \left(\frac{\epsilon}{10^{-6}}\right) \left(\frac{10 \text{kpc}}{\text{r}}\right) \left(\frac{1 \text{ms}}{\text{P}}\right)^{\frac{5}{2}} \sqrt{\frac{T_{\text{int}}}{1 \text{ month}}}$ $\tau_{\text{spindown}} \sim 830 \text{ yr} \left(\frac{f_{\text{rot}}}{1 \text{ kHz}}\right)^{-4} \left(\frac{\epsilon}{10^{-6}}\right)^{-2}$	$\frac{S}{N} \approx 8$ $\epsilon = 10^{-5}$ r=10 kpc P=1 ms $T_{int} = 10^{7} s$	Only directed searches fea- sible for nearby sources	10 GB for 10 ⁶ s (GW waveform)	 Off-line analysis Detection less sensitive to non-Gaussian noise; more sensitive to cali- bration drifts. Detection techniques as for pulsars narrow line sources with modulated frequency. Correlations among interferometers may be performed (if needed) after detection. A 4π sr. search requires decomposition of the sky into a very large number of pixels. Exact number is sensitive details of stacking. 	
$\begin{array}{c} Broadband\\ Signals\\ \Delta T \sim 10^{6} \ 10^{7} \text{s} \end{array}$	Stochastic Background $\zeta \equiv \frac{\Omega_g}{\Omega_0}$	$\zeta \ge 3 \times 10^{-6}$ $40 \text{Hz} < f < 300 \text{Hz}$ $T_{\text{int}} = 10^{7} \text{sec}$	Minimal requirements analysis may done on sin- gle workstations; study of systematic corre- lated noise effects may require significantly more processing.		 Off-line analysis Requires multiple inter- ferometers to be corre- lated 	

Table 2: Initial LIGO Sources and Estimated Analysis Capability Requirements

LIGO Data Flow (Model) -- A3

Frame Format Implementation - B1 Frame Composition

* Dictionary structure behavior is unique in that:

1. It preceeds header for first frame of file;

2. Dictionary is built up incrementally as addititional structures are incorporated into frame

3. It is valid for entire file (persistent)

	LDAS Reduced Data and Metadata - C1							
			Basis	of size estimation	ate			
SOURCE	Data	Data Types	#Parameters #Bins #Pixels #Samples	#Bytes/Unit	#/Hr	LW Data Volume/Year [GB]	MetaData Volume/Year [MB]	
LIGO - Interferometer	Machine state vector	String[XML]	2048	1	10	0.0	90	
Interferometer	state vector	Dinomy	120	1	10	0.01	0.0	
	On anotan La an	Dillary	128		10	0.01	0.0	
	Operator Logs	Strings	20480		20	0.0	180	
		Graphics[JPEG]	32768		10	2.9	89.8	
	Diagnostics	Video	4096	<u>l</u>	60	2.2	538.6	
		Spectra/Fast Scopes	2048	2	20	0.7	179.5	
		Calibrations - Spectra	2048	4	10	0.7	89.8	
		Calibrations - Coefficients	4096	1	10	0.4	89.8	
		Calibrations - Matrices	2048	4	10	0.7	89.8	
		Triggers/Discrete Logic	128	2	60	0.1	538.6	
	Frame Data Catalog	String[XML]	1024	1	3600	0.0	64630.0	
LIGO - Environment [PEM]	Facilities state vector	String[XML]	512	1	10	0.0	134.6	
	Seismometers	Spectra	1024	2	60	1.1	538.6	
	Magnetometers	Spectra	1024	2	60	1.1	538.6	
	Tiltmeters	Time Series@0.1 Hz Stored 1/Hr	16	1	360	0.1	9.0	
	Acoustic Sensors	Spectra	8192	2	60	8.6	538.6	
	Diagnostics - Calibrations	Matrices/coefficients	2048	1	0.41666667	0.01	3.7	
	Diagnostics - Triggers	String[XML]: Model parameters	1024	1	0.41666667	0.004	7.5	
		Discrete logic	128	2	60	0.1	538.6	

LDAS Reduced Data and Metadata - C2								
	Basis of size estimate							
SOURCE	Data	Data Types	#Parameter #Bins #Pixels #Samples	s #Bytes/Unit	: #/Hr	LW Data Volume/Year [GB]	MetaData rVolume/Year [MB]	
Non-LIGO	Seismic	String[XML]	512	1	10	0.0	89.8	
	Electromagnetic storms	String[XML]	256	1	100	0.2	897.6	
	Astrophysics - GRBs	String[XML]	256	1	0.04	0.0	0.4	
	Astrophysics - neutrinos	String[XML]	256	1	0.00	0.0	0.0	
	Astrophysics - visible	String[XML]	256	1	0.00011408	0.0	0.0	
	Astrophysics - gravitational	String[XML]	2048	1	10	0.2	89.8	
LDAS Events	s Event Lists	String[XML]	2048	1	3600	64.6	32315.0	
		Images/Graphics[GIF]	8192	2	3600	517.0	32315.0	
			Т	otal Database [GB]	== >	600.8	134.5	

LigoLW - D1 Example -- Metadata

<?xml version="1.0"?> <!DOCTYPE LIGO_LW SYSTEM "Ligolw.dtd"> <LIGO LW> <!-- First the Metadata ------<Metadata> <Creator>Tom Prince</Creator> <Creator>Roy Williams</Creator> <Date>28 Sept 98</Date> <Comment>LIGO power spectrum of 32 magnetometers at 64 frequencies</Comment> <Key> <Name>LIGOType</Name> <Comment>The Ligo data type is defined here...</Comment> <Value>Power Spectrum</Value> </Key> <Key> <Name>StartDate</Name> <Comment>Can't remember exactly but this date is close!</Comment> <Value>03/21/97</Value> </Key> <Key> <Name>FreqSamp</Name> <Unit>Hz</Unit> <Comment>This is the sampling frequency</Comment> <Value>1024</Value> </Kev> </Metadata>

LigoLW - D2 Example -- Data

LIGO Data Analysis System Software Design - E1

APIs "TWO-LEVEL" SOCKET COMMUNICATIONS

Yellow boxes below indicate option to use SCSI

<u>API</u>	FW	МРІ	DC	EM	СМ	FD	MD	ED	SDF	FK	сом	DI	DCS	MAN	RF
FW		mpi								inherit					
MPI	mpi	mpi	socket	socket	socket					inherit					
DC		socket			socket	socket	socket		socket					socket	socket
EM		socket		socket	socket			socket	socket					socket	socket
СМ		socket	socket	socket		socket	socket	socket	socket					socket	socket
FD			socket		socket				socket				socket	socket	
MD			socket		socket		socket	socket	socket				socket	socket	
ED				socket	socket		socket	socket	socket					socket	
SDF			socket	socket	socket	socket	socket	socket					socket	socket	socket
FK	inherit	inherit													
сом														socket	
DI													socket		
DCS						socket	socket		socket			socket		socket	
MAN			socket		socket		socket		socket						
RF			socket	socket	socket				socket					socket	

LIGO Data Analysis System Off-line Architecture - F1

• Provides distributed computing and archival across the four laboratory sites

Hanford: Operations for 2 interferometers

Component	Specification	Cost (K\$)
Data distribution system, On-line		
Servers	6ea @ 600MHz	
Disk system	RAID, Ultrawide/fast SCSI 4 ports; shared w/CDS	
	500GB	
Metadata storage system	50GB, Ultrawide/fast SCSI	
Computational engines, On-line		
Signal conditioning, regression engines	4ea @ 600MHz	
Compute server (BEOWULF system, 2 X 10 GFLOPS)	64 nodes @ 600MHz ea, local disk space + RAM	
Control & monitoring	2ea @ 600MHz	
Networking		
Networking switches/routers)	100BT/OC3(ATM)	
ESnet access, hardware required	4 x T1	
Off-line analysis		
Off-line analysis stations	10ea @ 600MHz	
SW & Peripherals	Licenses/printers/plotters/ tape drives/scanners/local SCSI disk/	
Hanford, total estimated		\$925

Livingston: Operations for 1 interferometer

Component	Specification	Cost (K\$)
Data distribution system, On-line		
Servers	3ea @ 600MHz	
Disk system	RAID, Ultrawide/fast SCSI 4 ports; shared w/ CDS	
	375	
Metadata storage system	50GB, Ultrawide/fast SCSI	
Computational engines, On-line		
Signal conditioning, regression engines	2ea @ 600MHz	
Compute server (BEOWULF system, 2 X 10 GFLOPS)	32 nodes @ 600MHz ea, local disk space + RAM	
Control & monitoring	1ea @ 600MHz	
Networking Networking switches/routers) vBNS access, hardware required	100BT/OC3(ATM)	
Off-line analysis		
Off-line analysis stations	7ea @ 600MHz	
SW & Peripherals	Licenses/printers/plotters/ tape drives/scanners/local SCSI disk/	
Livingston, total estima	ted	\$545

MIT: Data analysis

Component	Specification	Cost (K\$)		
Off-line analysis		•		
Off-line analysis stations	10ea @ 600MHz			
Local disk cache	400 GB			
SW & Peripherals	Licenses/printers/plotters/ tape drives/scanners/local SCSI disk/			
Networking				
Networking switches/routers	100BT/OC3(ATM)			
vBNS hardware/hookup	OC3/ATM			
MIT, total estimated				

Caltech: Off-line operations & data analysis

Component	Specification	Cost (K\$)
Data distribution system, Off-line		
Tape robots	8ea	
Cabinets	4ea	
Disk Cache	4000 GB, RAID	
Servers	10ea @ 600MHz w/extra memory kits/ATM	
Computational engines, Off-line		
Signal conditioning, regression engines	4ea @ 600MHz	
Compute server (BEOWULF system)	96 nodes @ 600MHz ea, local disk space + RAM	
Post-processing workstations	4ea @ 600MHz	
Networking switches for compute server	100BT/OC3(ATM)	
Networking		
vBNS access, hardware required		
Networking, LAN	100BT/OC3(ATM)	
Off-line analysis		
Off-line analysis stations	15ea @ 600MHz	
SW & Peripherals	Licenses/printers/plotters/ tape drives/scanners/local SCSI disk/	
Caltech, Off-line total estin	mated	\$2504

LIGO Hanford WAN Topology - G1 Link to ESnet

49

LIGO Livingston WAN Topology - G2

Link to LSU/vBNS

