Overview and Status of the LIGO Project

David Shoemaker
MIT, LIGO Project
9 July 98

Organization of talk

- tour of LIGO design organized by differences from LISA
- update of LIGO status

LIGO is funded by the National Science Foundation

LIGO

LIGO: Laser Interferometer Gravitational-Wave Observatory

- project to build observatories for gravitational waves (GWs)
 - ...and laboratory to run them
- to enable an initial detection, then an astronomy of GWs
- group effort of colleagues at MIT, Caltech

Observatory characteristics

- Two sites separated by 3000 km
- each site carries 4km vacuum system, infrastructure
- each site capable of multiple interferometers

Evolution of interferometers in LIGO

- establishment of a network with other interferometers
- multiple users of LIGO, simultaneous operation and development, focussed searches
- lifetime of >20 years
- goal: to be compatible with all technology developments for terrestrial interferometers

LISA and Ground-based interferometers

Similarities, Differences, Challenges

	Ground-based	LISA
Frequency Range	$10^{+1} - 10^{+4} \text{ Hz}$	$10^{-4} - 10^{-1}$ Hz
Burst/Integrated strain sensitivity	~10 ⁻²³ (at ~100 Hz)	~10 ⁻²³ (at ~1/100 Hz)
Arm Length	$\sim 10^{+3} \text{ m}$	$\sim 10^{+9} \text{ m}$
Displacement sensitivity	$\sim 10^{-19} \frac{\text{m}}{\sqrt{\text{Hz}}}$	$\sim 10^{-12} \frac{\text{m}}{\sqrt{\text{Hz}}}$
Stochastic forces	seismic isolation, suspensions, thermal noise	inertial sensing, drag-free technology, thermal distortions
Sensing system	laser power, optics development	clocks and corrections, transponding system

Coalescing Compact Binaries

Standard candle: Solar Mass Binary stars

- e.g., Taylor-Hulse Binary 1913+16; now at ~8 h period
- later in life (10^8 yr.), period shortens to audio frequencies
- spends ~1 minute in frequency range from ~30 Hz-1 kHz
- good target frequency range for ground-based ifos.

Spectral representation, with LIGO sensitivity curves

Other possible sources

Stellar core collapse - supernovæ

- symmetric collapse/expansion does not radiate, but...
- rotation can lead to flattening, then formation of a 'bar'
- either a spin-up (100 to 1000 Hz) or spin-down (100 to 10 Hz)
- radiator resembles binary, similar strains; rate unknown

Stochastic Background

- Several possible (speculative) sources:
 - > primordial 'big-bang' background
 - cosmic strings
 - confusion limit
- possible to make 'blind' search correlation of interferometers
- signals probably quite small (COBE, Pulsar, Doppler limits)

Periodic sources

asymmetric pulsars (e.g., Crab): synchronize with Radio signals

Resume of sources

- sources with well-understood signal forms
- sources with several possible forms
- uncertain rates, signal sizes
- surprises 'certain'

LIGO optical configuration

Interaction time with the GW (LISA: 10⁶ km simple path)

- signal δl grows as length of interferometer L grows
- up to limit where $L \approx \lambda_{GW}/4$, order of hundreds of km for 100Hz
- not practical to make 100km straight path on earth, so fold it

- Delay line
 - > simple, but requires large mirrors and limited storage time
- Fabry-Perot (LIGO design)
 - > compact, but imposes modes, resonance constraints
- several msec storage time for initial system
 - > optimum sensitivity around 100 Hz; ~100 bounces, ~4km

Vacuum system

Light must travel 4 km without attenuation or degradation (LISA: capitalize on excellent vacuum in space)

- index fluctuations in gas cause variations in optical path
 - > pressure, polarizability, molecular speed of various

species, counting statistics; net effect
$$h(f) \approx 4\pi\alpha \left(\frac{2\rho}{v_0 w_0 L}\right)^{\frac{1}{2}}$$

- requirement for quality of vacuum in 4 km tubes from this
 - \rightarrow H₂ of 10^{-6} torr initial, 10^{-9} torr ultimate
 - > $\mathrm{H_2O}$ of 10^{-7} torr initial, 10^{-10} ultimate
- vacuum system, 1.22 m diameter, ~10,000 cubic meters

Also have requirement on contaminants

- low-loss optics can not tolerate surface 'dirt'
- circulating powers of ~10-50 kW, 1-10 cm²
- requires strict control on in-vacuum components, cleaning

Optics

Highly efficient optical system, >50 ppm lost per bounce (LISA: less than 10⁻⁸ captured)

- 25 cm diameter, 10 cm thick fused silica cylinders
- light beam ~10 cm diameter; 1ppm simply lost, ~1ppm absorbed

Constraints

- wide angle scatter, 10^{-3} rad and larger
 - > power loss to system
- medium angle scatter, 10^{-4} rad
 - > scattering out of beam, onto tube, back into beam
- wavefront distortions, 10^{-6} rad
 - \rightarrow degraded interference in interferometer (1-10⁻³ contrast)

Results

- λ/800 over central 10 cm (~1 nm rms); fine scale 'superpolish'
- tens of optics polished, exceeding these requirements
- coating doubles large-scale defects, still within requirements

Sensing limits

Shot or Poisson noise (LIGO requires ~10⁵ better fringe precision than LISA)

- uncertainty in intensity due to counting statistics: $p_{out} = \sqrt{\frac{h_{Pl}\omega}{P_{in}}}$
- can solve for equivalent strain: $h_{\rm shot} = \frac{\delta l}{L} = \frac{1}{L} \sqrt{\frac{h_{\rm Pl} c \lambda}{2\pi P_{\rm in}}}$
- Note: scaling with $1/\sqrt{P_{\rm in}}$; gives requirement for laser power

Radiation Pressure

- · quantum limited intensity fluctuations anti-correlated in two arms
- photons exert a time varying force, spectral density $\tilde{f} = \sqrt{\frac{2\pi h P_{\text{in}}}{c\lambda}}$
- results in opposite displacements of EACH of the masses:

$$\tilde{x}(f) = \frac{1}{mf^2} \sqrt{\frac{hP_{\text{in}}}{8\pi^3 c\lambda}}$$
, or strain $h = \frac{\delta l}{l} = \frac{2\tilde{x}}{L}$

• NOTE: scaling with $\sqrt{P_{\mathrm{in}}}$, scaling with the arm length L

Total readout, or quantum noise

• quadrature sum $h_q = (h_{shot}^2 + h_{rad press}^2)^{1/2}$; optimum exists

Realistic optical configurations

Insufficient raw laser power

- predicted sources require shot noise of ~300 W on beamsplitter
- suitable lasers produce ~10 W, only ~6W at ifo input

Make resonant cavity of interferometer and additional mirror

can use ifo at 'dark fringe'; then input power REFLECTED back

- known as Recycling of light (Drever, Schilling)
- Gain of ~40 possible, with losses in real mirrors
- allows present lasers to deliver needed power

Something for nothing?

- increases stored energy
- just extract small amount (10⁻⁴⁰ or so) if GW passes

Control systems

Gives 6 suspended optics, 4 length DOF to control

- Michelson dark fringe condition
- both Fabry-Perot arms on resonance (maximum $d\phi/dL_n$)
- recycling cavity on resonance/laser wavelength correct
- lengths to be held to 10^{-13} m in presence of 10^{-5} m noise

Analyze as common mode/differential mode

Angular alignment also required

- all optical cavity axes must be aligned with input beam
- leads to $\sim 10^{-8}$ rad requirement
- use techniques similar to length readout, but with spatial info

Excess phase noise

LIGO: time scale of msec (LISA: time scale of ksec)

Many sources of imperfection:

- ifo asymmetries
 - > lengths (intentional!)
 - > losses
 - > beamsplitter
- ifo control errors
 - > length
 - alignment

- laser source
 - > intensity fluctuations greater than shot noise $(10^{-8}\delta P/P)$
 - > frequency noise $(10^{-7} \text{ Hz}/\sqrt{\text{Hz}})$
 - > angular or translational beam pointing fluctuations
- sensing systems
 - > linearity (microns at 1 Hz, $10^{-19}~\mathrm{m}/\sqrt{\mathrm{Hz}}$ at 100 Hz
 - > spatial uniformity

Much of the technical effort goes into these noise sources

- complicated sensing and control problems
- state-of-the-art optics, state-of-the-art lasers
- beautiful and delicate experiments

Proof of Principle

Experimental demonstration of fringe-splitting

- suspended interferometer mirrors, LIGO sensing systems
- $\sim 1.3 \times 10^{-10} \text{rad} / \sqrt{\text{Hz}}$, ~ 70 watts circulating power

Thermal Noise

Mechanical systems excited by the thermal environment (LISA: thermal noise negligible)

- results in physical motions of the tests masses
- total energy of $k_{\rm B}T$, leads to $\tilde{x}=\sqrt{(k_{\rm B}T)/k_{\rm sping}}$ for RMS
- spectrum according to Fluctuation-Dissipation theorem:

$$\tilde{x}(f) = \frac{1}{\pi f} \sqrt{\frac{k_{\rm B}T}{\Re(Z(f))}}, \, \Re(Z(f))$$
 the real (lossy) impedance

- e.g., damping term in an oscillator: $F_{\text{ext}} = m\ddot{x} + \Re(Z(f))\dot{x} + kx$
- usually think of viscous damping: $\Re(Z(f)) = b$, a constant
- most real materials show internal friction,
- F = -kx replaced by $F = -k(1 + i\phi(f))x$, $\phi(f)$ often constant

Seismic Noise

Motion of the earth

- driven by ocean tides, wind, volcanic/seismic activity, humans
- requires e.g., roughly 10⁹ attenuation at 100 Hz
- ~300 micron tidal motion, microseismic peak at 0.16 Hz...

Approaches to limiting seismic noise

- careful site selection
 - > far from ocean, significant human activity, seismic activity
- active control systems (only microseismic peak for now)
 - > seismometers, regression, feedback to test masses
- simple damped harmonic oscillators in series
 - 'stacks', constrained layer springs and SS masses
- one or more low-loss pendulums for final suspension
 - > gives $1/f^2$ for each pendulum

Gravity Gradients

Local 'static' gravitational force sum of mass distributions (LISA: different sources, same concern)

- · dominated by unchanging attraction of earth
- additional time-varying contributions from other sources:
- seismic compression
 - surface seismic waves compressing nearby earth
- weather
 - > variations in atmospheric pressure changing air density
- moving massive objects
 - > humans passing close (<10 meters) to test masses</p>
- for moving/changing mass element M, $\dot{F}(t) = \frac{GM(t)m\hat{r}}{r^2}$

Places limit on lowest frequencies detectable by ground-based interferometers

- some engineering solutions to ground variations, nearby activity
- nothing to do about the weather!
- practical limit: down to roughly 10 Hz
- lower frequencies are domain for space-based interferometers

Another crucial reason to make interferometers long: these motions must be small compared with GW strains

Initial LIGO sensitivity

Initial LIGO Noise Curves

(model 'snapshot' of mid-July 98)

Limits due to facilities

Detection confidence

Environmental Monitor

- wish to eliminate locally all possible false signals
- detectors for many possible sources
 - seismic, acoustic, electromagnetic, muon
- also trend information
 - > tilts, temperature, weather

Multiple interferometers

- three interferometers within LIGO
 - > 4 km at Hanford, 4 km at Livingston
 - also 2 km at Hanford
- absolute timing accuracy of 10 microsec
 - > 10 msec light travel time between sites
- AND: other detectors (interferometers, bars)

Detection computation

- coincidences (lack of inconsistency) among detectors
 - > also non-GW: e.g., neutrino, X-ray
- matched filter techniques for 'known' signals
- correlations for broad-band suspects
- deviations from explicable instrumental behavior

LIGO Sites

Hanford, WA

- located on DOE reservation
- treeless, semi-arid high desert
- 25 km from Richland, WA

Livingston, LA

- · located in forested, rural area
- · commercial logging, wet climate
- 50km from Baton Rouge, LA

LIGO Evolution

Infrastructure nearly complete at both sites

- beam tubes completed for Hanford; bakeout in preparation
- vacuum equipment fabricated, in installation/test
- buildings occupied, networks running, growing staff

Initial shakedown 1999-2001

- first detector equipment now arriving at sites
- Recycled Michelson tests starting early spring '99

First observations 2001-2003

- coincidences among all 3 interferometers
- · improved sensitivity, reliability, characterization continuing

Development of improved interferometers underway

- LIGO Science Collaboration quite active
- working groups in stochastic, sensing, configuration, data
- continued R&D within (and without) LIGO Lab
- planning incremental improvements for ~2004
- significant changes for?~2008

The ground-based network of detectors will be ready to complement LISA