REPORT FROM THE DETECTOR CHARACTERIZATION GROUP LSC 3 MEETING AUGUST 13-15, 1998 BILL HAMILTON (LOUISIANA STATE UNIVERSITY)/ DANIEL SIGG (CALTECH)

LIGO-G980113-13-M

DETECTOR CHARACTERIZATION

LSC Boulder Meeting, August 1998

- □ Data Reduction
- ☐ Transient Analysis
- Performance Characterization
- ☐ Simulated Data Sets

DATA REDUCTION

☐ reduced data sets
O definition of reduced channel list
O preprocessing: algorithm and methods
O front-end decimation
☐ statistical description of auxiliary data
O mean, std. dev., max/min, etc.
O band-limited r.m.s. and ???
data trending and averaging
O reduced data rates
O on-line vs. off-line
O plots
☐ removal of cross-coupling terms
□artifact removal (e.g. lines)
☐ events and veto analysis
O triggers, multiple sensor trigger logic
O history

TRANSIENT ANALYSIS

detection of bursts, damped sine waves, glitches, digital errors, etc. O servo instabilities short term oscillations gain peaking - damped sine waves O digital artifacts missing data & duplicated data - bit errors & 'sticky' bits discontinuities O events in the physical environment - earthquakes in seismic sensors - peaks in the acoustics sensors and accelerometers lightening strikes in el.magn. sensors — wind burst / extreme rain showers (?) cosmic showers □ event classification □ coincidence analysis

TRANSIENT ANALYSIS METHODS AND ALGORITHMS

□ methods:
○ band-limited r.m.s
○ time-frequency analysis (short FFTs)
○ wavelets
○ matched filters
○ threshold on derivatives
○ ???
□ tools:
○ histograms
○ sonagrams
○ pulse height statistics

O Matlab, C, FORTRAN, and ???

PERFORMANCE CHARACTERIZATION

overall measures
 max. viewing distance for standard inspiral
O strain sensitivity at 150Hz
O frequency of glitches/loss of lock (?)
O multiple sensor summaries (?)
monitoring of dark port noise coupling coefficients
compare real-world performance with models
○ E2E model
○ ISC servo models
○ SEI stack models
O etc.
☐ system identification for adaptive control (?)
acalibration

PERFORMANCE CHAR. METHODS AND ALGORITHMS

- principle value decomposition
- ☐ stimulus-response tests
 - O global diagnostics system
- ☐ real-time analysis
- ☐ 'executive' summaries (?)
- □ overall performance monitor screen (?)
 - O web accessible (?)

SIMULATED DATA SETS

- ☐ time series of standard detector noise
- ☐ 'fake' sources: real and background
- ☐ detector response & astronomical position corrections

SIMULATED DATA SETS POSSIBLE PROBLEMS

- ☐ investigation of background (events/signals produced by non GW sources)
 - O triggers and subtraction of artifacts:
 - spikes (ADC errors, etc.)
 - steps (e.g. due to a state transition)
 - discontinuities (e.g. due to saturations)
 - lines (looks like everybody is doing this already!)
 - increased r.m.s. in a frequency band (e.g. due to gain peaking)
 - bursts (e.g. due to a hammer)
 - hardware malfunction
 - O non-gaussian analysis (e.g. pulse height statistics)
 - O algorithms/templates to identify whee-dwangies (damped sine waves)
 - O environmental cross-correlations / vetos
 - O advantage/disadvantage of whitening/dewhitening
 - classification
 - suitability of algorithms (e.g. wavelet)
 - strategy for identification
 - catalogue format

SIMULATED DATA SETS POSSIBLE PROBLEMS (2)

- detector sensitivity improvements by subtracting seismic
 - O how good can it be done?
 - limits due to non-linear effects
 - limits due to knowledge of exact excitation
 - O are PEM sensors at the right location?
 - O the usefulness of principle value decomposition
 - O what effect has it on the S/N of inspirals
- to support the search for periodic sources
 - effects of windowing and data splicing (due to ifo lock sequences)
 - O best way to do Doppler corrections in time series
 - O effect of whitening/dewhitening
 - improvements due to artifact removal(?)
 - O improvements due to frequency cut-offs(?)
 - O directional information
 - O multiple detector analysis

SIMULATED DATA SETS POSSIBLE PROBLEMS (3)

☐ to support the search for burst events
O detector antenna functions
GW polarization effects
O algorithms to identify burst sources
O detector correlations
 effects of adding time series of different detectors (e.g. for correlation with gamma-ray bursts)
O rejection strategies (vetos)
O candidate classification
stochastic background (non GW)
 detector cross-correlation analysis algorithms
O non-gaussian noise probabilities & histograms
O classification strategies
□ calibration
O corrections applied before or after analysis?
 strategies for verification and monitoring
 analysis problems induced by drifts

DATA REDUCTION

- D Reduced data sets

 J.B. -> couple of important channels

 + everything else at 147 rake
- statistical descr.: mean, std. dev., min, max, 1.m.s., etc.
 - decimation methods
- O Subtraction of artifacts
 - lines
 - cross-wupling terms (PVD)
- o Visualization tools
 - Standard package: K.R. -> Mortlab / Root

TRANSIENT ANALYSIS

- s Wareforn analysis
 - band-limited ms.
 - time freg. analysis
 - ware less
 - makked filks
 - Hareshold on deniatives
- · Classification
 - event data format
 - event organization (database) look up table
- O Visualization Tools
 - histograms
 - sonagrams
 - pulse height statistics

SIMULATED DATA SETS

- seismic - thormal whe reducades - lines l'oscillations - Increased rms.
- burst short sine / peut -damped sine waves coor dinate

o Utilities

- source striper module

- ifo aciocal response

- whitening / dewhitening filtes

- digities tim module

- file inpute module

- file output module

- event capture

- exect issue

- event history file out

- fram - court

- securing junction

- Budon noise gaverator

- general purpose religibel filter

- time somes sheer roroph

- driff function grandstor

PERFOR MANCE CHARACTRIBATION

- 0 Heasures
 - seen volume for Hd. inspiral
 - Strain sens. at 150Hz
 - frequency of slitches / loss of lock
- multiple senor summaries
 neb summary
 o Monitoring of clark port noise coupling coefficients

 - pariodie suspt sine
- a Calibration
 - amial time
 - amplitude
 - anff
- · System identification for adaptive control (?)

Page 1

Note 1, Linda Turner, 08/20/98 11:43:50 AM LIGO-G980113-13-M