ASC Wavefront Sensing (WFS)

Final Design Review

P. Fritschel K. Mason

M. Zucker

July 23, 1998

FDR Outline

- Introduction & committee charge (DHS, 15')
- WFS Scope & Requirements overview (MZ, 15')
- WFS sensing hardware (PF, 20')
- Optomechanical layout, components & features (KM, 20')
- Controls: inputs, design & performance (PF, 30')
- Implementation staff, cost, and schedule (MZ, 20')
- Discussion & action items (DHS, ?')

ASC/WFS Scope

• Wavefront sensing alignment design

- □ Sensors: incl. both WFS proper and beam centering
- □ Control design & algorithms for operational ('Detection mode') alignment
- Bootstrap procedures to initiate operation
- Diagnostics (internal ISC, plus external Detector-wide)
- WFS hardware includes

□ "ISC tables" are designed under ASC/WFS (LSC detector/shutter and COS telescope components are 'subs')

□ ETM beam centering units

- Electronics to be reviewed under ASC/CDS
- Initial alignment reviewed previously(T980019-00)

□ All "active" IO and COC chambers (1 illuminator, 1 camera per)

WFS Detector/ISC Context

Principal WFS Interfaces

• LSC

- □ LSC diodes, shutters share WFS tables
- □ modulations provided by LSC (through IO)
- □ acquisition procedure, diagnostics, etc. all coupled

• 10

- □ alignment design & deliverables include MC alignment
- COS
 - □ delivers beams outside
 - □ second part of COS beam reducer integrated on ISC table
- SUS
 - □ control actuation is via SUS controllers
- COC

□ Coating & surface properties define control plant

Primary WFS Requirements

 "Detection" mode alignment: 10⁻⁸ rad rms (most sensitive DOF of core optics)

□ driven by shot noise SNR

- Beam centering: 1 mm RMS (w.r.t. true C of R for COC)
 thermal pitch/yaw excitation X decentering lever arm --> strain
- Availability

□ These criteria apply during "noisy Louisiana" conditions

DETECTION MODE DESIGN: SENSOR TYPES

ASC EQUIPMENT LOCATION, VERTEX STATION

WAVEFRONT SENSOR DESIGN

• Updated wavefront sensing matrix

Wavefront Sensor	Demod. Freq. R=res. SB; NR = nonres. SB	Splitting Factor	Sensing Direction	Gain (mW/ div angle)
WFS 1	R	0.1%	u ₂	48
WFS 2a	Р	0.249/	u ₁	48
WFS 2b	- K	0.24%	-0.14 u₁ - 0.40 u₂ -0.91 u₃	6
WFS 3	NR	2%	0.83 u₁ + 0.13 u₄ - 0.54 u₅	7.3
WFS 4	NR	2%	0.70 u₁ - 0.46 u₄ + 0.55 u₅	8.5
WFS 5	R	20%	-0.14 u₁ - 0.40 u₂ -0.91 u₃	40

WAVEFRONT SENSOR UNIT

LIGO-G970043-00-D

SENSOR HEAD

• Same head design for all sensors (including MC)

QUADRANT PHOTODIODE: EG&G YAG 444-4A

- 11.4 mm diam.
- 0.45 A/W
- 100 V reverse bias
- C = 9pF; R = 100 ohm
- Channel-channel cross-coupling:

>> -25 dB at 27 MHz (adjacent channels)

 Dark current appears stable under long term exposure to bias & bias+light (< 100 nA)

WFS SENSING NOISE

WFS	Angle Sensitivity at	WFS head (each mixer inpu	n channel), at the $ut; nV / Mz$	Demod.	ADC input	S _o , Equivalent angle
	mixer input; per element; V/rad	shot noise	elect. noise	input noise	noise ^a , nV/\Hz	sensitivity,rad∕\Hz (f>40 Hz)
1	1.1 × 10 ⁷	45				9.0 × 10 ⁻¹⁵
2a	1.1 × 10 ⁷	40		20	50	8.8 × 10 ⁻¹⁵
2b	1.1 × 10 ⁶	40	70			8.8 × 10 ⁻¹⁴
3	$1.6 imes 10^6$	115		20	(f>40 Hz)	9.1 × 10 ⁻¹⁴
4	2 × 10 ⁶	115				7.3 × 10 ⁻¹⁴
5	8.7 × 10 ⁶	250				3.0 × 10 ⁻¹⁴

a. Assuming +-1V ADC range, and referred to input of the pre-ADC whitening filter.

GUOY PHASE TELESCOPES

- Use the two lens design developed for the FMI
 - beam size on detector: 2.3 mm radius
- Design for mode cleaner WFS's complete

- Used for slow control of input beam and beamsplitter angles (to ~ 10⁻⁷ rad), to maintain 1 mm centering on ETMs
- Designed to detect transmitted beam with recycled Michelson only (few μ Ws), as well as complete IFO (~.1W)

>> operator gain control from 500 ohm - 10 Mohm

Parameter	QPD-X	QPD-Y				
Spot size, radius	1.5 mm					
Photocurrent, per element	4 ma					
Position sensitivity at quad (left-right difference)	15 amp/meter					
Sensitivity to BS, IB angles	1.8 × 10 ³ amp/rad 3.9 × 10 ³ amp					
Shot noise	72 pA	√√Hz				
Equivalent angle sensitivity	$4 \times 10^{-14} \text{ rad/}\sqrt{\text{Hz}} \qquad 2 \times 10^{-14} \text{ rad/}\sqrt{\text{Hz}}$					

WFS Table Optomechanical Design

Servo Design: Inputs to Model

PITCH FLUCTUATION MODEL

Primary effect:

Acceleration of suspension support point induces a torque about the optic's pitch axis

SERVO DESIGN

• Controller design for critical degrees of freedom, WFS 1&2a

- Elliptic LPF: 4th order, 60 dB stop-band attenuation; part of SUS controller
- Unity gain frequency: 6 Hz; Phase margin 38 deg.:
 - Elliptic LPF: -22 deg.
 - 0.18 Hz BP: -12.5 deg.
 - 1.4 Hz BP: -7 deg.

OPEN LOOP GAIN

LIGO-G980109-00-D

• WA input spectrum. No 1.4 Hz BP in controller.

RESIDUAL ANGLE FLUCTUATIONS

• LA inputs:

SENSING & CONTROL NOISE IN GW BAND

OTHER DEGREES OF FREEDOM

Sensor	Sensing direction	S_{α} (rad/ \sqrt{Hz})	Filtering req.@40 Hz	Target servo BW, Hz	Target residual rms angle, rad	Mirrors controlled by this sensor
WFS1	u ₂	9×10^{-15}	\geq 56 dB	6	0.8×10^{-8}	All TM's
WFS2a	u ₁	8.8×10^{-15}	\geq 56 dB	6	0.8×10^{-8}	ITM's, RM
WFS2b	14 u₁- .4 u₂+.9u₃	8.8×10^{-14}	≥ 76 dB	2-3	3×10^{-8}	ITM's
WFS3	.8 u ₁ +.13 u ₄ +.5 u 5	9.1×10^{-14}	≥ 76 dB	1-2	1×10^{-7}	RM
WFS4	.7u ₁ - .4 6u₄+.55u₅	7.3×10^{-14}	≥ 76 dB	1-2	1×10^{-7}	All TM's
QPD-X	IB	4×10^{-14}	≥ 70 dB	0.5	2×10^{-7}	IB
QPD-Y	9 BS +.45 IB	2×10^{-14}	≥ 65 dB	0.5	2×10^{-7}	BS, IB

EXAMPLE: WFS 2B

- Elliptic bandstop (6th order) implemented with a digital filter
- UGF = 3 Hz; PM = 35 deg
- Residual angle:

>> 6×10^{-8} rad-rms (LA, high 0.16Hz)

>> 1×10^{-8} rad-rms (WA)

MODE CLEANER ALIGNMENT CONTROL

- Servo response: single pole at \leq 0.1 Hz; UGF ~ 1 Hz.
- Residual angles of ~1 microradian or less
- Analog implementation
- LPF after mirror drivers may be needed to reduce driver noise in GW-band (beam jitter)

DIAGNOSTICS

- ASC is connected to the DAQS-GDS reflective memory ring
- Diagnostic tests are performed through the GDS infrastructure
- Test points (inputs or outputs) are defined within the ASC servo, which serve as the interface to GDS-DAQS
- Up to 64 test points can be used simultaneously for ASC

27

RM TEST POINT INTERFACE

servo filter 740 functions WFS 1 500 수 514 ዯ 528 Σ-760 Ø 700–707 75<mark>0</mark> Q ETMx 502 🔶 516 Ą 75<mark>2</mark> 530 762 WFS 2 Δ 518 Σ ø 708–715 Q ETMy 764 754 532 504 742 S ➡ M WFS 3 Q 4 506 520 4 ITMx basis $\Sigma-\varphi$ trans. 716-723 766 Т 756 534 ITMy 744 WFS 4 Q 508 4 522 536 ø Σ 768 724–731 75<mark>8</mark> RM 746 WFS 5 $\Sigma - \phi$ spare 748 732–739 Q 510 수 524 QPD-X 538 782 778 Σ 770–773 BS S ➡ M 540 Д 512 수 526 QPD-Y

78**0**

Σ

774-

784

IB

DAQ data

GDS data

⊳

Note: all TPs are pairs (for pitch & yaw), unless otherwise noted.

DAQ CHANNELS

- WFS DC readout, each element of quad, 16 Hz
- WFS LO phase & RF gain settings, 1 Hz (EPICS)
- Yaw & Pitch misalignment angles for all WFS, 2048 Hz
- Yaw & Pitch misalignment angles for QPD's, 2048 Hz
- Yaw & Pitch control signals for ETMs, ITMs, RM, BS, & IB, 2048 Hz
- Total of 27 channels at 2048 Hz

Staff

• Engineering, procurement & mfg. supervision

- □ K. Mason, lead engineer
- □ M. Smith (P/T)

CDS electronics design/fab/test/SW support

- **P.** Fritschel
- E. Daw
- □ N. Mavalvala
- Assembly/test
 - □ M. McInnes
 - P. Fritschel
 - □ M. Zucker
- Schedule/budget
 - □ M. Zucker

Schedule

• Top-level constraints: hardware

IOT7 paced by IO availability (< SEI, CDS and SUS completion)
 ISCT 7-10 paced by COC installation
 MIT assembly work in progress (setting up assembly areas in new lab)

• 'Simultaneous' (interwoven) activity threads:

□ IAS fab/test

LSC fab/test

□ IO/COC installation surveys (IAS)

□ CDS electronics design/fab support

□ Site installation (WFS/LSC)

WFS table deliveries

	SEQ	ID	MILESTONE	PLAN DATE
	1	5	LSC Init Fab	7/15/98
	2	7	LSC_1	7/31/98
	3	8	LSC_2	8/31/98
	4	9	LSC_3	9/30/98
►	5	153	LSC IOT7 ready	10/23/98
	6	10	LSC_4	10/30/98
	7	11	LSC_5	11/27/98
	8	12	LSC_6	12/25/98
	9	13	LSC_7	1/29/99
	10	179	LSC ISCT7 ready	2/11/99
-	11	14	LSC_8	2/26/99
►	12	196	LSC ISCT9 ready	3/12/99
-	13	15	LSC_9	3/31/99
►	14	213	LSC ISCT10 ready	4/16/99
	15	16	LSC_10	4/30/99
►	16	275	LSC LIOT1 ready	5/7/99
-	17	17	LSC_11	5/31/99
	18	302	LSC LISCT1 ready	6/4/99
	19	320	LSC LISCT3 ready	6/25/99
	20	18	LSC_12	6/30/99
►	21	338	LSC LISCT4 ready	7/23/99
	22	398	LSC WIOT1 ready	9/24/99
>	23	425	LSC WISCT1 ready	11/19/99
	24	443	LSC WISCT3 ready	12/24/99
►	25	461	LSC WISCT4 ready	1/21/00
-				
		-		

Est. @completion vs. budget¹ (all ISC)

ltem	Budget (\$k)	EAC (\$k)	Δ (\$k)
LSC personnel	1,076	1,778	(702)
LSC hardware	609	257	352
ASC personnel	1,385	2,757	(1,372)
ASC hardware	3,419	1,694	1,725
total	6,489	6,486	3

^{1.} LIGO Construction (WBS 1.x) only; does not include installation (LIGO Ops, WBS 2.x)

EAC (WFS hardware)

ASC;WFS

							2/98 EAC				Current EAC			
ASC (5E516-5H516): Wavefront Sensing Subsystem							\$713,440				\$688,436			
Group	Equipment	Wa2k	Wa4k	La4k	total	Cost (ea)	Total		rev. total	rev. Cost	Current EAC	Committed	Reference	
WFS	optical table	4	4	4	12	\$4,800	\$57,600		12	\$4,800	\$57,600			
WFS	table enclosure	4	4	4	12	\$2,100	\$25,200		12	\$2,100	\$25,200			
WFS	isolated table supports	4	4	4	12	\$4,000	\$48,000		12	\$4,000	\$48,000			
WFS	periscope structure	8	8	8	24	\$1,600	\$38,400	1	24	\$1,350	\$32,400	6/5/98	PP271113-75KM (partial)	
WFS	beam fold/tube	8	8	8	24	\$2,400	\$57,600		24	\$2,400	\$57,600			
WFS	optical mounts	60	60	60	180	\$280	\$50,400		180	\$280	\$50,400			
WFS	mirrors	30	30	30	90	\$280	\$25,200		90	\$280	\$25,200			
WFS	beamsplitters	18	18	18	54	\$260	\$14,040		54	\$260	\$14,040			
WFS	lens & mount	24	24	24	72	\$350	\$25,200		72	\$350	\$25,200			
WFS	remote mirror mount	20	20	20	60	\$1,850	\$111,000		60	\$1,850	\$111,000			
WFS	multi-axis driver	3	3	3	9	\$4,000	\$36,000		9	\$4,000	\$36,000			
WFS	ND wheel	4	4	4	12	\$350	\$4,200		12	\$350	\$4,200			
WFS	beam camera	8	8	8	24	\$800	\$19,200	1	0	\$800	\$0	5/20/98	part of PP269918-75PF (see vide	eo)
WFS	RF PIN quads (bare)	10	10	10	30	\$400	\$12,000		30	\$400	\$12,000			
WFS	safety shutter	4	4	4	12	\$550	\$6,600		12	\$550	\$6,600			
WFS	spares	1	1	1	3	\$18,000	\$54,000		3	\$18,000	\$54,000			
WFS	alignment/test fixtures	1	0	1	2	\$32,000	\$64,000		2	\$32,000	\$64,000			
WFS	alignment laser (IR)	1	0	1	2	\$3,600	\$7,200	1	2	\$3,698	\$7,396	6/5/98	PP271435-75MZ (partial)	
WFS	beamscan	1	0	1	2	\$7,500	\$15,000		2	\$7,500	\$15,000			
WFS	hardware	4	4	4	12	\$550	\$6,600		12	\$550	\$6,600			
WFS	special crates	4	2	2	8	\$1,500	\$12,000		8	\$1,500	\$12,000			
WFS	shipping	1	1	1	3	\$8,000	\$24,000		3	\$8,000	\$24,000			

